Seismic moment tensor solutions from GeoNet data to provide a moment magnitude scale for New Zealand
Author: Elizabeth de Joux Robertson
Paper number: 3747
A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Geophysics was accepted as a final report and is available on request - please contact research@eqc.govt.nz for access.
Abstract
The aim of this project is to enable accurate earthquake magnitudes (moment magnitude, MW) to be calculated routinely and in near real-time for New Zealand earthquakes. This would be done by inversion of waveform data to obtain seismic moment tensors. Seismic moment tensors also provide information on fault-type. I use a well-established seismic moment tensor inversion method, the Time-Domain [seismic] Moment Tensor Inversion algorithm (TDMT_INVC) and apply it to GeoNet broadband waveform data to generate moment tensor solutions for New Zealand earthquakes. Some modifications to this software were made. A velocity model can now be automatically used to calculate Green’s functions without having a pseudolayer boundary at the source depth. Green’s functions can be calculated for multiple depths in a single step, and data are detrended and a suitable data window is selected.
The seismic moment tensor solution that has either the maximum variance reduction or the maximum double-couple component is automatically selected for each depth. Seismic moment tensors were calculated for 24 New Zealand earthquakes from 2000 to 2005. The Global CMT project has calculated CMT solutions for 22 of these, and the Global CMT project solutions are compared to the solutions obtained in this project to test the accuracy of the solutions obtained using the TDMT_INVC code. The moment magnitude values are close to the Global CMT values for all earthquakes. The focal mechanisms could only be determined for a few of the earthquakes studied. The value of the moment magnitude appears to be less sensitive to the velocity model and earthquake location (epicentre and depth) than the focal mechanism. Distinguishing legitimate seismic signal from background seismic noise is likely to be the biggest problem in routine inversions.
Order a research paper
Many of these research papers have PDF downloads available on the site.
If you'd like to access a paper that doesn't have a download, get in touch to ask for a copy.