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ABSTRACT 

A key aspect of seismic hazard assessment is the prediction of the ground motion distribution 
from seismic sources. The prediction can either be made using an empirical ground-motion 
model, sometimes referred to as a ground-motion prediction equation, or using semi-physical, 
semi-empirical ground-motion simulations. The choice of technique, and model within each 
technique, often has a very large effect on the results, which renders the final hazard results 
uncertain. This type of uncertainty is often referred to as epistemic uncertainty. Accounting for 
epistemic uncertainty involves combining the outputs from all technically defensible models. 
Seismic hazard assessment in New Zealand has historically suffered from an insufficient 
availability of technically-defensible models, which has prevented the epistemic uncertainty 
from being robustly quantified. This study derives preliminary suites of nonredundant median 
models for shallow crustal earthquakes that are designed to capture the full space of 
technically defensible models for seismic hazard assessment. With the plausible model space 
adequately covered, well-performing models based on current evidence can receive higher 
weights. Preliminary model suites and weights are derived specifically for Auckland, Wellington 
and Christchurch, as well as a generic model suite for wider application. Ground-motion 
standard deviation models are derived using New Zealand data, and guided at large 
magnitudes by global data where the New Zealand dataset is too sparse. Preliminary uniform 
seismic hazard spectra are calculated using these model suites for rock sites in Auckland, 
Wellington and Christchurch. Partially-ergodic uniform hazard spectra are also calculated 
using the model suites for six locations in Wellington.  

 

 

 

 

KEYWORDS 

Ground motion; seismic hazard; PGA; ergodic; partially-ergodic; nonergodic; epistemic; 
aleatory; uncertainty; crustal; subduction; Sammon’s map; Royal Commission 

 



 

 

vi GNS Science Report 2020/02 
 

 

 

 

 

 

 

 

 

 

This page left intentionally blank. 

 



 

 

GNS Science Report 2020/02 1 
 

1.0 INTRODUCTION 

Probabilistic seismic hazard analysis (PSHA; Cornell, 1968) involves calculating the probability 
of a certain seismic intensity value being exceeded over a given time period. For a single 
scenario, this metric is obtained by multiplying the rate of a seismic source rupturing in the 
given time period by the probability that the seismic source will generate seismic intensities 
that exceed the given seismic intensity value. The overall seismic hazard is obtained by 
summing this function over all seismic sources in the vicinity of a given location.  

To determine the conditional probability density function of seismic intensity for a given 
moment magnitude (MW) and distance scenario, it is common to use an empirical 
ground-motion model. Such empirical models are statistical representations of recorded and/or 
simulated ground-motion data, and hundreds of these empirical models have been derived 
since the PSHA method was first proposed, for various regions around the world 
(Douglas, 2003; Douglas and Edwards, 2016). 

The seismic intensity metrics that are most commonly used by engineering communities are 
peak ground acceleration (PGA), peak ground velocity (PGV) and 5%-damped 
pseudo-acceleration elastic response spectra (from which pseudo-velocity and 
pseudo-displacement response spectra are easily obtained). Modern empirical ground-motion 
models provide conditional distributions for most or all of these seismic intensity metrics. Other 
values of damping are also of increasing interest, for which damping modification models are 
applied to 5%-damped response spectral models. 

An issue with empirical models is that different models often provide markedly different 
conditional distributions for a given source-site scenario, yielding substantially different hazard 
results. Generally, there is insufficient available data to identify the best model through model 
testing. Without relevant test data, many models provide plausible distributions and must be 
considered. The uncertainty that results from between-model variations is known as 
‘epistemic uncertainty’, referring to our lack of knowledge. In the context of ground-motion 
characterisation for PSHA, the term ‘epistemic’ is usually reserved for uncertainty in the median 
of the empirical ground-motion model, and the shape of the probability density function is 
referred to as ‘aleatory uncertainty’, referring to underlying randomness. In many cases, this is 
an imperfect, reductive partitioning of poorly-quantified and truly stochastic processes but is 
nevertheless a convenient scheme for quantifying and propagating uncertainty. 

Epistemic uncertainty is usually accounted for by using multiple models in a logic tree, with 
weights assigned to each branch. While the importance of treating ground-motion uncertainties 
in a logic tree has been known for decades, in New Zealand, consideration of uncertainty has 
been scarce (see review in Van Houtte, 2017a). The issue was highlighted during an 
international review of New Zealand’s National Seismic Hazard Model (NSHM; 
Stirling et al. 2012) during the Canterbury Earthquakes Royal Commission of Inquiry 
(Abrahamson, 2011), which stated that  

“... the ground motion model is often one of the largest sources of uncertainty in 
seismic hazard studies ... the NSHM ground motion model should be changed to 
include additional GMPEs considered applicable to New Zealand.” 

It is not straightforward to address the concerns raised in the Royal Commission of Inquiry. 
While there have been hundreds of empirical models previously derived, generally there are 
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very few that would be suitable for application in New Zealand, for example because they are 
derived only with small magnitude data, or with data from a tectonic environment that doesn’t 
exist in New Zealand. Additionally, the logic tree framework for considering epistemic 
uncertainty treats the model weights as model probabilities, which requires the models to be 
mutually exclusive and collectively exhaustive. Bommer and Scherbaum (2008) describe how 
models are rarely mutually exclusive, as they are derived with overlapping datasets, and 
because models are being weighted rather than outputs, redundant model predictions often 
bias the logic tree weights. Satisfying the collectively exhaustive criterion is also difficult, 
because the ‘true model’ may lie outside the range of published models. 

The approach in this study hopes to mitigate these issues by deriving a suite of models that 
are closer to mutually exclusive and collectively exhaustive than currently. This study’s method 
for addressing these issues relies on a key assumption. Most empirical ground-motion models 
utilise similar equations but are fitted to different datasets and thus have different model 
parameters. This motivates an assumption that all models can be represented with a single 
equation but with different parameters. By fitting existing models to this common form, a 
distribution of plausible model parameters, as indicated by the publication record, can be 
calculated. Sampling from this distribution allows many new models to be generated, which 
provide median ground-motion predictions between those of the published models, and 
beyond what has been published. The sampled ground-motion model distributions can then 
be analysed in the ground-motion space rather than the model space, to select unique, 
nonredundant models that approach being mutually exclusive and collectively exhaustive. 

The procedure can be summarised in five steps: 

1. Select an initial suite of ground-motion models, known as ‘seed models’. 

2. Select a model form that is a good representation of all of the seed models and fit all of 
the seed models to this form. This procedure yields a suite of models with the same form, 
but different model parameters. 

3. Fit the suite of model parameters with a multivariate normal distribution, to define a 
continuous space of ground-motion models. Sample new models from this distribution to 
interpolate between and extrapolate beyond the ground-motions predicted by the seed 
models. 

4. From the sampled models, visualise the relevant ground motions predicted by the 
models rather than the models themselves, then select a well-balanced suite of models 
that cover the full space of epistemic ground-motion uncertainty to be considered. 

5. Assign weights to the selected models. 

This procedure has been utilised in a handful of overseas hazard assessments 
(e.g. Chiou, 2015; Kuehn and Abrahamson, 2015; Phung et al. 2019), but is still somewhat of 
a nascent approach. For the NGA-East project in the United States, a slightly different 
approach was adopted for steps 2 and 3, where instead of deriving a common-form model with 
a multivariate normal parameter distribution, a covariance model is derived for ground motions 
from the seed models, calculated for a range of magnitude, distance and intensity measure 
scenarios. This covariance model can then be assigned to each seed model to sample new 
models (Goulet et al. 2018). The approach outlined in steps 1–5 above was preferred for this 
study, for simplicity. This study represents a pilot study that only derives a preliminary suite of 
models, but eventually, final versions of these models aim to satisfy the concerns raised in the 
Canterbury Earthquakes Royal Commission of Inquiry. 
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The framework provided by this procedure allows for convenient updating of hazard models in 
the future, as new information can be incorporated into hazard assessment simply by adjusting 
model weights. The five-step procedure only derives median models, and to allow the models 
to be used in hazard analyses, standard deviation models are required to predict a conditional 
ground-motion distribution for PSHA. This study also derives a set of standard deviation 
models to be used in concert with the median models.  

This study is focussed solely on epistemic uncertainty in the median ground motion for shallow 
crustal events in active seismic regions. Epistemic uncertainty in ground-motion prediction 
from subduction interface earthquakes is one of the most critical issues in seismic hazard 
currently. The Hikurangi subduction is currently modelled in the NSHM as MW8.1, MW8.3 and 
MW9 events but currently only the Abrahamson et al. 2016 (and its interim update in 2018) 
model considers data from the recent MW > 8.3 subduction interface events from the last 
decade. Most subduction interface models have few, if any, data available in the magnitude 
range of interest for predicting Hikurangi ground-motion distributions. This study initially 
attempted to derive a suite of models for both crustal and subduction interface events, but 
there were too few published models to fit a meaningful the multivariate normal distribution of 
model parameters (step 3 above). It is anticipated that a new suite of subduction interface 
models will shortly become available from the NGA-Sub project (Kishida et al. 2018) after 
which the procedure in this study can potentially be adapted for Hikurangi subduction zone 
sources. 

In this report, a selection of crustal models that are appropriate for three of New Zealand’s 
major centres, Auckland, Wellington and Christchurch, are derived, as well as a suite of models 
suitable for wider application. The model suites are used to calculate the ground-motion hazard 
using the 2010 NSHM source model, and the adaption of the Canterbury Seismic Hazard 
Model (CSHM; Gerstenberger et al. 2014; 2016) source model developed in Van Houtte and 
Abbott (2019). The models are defined for PGV, PGA and 5%-damped pseudo-spectral 
acceleration (SA) between oscillator periods of 0.01 and 10 s. 
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2.0 SEED MODEL SELECTION 

The initial suite of starting models or ‘seed models’ define the model parameter space, which 
will in turn define the considered ground-motion space. The seed models are selected from 
the OpenQuake Engine’s gsim library (Pagani et al. 2014; Silva et al. 2014). To be considered 
for selection in this study, a set of criteria were defined that a model needed to meet to become 
a seed model. Any selected model must be flagged in OpenQuake as verified, 
non-experimental, defined for a tectonic region of ‘Active Shallow Crust’, be well-fit by the 
selected common functional form, and have physically-plausible behaviour over the desired 
magnitude and distance range.  

For New Zealand seismic hazard analysis, the magnitude range of interest for crustal faults is 
5 ≤ MW ≤ 8.2, and the maximum considered source-to-site distance (RRUP) is 200 km. Currently 
in the published National Seismic Hazard Model (Stirling et al. 2012) and Canterbury Seismic 
Hazard Model (Gerstenberger et al. 2014; Van Houtte and Abbott 2019), MW8.2 corresponds 
to the largest crustal fault sources, the Alpine Fault and Wairarapa-Nicholson Fault. Any 
considered ground-motion models must have technically defensible predictions for sources of 
this magnitude. Examples of models that were excluded from consideration for New Zealand 
seismic hazard applications are: 

• Cauzzi et al. (2014) model, for which peak ground motions significantly over-saturate 
with magnitude (i.e. the predicted ground-motions decrease as MW increases)  

• Kotha et al. (2016) model, where at some periods, the second partial derivative of SA 
with respect to magnitude becomes positive for Mw>7, which was not justified by their 
data (no events had Mw>7) 

• McVerry et al. (2006), which appears to greatly over-predict MW < 6 events 
(e.g. Bradley, 2013; Gerstenberger et al. 2014; Van Houtte, 2017a), and thus its 
inclusion might unjustifiably skew the parameter distribution of any common form model. 

Other models, like Morikawa and Fujiwara (2013) and Zhao et al. (2016b) were excluded 
because they are poorly fit by the common functional form. Further investigation is necessary 
to determine the reasons for the poor fit, and to develop mitigation measures. The selected 
seed models selected are shown in Figure 2.1. The ground motion intensity measures used 
for this study are PGV, PGA and pseudo-spectral accelerations of SDOF oscillators, with 
natural periods up to 10 s. Not all seed models provide predictions for all intensity measures, 
and Figure 2.1 demonstrates that for some periods, particularly long oscillator periods, there 
are fewer available seed models. 
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Figure 2.1 The selected seed models where grey bars represent the range of intensity measures that are 

predicted by each model. 
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3.0 FITTING MODELS TO COMMON FORM 

The selected seed models are fit to the following equation (referred to the common-form 
equation or common-form model): 

(3.1) 

where lnY is the natural logarithm of a given seismic intensity measure, MW is the moment 
magnitude, fM represents a trilinear magnitude scaling function, Rrup is the closest distance 
from a recording location to the fault, ZTOR is the depth to top of rupture (km), Frev is a reverse 
faulting flag (equal to 1 for a reverse fault, zero otherwise) and Fnm is a normal faulting flag, fHW 
is a hanging wall model and fsite is a soil response model. The θ represent free parameters and 
include the second hinge magnitude of the trilinear magnitude scaling function, Mc2. Hanging 
wall and soil response models cannot easily be fit with a common function, so for the purposes 
of fitting the models to the common form, these terms are fixed to equal the models from the 
Abrahamson et al. (2014) model. Equations with different magnitude scaling were trialled, but 
equation (3.1) consistently provided the best fit to the seed models. 

To fit the seed models to this form, a set of rupture scenarios to consider are defined: 

• Magnitudes between MW5 and MW8.2 at 0.2 magnitude increments 

• Three rake values of -90, 0 and 90 degrees, with respective dip angles of 45, 90 and 45 
degrees. 

• Three depth values of 0, 5 and 12 km 

As the hanging wall term of the common form model is fixed, a set of locations are defined on 
the footwall, with ten log-spaced Joyner-Boore distances (closest distance to the surface 
projection of a rupture, RJB) between 1 km and 100 km, as well as two additional large-distance 
RJB values equal to 150 and 200 km. The models are fit to a reference rock condition with 
time-averaged shear-wave velocity in the top 30 m, VS30, equal to 1000 m/s. Accompanying 
depths to shear-wave velocity horizons of 1 and 2.5 km/s, (Z1 and Z2.5) are 10 m and 0.4 km 
respectively.  

Median predictions are obtained for these scenarios from each seed model. As the 
Abrahamson et al. (2014) fsite model is non-zero for these site parameters, the predictions for 
each model are corrected by the fsite model before fitting the parameters, to ensure consistency 
in later calculations. The free parameters in the common form model in equation (3.1) are fit 
to each seed model using nonlinear least squares. Starting parameters for each seed model 
fit are the parameters that best-fit all of the seed models concurrently, as these are better 
identified than those for an individual seed model. Example of residuals from fitting the 
worst-case seed model, the Boore et al. (2014) PGA model, is shown in Figure 3.1. The 
magnitude and distance scaling of the seed model, and the common-form fit, shown in 
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Figure 3.2. The predictions of the model can generally be matched by the common-form model 
within around ~20% as the worst case. Some models are better represented by the common 
form than others. Figure 3.3 shows that the Lin (2009) model is best fit by the common form at 
short oscillator periods, and the Campbell and Bozorgnia (2014) model is best fit at long 
oscillator periods. The two models with the lowest log-likelihoods, Boore et al. (2014) and 
Akkar et al. (2014), base their distance scaling from the RJB variable, while the common-form 
equation bases the distance scaling on Rrup. Regardless, the common form model is still a 
good representation of the median ground-motions predicted by these models. 

 
Figure 3.1 PGA residuals from fitting the common-form model to the Boore et al. (2014) model. 

 
Figure 3.2 (a) Magnitude scaling for RJB = 1, 10, 30 and 100 km and (b) distance scaling for MW = 5, 6, 7, and 

8, for the Boore et al. (2014) model compared to the fitted common-form model. All scenarios are on 
the footwall. 
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Figure 3.3 The period-dependent log-likelihood of the common-form fit to the seed models. 
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4.0 SAMPLING NEW MODELS 

With each of the seed models fit to the common-form equation, we now have a suite of models 
with the same form but different parameters, θ. These parameters are assumed to follow a 
multivariate normal distribution, 

 (4.1) 

where μθ is the mean of the fitted parameters and Σθ represents their covariance. μθ, and Σθ 
for PGA models are given in Table 4.1. From this continuous parameter distribution, 2000 new 
models are sampled, but Σθ is doubled to ensure the sampled models extrapolate parameters 
beyond the range of the published seed models. Extrapolating beyond what is published is 
important to ensure the sampled models are collectively exhaustive. The 2000 sampled 
parameters are shown in Figure 4.1a. The covariance matrix for the selected, fitted seed 
models is not positive-definite for any of the seismic intensity measures, and thus the 
probability density function of the multivariate normal distribution is undefined. The reason for 
may be because the number of parameters is greater than the number of seed models. 
To confirm that the sampled parameters are a good representation of the parameter 
covariance, Figure 4.1b visualises the correlation matrix in a similar form to the sampled 
parameters and demonstrates that the correlation in the sampled parameters is very similar. 

Table 4.1 The multivariate normal parameter distribution for the PGA models. 

 Mc2 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 
Median 

6.718 0.765 0.477 -0.371 -0.414 -1.383 0.233 5.61 -0.004 0.031 0.032 -0.175 

Covariance 
Mc2 0.061 -0.016 0.035 -0.069 0.035 0.006 0.002 0.093 -0.000 0.001 -0.01 0.005 

θ0 -0.016 0.267 -0.12 0.139 -0.059 -0.093 0.005 0.514 -0.001 -0.002 0.013 0.023 

θ1 0.035 -0.12 0.184 -0.214 0.022 0.037 -0.002 -0.012 -0.000 0.001 -0.016 -0.026 

θ2 -0.069 0.139 -0.214 0.29 -0.06 -0.05 -0.003 0.096 0.001 -0.003 -0.018 0.037 

θ3 0.035 -0.059 0.022 -0.06 0.059 0.031 0.000 -0.189 -0.001 0.000 0.000 -0.006 

θ4 0.006 -0.093 0.037 -0.05 0.031 0.037 -0.002 -0.22 -0.001 0.000 -0.003 -0.008 

θ5 0.002 0.006 -0.002 -0.003 0.000 -0.002 0.002 0.001 -0.000 -0.001 -0.000 -0.002 

θ6 0.093 0.514 -0.012 0.096 -0.189 -0.22 0.001 2.26 0.003 -0.004 -0.46 0.107 

θ7 -0.000 0.001 -0.000 0.001 -0.001 -0.001 -0.000 0.003 0.000 -0.000 -0.000 0.000 

θ8 0.001 -0.002 0.001 -0.003 0.000 0.000 0.001 -0.004 -0.000 0.000 -0.000 -0.001 

θ9 -0.01 0.013 -0.016 0.018 0.000 -0.003 -0.000 -0.46 0.000 -0.000 0.006 -0.003 

θ10 0.004 0.023 -0.026 0.037 -0.006 -0.008 -0.003 0.207 0.000 -0.002 -0.003 0.019 
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Figure 4.1 (a) The parameters sampled from the multivariate normal distribution, and (b) thecorrelation matrix 

from the fitted distribution. 
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Of the sampled models, some provide implausible predictions. For example, some of the 
sampled models have median ground motion increasing with distance, which contradicts the 
well-established theoretical and observed loss of energy to geometric, intrinsic and scattering 
attenuation of seismic wave amplitudes. Some sampled models also have median 
ground-motion decreasing as magnitude increases, usually referred to ‘over-saturation with 
magnitude’. Phung et al. (2019) judged this over-saturation with magnitude effect to be unlikely 
enough that such models could be excluded from their continuous parameter distribution when 
sampling ground-motion models. 

The physicality of over-saturation with magnitude is unclear and debatable. 
Schmedes and Archuleta (2008) used simulated ground-motion data to conclude that PGA and 
PGV from MW > 7 strike-slip earthquakes saturate in the near-field, but do not over-saturate. 
Roten et al. (2014) numerically model fault zone plasticity and show that such models 
dramatically reduce ground-motion in events that generate large strains. The physical 
parameters that govern the degree of reduction are, however, very poorly constrained. While 
earthquakes with larger MW obviously release more seismic moment, some observations 
suggest that earthquakes on ‘mature faults’ have lower stress drops and generate lower ground 
motion than corresponding earthquakes on immature faults (Manighetti et al. 2007; 
Radiguet et al. 2009). Given that larger-magnitude earthquakes tend to occur on more mature 
faults, in this author’s opinion the over-saturation with magnitude is not so implausible that it can 
be excluded, particularly when the goal of this study is to model epistemic uncertainty. Of course, 
there are limits to the plausibility of magnitude over-saturation. This study allows oversaturation 
for magnitudes greater than MW7, for oscillator periods less than 1 s, but defines an 
over-saturation limit of a 10% maximum decrease in peak ground-motions at MW8.2, relative to 
the prediction at MW = 7. 

Four separate constraints are applied to the sampled models, these are: 

• Models cannot have . 

• For periods < 1 s, models cannot have  or 

, and for periods ≥ 1 s, models cannot have

. 

• The near-source saturation parameter, θ6 must be positive. While a negative value has 
no influence on the model predictions, as the term is squared, θ6 has units of distance 
so a negative value has no physical meaning. 

• At each hinge point, the magnitude scaling gradient is constrained to decrease i.e. both 
θ2 and θ3 must be negative, as there is no evidence to suggest that a positive change in 
gradient is plausible. 

Rejected models are resampled to retain a total of 2000 models. The effects of the sampled 
model constraints are shown in Figure 4.2. At short periods, the magnitude-scaling constraints 
are the predominant reasons for rejected samples, but at longer periods, the distance 
constraints cause more samples to be rejected. Figure 4.3 shows how the marginal density 
kernels for each parameter change with rejected samples. The parameter constraints can be 
clearly observed in Figure 4.4, where the samples are truncated at zero for θ2, θ3 and θ6. These 
samples in Figure 4.4 make up the set of candidate models that are analysed further in section 
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5.0. The magnitude and distance scaling of the 2000 sampled models, relative to the seed 
models. As intended, the sampled common-form models interpolate between and extrapolate 
beyond the range of the seed models.  
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Figure 4.2 The parameters sampled from the multivariate normal distribution that are removed due to the 

parameter constraints for (a) PGA and (b) SA(3s). 
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Figure 4.3 Kernel density functions for each parameter before and after removal of implausible models for (a) 

PGA and (b) SA(3s). 
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Figure 4.4 The parameter samples after removal of implausible models for (a) PGA and (b) SA(3s).  
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Figure 4.5 (a) Magnitude and (b) distance scaling of PGA for the sampled common-form models, relative to the 

seed models. 

 
Figure 4.6 (a) Magnitude and (b) distance scaling of SA(3s) for the sampled common-form models, relative to 

the seed models. 
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5.0 COMMON FORM MODEL SELECTION 

By fitting a common-form model to the selected seed models, and sampling new models from 
an assumed multivariate normal distribution of common-form model parameters, 2000 crustal 
ground-motion models are now available for seismic hazard analysis. To run 2000 models 
through hazard calculations is very computationally intensive and is unnecessary because 
many of these models are redundant. For a given set of scenarios that are relevant for a 
location’s seismic hazard, some of the models will provide a very similar vector of median 
ground-motion predictions and yield very similar probability of exceedance values. This section 
focuses on reducing the number of models to a more manageable number that captures a 
realistic space of epistemic uncertainty.  

5.1 Visualisation of Models 

The relevant scenarios can be substantially different depending on the location. For example, 
the seismic hazard for locations on the West Coast near the Alpine Fault will be heavily 
dominated by large-magnitude Alpine Fault events, while the seismic hazard in Northland will 
be more sensitive to moderate-magnitude earthquake sources. For the West Coast case, the 
selected common-form models mostly need to represent the epistemic uncertainty in the 
median model for the Alpine Fault scenario, with other magnitude-distance scenarios 
contributing little. For the Northland case, the selected models need to represent the epistemic 
uncertainty for numerous scenarios with different magnitude-distance combinations. If one 
considers the predicted ground-motion for a magnitude-distance scenario as a dimension, the 
selected models for Wellington only need to consider a small number of dimensions, but other 
locations need to consider many dimensions. When the number of dimensions is higher than 
three, the space of predicted ground motions can no longer be plotted.  

To select ground-motion models for a higher-dimensional ground-motion space, it is 
convenient to reduce the number of dimensions down to two. Dimensionality reduction is a 
very useful technique for explaining the primary features of higher-dimensional data that lie on 
a lower-dimensional manifold. In the case of the ground-motion data, it will be demonstrated 
later that the data often lie on a manifold that is close to a two-dimensional plane. There are 
many methods of dimensionality reduction, but only two will be discussed in this study, principal 
component analysis (PCA) and Sammon’s mapping (Sammon, 1969; Scherbaum et al. 2010). 
PCA can be used to transform the higher-dimensional ground-motion data into a set of two 
orthogonal axes that capture the most variance. The Sammon’s mapping algorithm involves 
calculating the between-sample distances on a two-dimensional plane that best match the 
between-sample distances in the higher-dimensional space. The between-sample distance 
calculation can be made in a number of ways, and this study uses the between-sample 
Euclidean distance as the selected distance metric, for simplicity. 

To visualise the ground-motion space that the common form models cover, ground-motions 
from each model are calculated for the set of magnitude-distance combinations on the footwall, 
shown in Figure 5.1. Strike-slip, reverse, and normal faulting events are also considered 
through planar faults with dips of 90, 45 and 45 degrees, and rakes of 0, 90 and -90 degrees 
respectively. To consider the depth-scaling of the models, two depths are considered, one 
where all faults rupture the surface, and one where the bottom depth of the fault is fixed to an 
assumed maximum seismogenic depth of 12 km. Fault planes are simulated using the Stafford 
(2014b) magnitude scaling relationship, assuming that the faults all have the median rupture 
width. For the larger magnitude scenarios that rupture the full 12 km seismogenic thickness, 
the simulated fault planes are identical for the two different depths, but for smaller magnitude 
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scenarios the depth to top of rupture, ZTOR, is different. For the 275 magnitude-distance 
combinations, three different mechanisms and two different depths, a total of 1,650 scenarios 
are considered. These scenarios correspond to a 1,650-dimensional ground-motion space and 
are intended to cover the scenarios that are relevant to seismic hazard in New Zealand. This 
suite of scenarios will also be used to select a suite of widely-applicable models that cover the 
epistemic ground-motion uncertainty for these particular scenarios.  

 
Figure 5.1 Generic suite of scenarios used to select a suite of widely-applicable ground-motion models. 

 
Figure 5.2 The higher-dimensional PGA ground-motion space for the generic suite of scenarios, projected onto 

two dimensions using (a) principal component analysis and (b) Sammon’s mapping. The predictions 
from the seed models are in red, and the 2000 common form models are in grey. Vertical axis 
approximately represents the change in average ln(SA).  
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Figure 5.2 shows the 1,650-dimensional space for the natural logarithm of PGA, for all of the 
common-form and seed models, projected onto (a) the first two principal components and 
(b) a Sammon’s map. Points that lie close together on these plots represent models that 
provide similar ground-motion predictions for the 1,650 scenarios. In this case, the two 
methods of dimensionality reduction provide a nearly-identical projection. For the remainder of 
this report, Sammon’s maps are used hereafter for all dimensionality reduction calculations, 
as many people find these plots slightly simpler to interpret. No units are given for the PCA or 
Sammon’s map plots. To help interpret the units of the Sammon’s maps, Figure 5.3 shows the 
Euclidean distances of each common-form model to the mean prediction in the 
1,650-dimensional space, for two different ground-motion intensity measures, PGA and 
SA(3 s). If the contours in Figure 5.3 are a perfect circle, then the points in the 
1,650-dimensional space lie on a two-dimensional plane. For PGA, there is some variability 
about a two-dimensional plane, but the data are still well-represented in two dimensions. 
For SA(3 s), the data lie on a manifold that is very close to a plane. In the case of SA(3 s), the 
two-dimensional distance matrix is almost identical to the Euclidean distance matrix in 
1,650 dimensions. This means that the units of the Sammon’s map are the same as the input 
data, which in this case are ln units. For the PGA map, the units are more an approximation of 
ln units than pure ln units and have more meaning locally than globally. 

 
Figure 5.3 The Euclidean distance of the model to the central model prediction, projected onto two dimensions 

using Sammon’s algorithm for (a) PGA and (b) SA(3 s). Red circles represent the seed models. A 
perfect circle represents model predictions lying on two-dimensional plane in the higher-dimensional 
space.  

While Figure 5.1, Figure 5.2 and Figure 5.3 demonstrate a projection for a wide range of 
scenarios, for many locations in New Zealand, the seismic hazard is controlled by far fewer 
scenarios. For example, Figure 5.4 shows the disaggregated PGA hazard for shallow crustal 
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events in Auckland, Wellington and Christchurch, corresponding to a 10% probability of 
exceedance in 50 years. The Auckland and Wellington results are calculated using the 2010 
National Seismic Hazard Model (Stirling et al. 2012) seismic source model, while the 
Christchurch results are calculated using the source model from the OpenQuake 
implementation of the Canterbury Seismic Hazard Model (Gerstenberger et al. 2014; 2016; 
Van Houtte and Abbott, 2019). The ground-motion logic tree for the disaggregation calculation 
uses the seed models, including scaled ‘upper’ and ‘lower’ versions, where the median models 
are scaled up and down by the Al Atik and Youngs (2014) epistemic uncertainty model, as 
would be typical in a PSHA study. For these source models, ground-motion models and this 
probability of exceedance, the modelled PGA hazard from shallow crustal earthquakes near 
Auckland is much more influenced by moderate magnitude earthquakes than Wellington, 
which is only sensitive to a small number of scenarios, most notably the Wellington Fault 
scenario. Christchurch is roughly equally sensitive to a range of different magnitudes between 
MW5.5 and MW7.5, but predominantly near-field scenarios. 

Figure 5.5 shows the predictions from the seed and common form models, projected onto 
Sammon’s maps, for Auckland, Wellington and Christchurch, for the scenarios that contribute 
to the PGA hazard with 10% probability of exceedance. The predictions are weighted by their 
contribution to the hazard, so the Sammon’s map units in Figure 5.5 do not correspond to ln 
units. For each location, different models will be in close proximity to one another. For example, 
nearby models for the Wellington case will provide similar median PGAs for the MW7.5, short 
distance scenario, but will not necessarily provide similar median PGAs for the smaller 
magnitude scenarios that underly the projection for Auckland. Selecting models for each 
location for the specific scenarios relevant to that location will provide a better estimate of the 
epistemic ground-motion uncertainty at that location. 

With fewer scenarios, the location-specific n-dimensional spaces tend to be better represented 
by a plane than the projection for the 1,650-dimensional space of generic scenarios. Figure 5.6 
shows the amount of variance of the n-dimensional space explained by the first two principal 
components. For the city-specific scenarios based on the weighted disaggregation scenarios, 
the explained variance is always greater than 90%. For the generic scenarios, the explained 
variance ranges from around 65-90%. Given that the PGA data for the 1,650-dimensional 
space of generic scenarios has the lowest explained variance, the projection shown in 
Figure 5.3a can be considered a worst case. 
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Figure 5.4 Disaggregation of the PGA hazard at 0.1 probability of exceedance in 50 years, using equally-

weighted seed models for the ground-motion models for (a) Auckland, (b) Wellington and (c) 
Christchurch.  
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Figure 5.5 Two dimensional Sammon’s map for the weighted scenarios from the PGA disaggregation, for (a) 

Auckland, (b) Wellington, (c) Christchurch and (d) the generic, unweighted suite of scenarios. Vertical 
axis approximately represents the change in average ln(SA). Red points represent the seed models.  

 
Figure 5.6 Variance explained by the first two principal components for the disaggregation-weighted scenarios 

at Auckland, Wellington, Christchurch, and the generic scenarios.  
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5.2 Selection Procedure 

Given that the Sammon’s maps are a good representation of the higher-dimensional ground-
motion space, they form a good basis for model selection. There is little advantage to selecting 
two models located nearby on a Sammon’s map, as one of the two will provide redundant 
predictions. It is instead desirable to obtain models that represent technically-defensible 
regions of models on the Sammon’s map, where the region is considered technically 
defensible.  

Selecting the models from the map can be done in numerous ways. This study adopts the 
following procedure, guided by the work of Phung et al. (2019): 

• Scale the seed models up and down by 1.96x the Al Atik and Youngs (2014) epistemic 
uncertainty standard deviation model, 1.96σAY14, which quantifies the uncertainty in the 
NGA-West2 median models from the parameter standard errors. The factor of 1.96 
defines 95% confidence intervals of a standard normal distribution. 

• Fit an ellipse to the convex hull of the scaled seed models. 

• If the ellipse falls outside an outer polygon, defined as the convex hull of all sampled 
common-form models, then the major axis of the ellipse is scaled down such that the 
ellipse falls inside this outer hull. This constraint is to prevent unreasonable 
ground-motion spaces being considered. 

• Scale the ellipse by factors of 0.4, 0.8 and 1.2, then subdivide the outer two regions 
defined by these ellipses in 45 degree increments from the major axis of the ellipse.  

• Select the model in the centroid of each region, defining a total of 17 models. 

In a single isolated case, the best-fit ellipse to the convex hull was degenerate. This issue was 
mitigated by fitting an ellipse to the points representing the convex hull, along with the closest 
point to the edge of the polygon that defines the convex hull, i.e. an additional point to better 
constrain the ellipse. 

The procedure typically aligns the major axis of the ellipse close to vertical, i.e. a scaling up 
and down of the median model predictions, with the minor axis capturing differences in 
magnitude and distance scaling. This procedure differs slightly from the procedure undertaken 
in Phung et al. (2019), who instead placed more emphasis on aligning the major axis of the 
ellipse more with difference in the slopes of the magnitude scaling. An example of the model 
selection procedure is shown in Figure 5.7. Figure 5.8 shows the magnitude and distance 
scaling of the selected models relative to the common-form models.  

For SA(3s) in Figure 5.7c, the ellipse-fitting procedure results in a space that is not overly 
consistent with the underpinning seed models. While this inconsistency can be accounted for 
later in model weighting, alternative procedures for selecting the models from the Sammon’s 
projection need to be considered before the selected models can be finalised for application.  

Another issue with this procedure is that implausible models were already removed in 
Section 4.0, this procedure represents a second reduction in the range of considered models 
for PSHA. The primary justification for this reduction is to define the ‘technically-defensible’ 
regions as those covered by published models in the literature. There are innumerable 
alternative selection procedures that could have been used to discretise the ground-motion 
space, and these need to be further investigated in a sensitivity study. 
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Figure 5.7 Workflow for selecting a representative suite of models from the Sammon’s map. For PGA and SA(3s) 

and the generic suite of scenarios, (a) and (c) respectively show the seed models (in red) are scaled 
up and down by 1.96σAY2014 from the Al Atik and Youngs (2014) epistemic uncertainty model (blue 
points). An ellipse is fit to the convex hull of the scaled seed models (yellow polygon), but the major 
axis of the ellipse is scaled down if it falls outside the outer hull (light grey polygon). For the same 
PGA and SA(3s) scenarios, (b) and (d) respectively show seventeen polygons defined by scaling the 
ellipse in (a) scaled by 0.4, 0.8 and 1.2, then defining trapezia by subdividing the ellipses in 45-degree 
increments. The selected models (black dots) are those closest to the polygon centroid.  
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Figure 5.8 The (a) magnitude and (b) distance scaling of the selected PGA models, and (c) magnitude and (d) 

distance scaling of the selected SA(3s) models from Figure 5.7, relative to all of the sampled 
common-form models.  
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6.0 STANDARD DEVIATION MODELS 

6.1 Components of Ground-Motion Standard Deviation 

The median models derived in this study are intended to collectively represent the epistemic 
uncertainty in the median prediction. In PSHA, the aleatory component of the ground-motion 
variability is typically accounted for using the within-model uncertainty, defined by the residual 
standard deviation. The procedure thus far only involves analysis of published median models, 
and thus none of the selected models have accompanying standard deviation models. 
Standard deviation models must be derived before the suite of median models can be used in 
PSHA.  

Standard deviation models are derived by analysing the components of ground-motion 
residuals. In a traditional “random-effects” ground-motion model, the total model residuals (ε) 
are composed of: 

(6.1) 

where δBe represents the between-event residual and δWe represents the within-event 
residual for event e. The standard deviations of δBe and δWe are known as τ and ϕ respectively, 
and the total variance (τ2+ ϕ2) is defined as σ2. By modelling the aleatory variability using τ, ϕ 
and σ, one is implicitly making an ergodic assumption i.e. the variability in space is the same 
as the variability in time at a single site. For PSHA at a single site, the ergodic assumption is 
generally considered by most researchers to overestimate the aleatory variability 
(Anderson and Brune, 1999) 

In a hierarchical model that also analyses station-to-station effects, δWe is decomposed further 
such that 

(6.2) 

where δS2Ss is the between-station residual and δWSes is the single-station within-event 
residual at station s. The standard deviations of δS2Ss and δWSes are referred to as ϕS2S and 
ϕSS respectively. In PSHA, one can partially remove an aspect of the ergodic assumption by 
using the so-called ‘single-station sigma’, σSS, to represent the aleatory variability 
(Atkinson, 2006; Al Atik et al. 2010), 

(6.3) 

Using σSS to represent the ground-motion variability represents a reduction in aleatory 
variability compared to the ergodic model (sigma). Traditionally, to consider the single-station 
sigma concept in PSHA, one must have an estimate of δS2Ss and the epistemic uncertainty 
and its calculation and calculate a station-specific ϕSS at the site in question, solely from 
recordings at that station. This quantity is known as ϕSS,S (Rodriguez-Marek et al. 2013; 
Faccioli et al. 2015). In this framework, the sigma utilised for the hazard calculation is  

(6.4) 
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with δS2Ss and its uncertainty modelled as epistemic uncertainty using a logic tree.  

In New Zealand, little attention has been paid to ground-motion variability, and Bradley (2015) 
represents the only dedicated study, where δS2Ss and σSS,S terms (among others) were derived 
for a Canterbury-specific dataset. Van Houtte and Abbott (2019) incorporated minor aspects 
of this model in partially-ergodic hazard assessment in Christchurch CBD.  

Kotha et al. (2017) have questioned the σSS,S approach, suggesting that ϕSS,S can often be 
artificially low in cases where similar source-to-site paths are being sampled, for example when 
a station records a mainshock-aftershock sequence. This effect would be expected for 
Wellington stations, for example, where stations have predominantly recorded events from the 
south in the Cook Strait and Kaikōura earthquake sequences. Kotha et al. (2017) also contend 
that ϕSS,S is typically calculated from a small dataset, and may not sample the magnitude and 
distance scenarios that are of interest for hazard. Instead, those authors suggest σSS is more 
appropriate to use for partially-ergodic PSHA instead of σSS,S. 

This author shares the opinions of Kotha et al. (2017). For the common-form models to be 
used in both ergodic and partially-ergodic PSHA, it is necessary to provide accompanying τ, ϕ 
and ϕSS models. To derive these models, the database of New Zealand strong motion compiled 
in Van Houtte et al. (2017) and Kaiser et al. (2017) is analysed. The results are then placed in 
the context of global models and inform selection of standard deviation models to accompany 
the common-form models. To derive the components of ground-motion variability from New 
Zealand data, it is necessary to have an unbiased ground-motion model of New Zealand data. 
In this section, a hierarchical model that separates the residuals into between-event, between-
station and single-station within-event residuals, is derived from the New Zealand Strong 
Motion Database. This model is derived with the sole intention of analysing residuals and is 
not intended for forward use as a median model. 

In addition to recommending the use of ϕSS in partially-ergodic seismic hazard instead of ϕSS,S, 
Kotha et al. (2017) also provide a method for hazard analysts to undertake partially-ergodic 
hazard without having access to the residuals themselves, which relies on a known ϕS2S model. 
While ϕS2S is not necessary to obtain hazard results in this particular study, ϕS2S results are 
analysed to allow application of the Kotha et al. (2017) method.  

6.1.1 Selected Data 

The data used to fit the model are all MW ≥ 4 crustal events in the New Zealand Strong Motion 
Database. Recordings with Rrup ≥ 200 km are removed, as are recordings that triggered on the 
S-wave rather than P-wave arrival. The dataset is further reduced such that each event and 
station have a minimum of three associated recordings, to remove very poorly-constrained δBe 
and δS2Ss residuals. We make the assumption that any bias from data censoring, which occurs 
from applying these criteria, to be minimal. A total of 73 events, 208 stations and 1506 
recordings form the selected dataset at PGA, which is shown in Figure 6.1a-c. The available 
data decrease as oscillator periods increase beyond 1 s, as demonstrated in Figure 6.1d, with 
longer-period data comprised of fewer, large-magnitude events recorded by relatively more 
stations. The average horizontal component of ground-motion, using the RotD50 definition 
(Boore, 2010), is used for the ground-motion data. The underlying data can be found at 
https://github.com/GeoNet/data/tree/master/nzsmd-flatfiles (last accessed 5 December 2019). 

https://github.com/GeoNet/data/tree/master/nzsmd-flatfiles
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Figure 6.1 The data used to fit the Bayesian hierarchical model. (a) the MW - Rrup distribution of available PGA 

data, (b) the number of events with a given number of recordings for each event, as an illustration of 
how well-constrained each δBe is (c) the number of stations with a given number of recordings at 
each station, as an illustration of how well-constrained each δS2Ss is, and (d) the reduction in 
available recordings, events and stations with increasing oscillator period.  

6.1.2 Form of The Model 

The model is formulated as  

(6.5) 

where X are the independent variables. The form of f(X|θ) is the same as the common-form 
model in equation (3.1), except the MC2 parameter is fixed to equal 6.75 to aid model 
convergence where the New Zealand dataset is sparse. The site effects and hanging wall 
effects terms, fsite and fHW, are not solved for, and are instead fixed to equal the Abrahamson 
et al. (2014) site response and hanging wall models. These terms are fixed so that the derived 
between-station residuals (δS2Ss) can be applied to the common form models in an internally-
consistent manner, in a partially-ergodic PSHA study. As is typical in hierarchical modelling, a 
normal distribution prior is placed on the event and stations terms where 

(6.6) 

(6.7) 

The δWSes residuals are assumed to be uncorrelated. 
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Priors on each parameter in θ are defined using the multivariate normal distribution determined 
in Section 4.0, with each parameter having a prior median value matching the multivariate 
normal distribution and a prior standard deviation value equal to three times the standard 
deviation. The only exception was for the short-distance saturation term, θ6, which is poorly 
constrained by New Zealand data and is instead assigned a prior standard deviation equal to 
the standard deviation of the multivariate normal distribution. Only the diagonal terms of the 
covariance matrix in equation (4.1) are utilised for the prior distributions. The τ, ϕSS and ϕS2S 
terms are assigned weakly-informative priors, specifically half-Cauchy distributions with a 
scale parameter equal to two. 

6.1.3 Model Fit 

The models are defined in the probabilistic programming language Stan (Carpenter et al. 
2017), and fit using Hamiltonian Monte Carlo (HMC). For each oscillator period, four 
independent HMC chains of 1000 samples are modelled, each with 500 warm-up samples and 
500 samples of the posterior distributions, to make a total of 2000 posterior samples. Starting 
values are random. Model convergence is checked through the mixing of the four chains, as 
defined by the 𝑅𝑅� statistic (Gelman and Rubin, 1992). Convergence is defined as 0.9 < 𝑅𝑅� < 1.1 
for all parameters in the model, including the event and station terms. All models satisfied this 
criterion. 

Model residuals for PGA are shown in Figure 6.2, and the median PGA model’s magnitude 
and distance scaling is shown in Figure 6.3. The most obvious characteristic of these two 
figures is the model’s large overprediction of PGA the Kaikōura earthquake, as well as the 
underprediction of short-distance recordings. This is a known difficulty from fitting ground-
motion models to the New Zealand dataset, which is characterised by moderate magnitude 
earthquakes, MW~6, with large near-source ground motions. The same issue was also 
encountered in Van Houtte (2017b) when deriving empirical Fourier amplitude spectral and 
response spectral models, and isn’t resolved by allowing θ6 to be magnitude-dependent. To 
ensure this shortcoming doesn’t affect the standard deviation results, only events with MW < 7 
are analysed herein, and the Rrup < 10 km data are analysed with caution. 
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Figure 6.2 Residuals of the model against (a) MW, (b) Rrup, (c) ZTOR, (d) style-of-faulting (note there are no normal 

faulting events in the dataset), (e) VS30 and (f) NZS1170.5:2004 site classification, for PGA.  

 
Figure 6.3 (a) the magnitude-dependence and (b) the distance-dependence of the fitted model, compared to the 

seed models, for PGA.  
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6.2 Standard Deviation Results 

The magnitude- and distance-dependence of the residual standard deviation are analysed and 
compared to those defined by the seed models. Results are only presented for MW ≥ 5, as this 
is the minimum magnitude of interest in New Zealand seismic hazard analyses. To calculate 
the standard deviation in each magnitude or distance bin 

(6.8) 

where N is the number of recordings in the ith bin. ϕ and ϕSS in each bin are calculated in a 
similar manner. 

Given that there are few available events with MW ≥ 5, only two magnitude bins are defined, 
each spanning one magnitude increment between MW 5 and 7. There are only two events in 
the New Zealand Strong Motion Database, with MW ≥ 7, so reliable standard deviation values 
cannot be determined. Results are presented as the expected value of the standard deviation 
in each bin, and the 90% credible intervals of the posterior density function. 

6.2.1 Between-Event Standard Deviation, τ 

The magnitude-dependence of τ for PGA, SA(0.5s), SA(1s) and SA(3s) is shown in Figure 6.4, 
and compared against to the τ models associated with the seed models, where available. Not 
all seed models have τ models, for example Lin (2009) and Idriss (2014) only provide a total 
standard deviation model, so are not shown in Figure 6.4. 

It is clear in Figure 6.4 demonstrates that the τ value determined from New Zealand data 
between MW6 and MW7 is poorly constrained, but τ for events with 5 ≤ MW ≤ 6 is high compared 
to the seed models, across all periods. The mean τ value is consistently at or higher than the 
highest τ model from all the seed models, but the credible intervals demonstrate that this is not 
statistically significant. The New Zealand dataset is unfortunately unable to inform selection of 
a τ model at magnitudes larger than 6, which is the most relevant magnitude range for New 
Zealand hazard assessment. 
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Figure 6.4 The magnitude-dependence of the between-event standard deviation, τ, for (a) PGA, (b) SA(0.5s), 

(c) SA(1s) and (d) SA(3s) derived from New Zealand data, compared to the available τ models of the 
seed models. Points represent expected values and bars represent 90% credible intervals.  

6.2.2 Within-Event Standard Deviation, ϕ 

The magnitude-dependence of ϕ for PGA, SA(0.5s), SA(1s) and SA(3s) is shown in Figure 6.5, 
and compared against to the ϕ models associated with the seed models, where available. The 
magnitude-dependent ϕ data are better constrained than the τ data because they are 
underpinned by more data i.e. the total number of available recordings, as opposed to the total 
number of available events. The ϕ data appear largely magnitude-independent across all 
periods in Figure 6.5, although their values relative to the seed ϕ models varies strongly with 
oscillator period. The distance-dependence of ϕ, for the same intensity measures as Figure 
6.5, is shown in Figure 6.6. Only within-event residuals from events with MW ≥ 5 are included 
in this analysis. The ϕ data also appear predominantly independent of distance, similar to the 
ϕ models from the selected seed models. 
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Figure 6.5 The magnitude-dependence of the within-event standard deviation, ϕ, for (a) PGA, (b) SA(0.5s), (c) 

SA(1s) and (d) SA(3s) derived from New Zealand data, compared to the available ϕ models of the 
seed models.  

 
Figure 6.6 The distance-dependence of the within-event standard deviation, ϕ, for (a) PGA, (b) SA(0.5s), (c) 

SA(1s) and (d) SA(3s) derived from New Zealand data, compared to the available ϕ models of the 
seed models.  
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6.2.3 Single-Station Within-Event Standard Deviation, ϕSS 

ϕSS has been shown to be stable across many regions (Rodriguez-Marek et al. 2013). None of 
the seed models have associated ϕSS models, but Rodriguez-Marek et al. (2013) provide ϕSS 
models, and Al Atik (2015) derived a global ϕSS model from the residuals of four NGA-West2 
models (Abrahamson et al. 2014; Boore et al. 2014; Campbell and Bozorgnia, 2014; Chiou 
and Youngs (2014). Figure 6.7 compares the magnitude-dependence of New Zealand ϕSS data 
against the Rodriguez-Marek et al. (2013) and Al Atik (2015) models, and Figure 6.8 compares 
the distance-dependence. As with the ϕ analysis, only residuals from events with MW ≥ 5 are 
analysed here. 

ϕSS, as indicated by the New Zealand dataset, is slightly lower than the Rodriguez-Marek et al. 
(2013) and Al Atik (2015) global models for shorter oscillator periods and 5 ≤ MW ≤ 6, and 
comparable at longer oscillator periods for the same magnitude range. For the larger 
magnitudes, the ϕSS data are similar to the global models. The credible intervals suggest that 
the short-period, low magnitude differences in ϕSS are statistically significant, which contradicts 
the common belief that ϕSS is regionally-independent.  

There appears to be an increase in ϕSS at short distances. Rodriguez-Marek et al. (2013) also 
observe a similar increase for their three largest datasets from California, Japan and Taiwan, 
but suggest that the increase could be a result of poorly-constrained hypocentral depths rather 
than a characteristic effect. In this case, the increase is likely a result of the biased predictions 
of the median model, due to the nature of the New Zealand database.  

As discussed in Section 6.1, traditional partially-ergodic seismic hazard analysis typically 
applies ϕSS,S, rather than ϕSS in the hazard calculation (Rodriguez-Marek et al. 2013). The 
mean ϕSS,S can vary substantially from the overall ϕSS, as demonstrated in Figure 6.9, though 
in many cases, the differences are not statistically different from the overall mean ϕSS 
determined in this study. Regardless, the hazard calculations in this study utilise ϕSS, rather 
than ϕSS,S. 
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Figure 6.7 The magnitude-dependence of the single-station within-event standard deviation, ϕSS, for (a) PGA, 

(b) SA(0.5s), (c) SA(1s) and (d) SA(3s) derived from New Zealand data, compared to the ϕSS models 
of Rodriguez-Marek et al. (2013).  

 
Figure 6.8 The distance-dependence of the single-station within-event standard deviation, ϕSS, for (a) PGA, (b) 

SA(0.5s), (c) SA(1s) and (d) SA(3s) derived from New Zealand data, compared to the ϕSS models of 
Rodriguez-Marek et al. (2013). 
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Figure 6.9 The dependence of the station-specific within-event standard deviation, ϕSS,S, on VS30 and 

fundamental site period, Tsite, for (a)-(b) PGA, (c)-(d) SA(0.5s), (e)-(f) SA(1s) and (g)-(h) SA(3s) 
derived from New Zealand data. Bars represent 90% credible intervals.  
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6.2.4 Summary of Standard Deviation Observations 

The dependence of the standard deviation observations on oscillator period can be found in 
Figure 6.10. A key observation in Figure 6.10a is the increase in τ(5 ≤ MW ≤ 6) between around 
0.5 s and 2 s period, which is notably higher than any of the τ models from the seed models. 
In this oscillator period range, for the magnitude range of the New Zealand data, peak spectral 
amplitudes are sensitive to changes in the “stress parameter”, Δσ (Molkenthin et al. 2014). 
Δσ is essentially a proxy for scaled source duration, which suggests that earthquake source 
durations may be more variable in New Zealand than globally. The τ results are also larger 
than the τ models from the seed models across all periods. With such a complex tectonic 
environment, it seems intuitive that events in New Zealand could be more variable than other 
regions in the world. There is, however, insufficient information here to determine whether this 
is a result of poorly-constrained MW values in the underlying dataset, or a physical effect. The τ 
values may reduce when uncertainties in MW values from the New Zealand Strong Motion 
Database are explicitly modelled (Rhoades, 1997; Stafford, 2014a; 
Kuehn and Abrahamson, 2018). Modelling these uncertainties was not considered here for 
simplicity but will be modelled in future work. 

The ϕ results are largely comparable to the global models, while ϕSS is lower for the 
New Zealand short-period data than the global models of Rodriguez-Marek et al. (2013) and 
Al Atik (2015). None of the seed models have associated ϕS2S models associated with them, 
nor does a comparable model exist to the author’s knowledge. There is a peak in the ϕS2S result 
at oscillator periods around one second, which may be due to many sites in Wellington and 
Christchurch that resonate at around one second (Kaiser et al. 2017). Fundamental-mode site 
period is rarely included as a predictive parameter in empirical ground-motion models. The 
lack of consideration may lead to misleading ergodic seismic hazard calculations, although this 
is mitigated when modelling δS2Ss in partially-ergodic hazard analysis. In addition to the 1 s 
resonance influencing the large ϕS2S values, ϕS2S is also likely to be inflated due to misclassified 
sites in terms of VS30 and Z1. 
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Figure 6.10 The period-dependence of τ, ϕ, ϕSS and ϕS2S derived from New Zealand MW ≥ 5 data. The τ and ϕSS 

data in (a) and (c) are for 5 ≤ MW ≤ 6 only, as the data are expected to be magnitude-dependent. The 
bars represent 90% credible intervals. The published model predictions are for MW = 5.5 and 
Rrup = 30 km.  

6.3 Selected Standard Deviation Models 

6.3.1 Model for The Between-Event Standard Deviation, τ 

Given that the New Zealand dataset cannot inform the behaviour of τ at large magnitudes, the 
large-magnitude scaling of the New Zealand specific τ model is constrained to match the 
Al Atik (2015) global τ model, which is an average τ from the NGA-West2 τ models. At lower 
magnitudes, MW < 6.5, the model is guided by the New Zealand data. The model is given by 

𝜏𝜏(𝑇𝑇) =  �
𝜏𝜏1(𝑇𝑇) ,                                                                           𝑀𝑀𝑀𝑀 ≤ 5.5
𝜏𝜏1(𝑇𝑇) +  (𝑀𝑀𝑊𝑊 − 5.5) × (𝜏𝜏2 − 𝜏𝜏1(𝑇𝑇)),     5.5 < 𝑀𝑀𝑀𝑀 < 6.5 
𝜏𝜏2        ,                                                                          𝑀𝑀𝑀𝑀 ≥ 6.5

           (6.9) 

The values of τ1(T) are determined by smoothing the τ(5 ≤ MW ≤ 6) data in Figure 6.10 across 
the logarithm of oscillator period using a lowess fit. The PGA and PGV values are unsmoothed. 
τ2 is independent of oscillator period and taken from the Al Atik (2015) global model. 
The breakpoint for τ1(T) is at MW5.5, the centre of the binned data, rather than MW6, to allow a 
more gradual transition between τ1 and τ2. The model is shown in Figure 6.11a. 
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The mean τ values are subject to uncertainty, with 90% credible intervals spanning more than 
0.1 natural log unit. 5% and 95% τ models are also derived, where τ1_5%(T) and τ1_95%(T) are 
determined by smoothing the τ(5 ≤ MW ≤ 6) credible interval data in Figure 6.10, and the 
difference between τ1 from these models and the mean τ1(T) model are held constant across 
magnitude. The median, 5% and 95% models are assigned weights of 0.63, 0.185 and 0.185 
respectively, following Al Atik (2015). 

6.3.2 Model for The Within-Event Standard Deviation, ϕ 

The ϕ model is magnitude- and distance-independent, and is determined by smoothing the 
ϕ(MW ≥ 5) data with a lowess fit. The model is shown in Figure 6.11b. As the ϕ values are much 
better constrained than the τ values, modelling of uncertainty in ϕ is not considered necessary 
unless very low probabilities of exceedance become of more interest to New Zealand PSHA. 

6.3.3 Model for The Single-Station Within-Event Standard Deviation, ϕSS 

The selected model is shown in Figure 6.11c, and is given by 

ϕSS(T) =  �
ϕSS1(T) ,                                                                                         Mw ≤ 5.5
ϕSS1(T) + (MW − 5.5) × (ϕSS2(T)− ϕSS1(T)),     5.5 < Mw < 6.5 
ϕSS2(T) ,                                                                                         Mw ≥ 6.5

    (6.10) 

Similar to the τ model, the large-magnitude behaviour of the selected ϕSS model is guided by 
the global Al Atik (2015) model. For oscillator periods greater than one second, the ϕSS1 and 
ϕSS2 parameters are identical to the Al Atik (2015) “a” and “b” parameters. Below one second, 
ϕSS1 is determined by a lowess fit of the ϕSS(5 ≤ MW ≤ 6) data in Figure 6.10c across the 
logarithm of oscillator period. For the same reason as the ϕ model, no uncertainty in ϕSS is 
modelled here. 

6.3.4 Model for The Site-To-Site Standard Deviation, ϕS2S 

The ϕS2S model is magnitude- and distance-independent and is determined by smoothing the 
ϕS2S data with a lowess fit across log(period). The model is shown in Figure 6.11d. 
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Figure 6.11 The period-dependence of the τ, ϕ, ϕSS and ϕS2S models derived from New Zealand data. The bars 

represent 90% credible intervals.  

6.3.5 Additional Considerations 

An important aspect of seismic hazard analysis for Wellington is whether ϕ and ϕSS are different 
in the near-field (Rrup < 10 km). With hazard from crustal faults heavily dominated by a 
Wellington Fault rupture, ϕ and ϕSS values essentially need to be representative of a single 
MW7.5, Rrup < 10 km scenario, where there are very few data to constrain the values. With 
insufficient data, one must revert to simulated ground-motion to inform this issue. Several 
studies have used ground-motion simulations to estimate ϕ at short distances. For example, 
Imtiaz et al. (2014) find that for bilateral ruptures, ϕ decreases as source-to-site distance 
decreases but observe the opposite trend for unilateral ruptures. Vyas et al. (2016) perform 
simulations for unilateral strike-slip events and derive a model for ϕ that increases as 
source-to-site distance decreases for unilateral strike-slip ruptures, but the values are 
substantially different to what is indicated by empirical models, even at large distances. 

The Imtiaz et al. (2014) and Vyas et al. (2016) studies utilised 1D velocity models and low 
frequency simulations. Withers et al. (2019b) modelled a bilateral strike-slip earthquake with 
3D simulations, complete with fault roughness, small-scale medium heterogeneities and 
medium plasticity. The simulations showed a decrease in ϕ for distances less than around 
20 km. Withers et al. (2019a) perform a similar analysis for a buried thrust fault, and find that, 



 

 

GNS Science Report 2020/02 41 
 

for the most part, ϕ is larger at short distances (less than around 20 km) compared to larger 
distances, particularly for short oscillator periods. 

Generally, it appears likely that ϕ is larger in the near-field when dealing with unilateral rupture 
directivity, but smaller when directivity is not a factor. Bilateral ruptures appear more common 
than strongly unilateral ruptures (Mai et al. 2005; Melgar and Hayes, 2019). In the author’s 
opinion, the results cannot yet be generalised for hazard assessment, and a simulation study 
that applies probabilistic hypocentral locations to a variety of fault types is necessary before 
decisions can be made on short-distance behaviour of ϕ. For this reason, this study models ϕ 
(and ϕSS) as distance-independent. 

6.4 Between-Station Terms, δS2Ss 

From this analysis, δS2Ss terms are now available for each station and can be utilised in 
partially-ergodic seismic hazard calculations. Example δS2Ss terms for six sites in Wellington 
are shown in Figure 6.12. The selected sites are the Wellington Airport (WNAS), a rock site 
outside the northern Wellington CBD basin (POTS), two stations in the northern Wellington 
CBD basin (WEMS and VUWS) and two stations in the southern Wellington CBD basin 
(TEPS and FKPS). These δS2Ss terms provide broadly similar inferences to previous site 
response studies, that Wellington basin response consists of strong amplification in the 1-2 s 
range (e.g. Holden et al. 2013; Kaiser et al. 2017; Bradley et al. 2018; Ren et al. 2018). 
The differences in δS2Ss from zero can be a result of a site’s systematic deviation in response 
from a generic site response model parametrised by VS30 and Z1, as well as a result of site 
misclassification with incorrect VS30 and Z1 values. 

δS2Ss terms for six sites in Christchurch are shown in Figure 6.13, three located in the main 
Christchurch urban area (CBGS, REHS, CACS), one in the Heathcote Valley (HVSC), one in 
the Port Hills (STKS), and one in Lyttelton (LPCC). These δS2Ss terms are similar to those in 
Bradley (2015) but are expected to be slightly different because they are derived from an 
unbiased median model, the recordings are processed using a different method, and they 
defined relative to different values of VS30 and Z1. 

The δS2Ss terms for both cities, and their posterior credible intervals, can be utilised 
partially-ergodic hazard calculations in Wellington and Christchurch. The median, 5% and 95% 
values for each δS2Ss posterior distribution at each intensity measure receive weights of 0.63, 
0.185 and 0.185 respectively, following Al Atik and Youngs (2014). Figure 6.14 shows how the 
δS2Ss become better constrained as the number of observations increase, with the narrower 
credible intervals representing a reduction in the epistemic uncertainty. 

These δS2Ss terms are independent of magnitude, yet linear site effects terms of response 
spectral models are expected to be magnitude- and distance-dependent (Zhang and 
Zhao, 2009; Zhao et al. 2009; Stafford et al. 2017). For both Wellington and Christchurch, the 
magnitudes of the data used to derive the δS2Ss terms are not too far removed from the key 
crustal seismic sources for their PSHA but are still predominantly of lower magnitude. This 
issue cannot easily be addressed given that the Abrahamson et al. (2014) fsite model, and other 
NGA-West2 models, are independent of magnitude and distance. Future fsite models are likely 
to model linear site effects as magnitude- and distance-dependent, which will mitigate this 
issue. Additionally, these δS2Ss terms only adjust ground-motion models for linear site effects, 
with nonlinear site response remaining ergodic. 
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Figure 6.12 δS2Ss functions at Wellington stations (a) WNAS, (b) POTS, (c) WEMS (d) VUWS, (e) TEPS and 

(f) FKPS. Dark blue lines represent the expected value of δS2Ss, light blue shaded area is the 90% 
credible interval of the posterior distribution and orange lines are the mean within-event residuals.  
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Figure 6.13 δS2Ss functions at Christchurch stations (a) CBGS, (b) REHS, (c) CACS (d) HVSC, (e) STKS and 

(f) LPCC. Dark blue lines represent the expected value of δS2Ss, light blue shaded area is the 90% 
credible interval of the posterior distribution and orange lines are the mean within-event residuals.  
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Figure 6.14 Reduction in the 90% credible interval of the posterior distribution for δS2Ss with increasing number 

of recordings at site s. 
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7.0 MODEL WEIGHTING 

Epistemic uncertainties in probabilistic seismic hazard analyses are propagated in a ‘logic tree’ 
framework, whereby hazard results are obtained for each possible interpretation 
independently, then the outputs are combined together in a weighted average. Thus far, this 
study has provided 17 different interpretations for median ground motion for shallow crustal 
earthquakes, and three different interpretations for the corresponding ground-motion standard 
deviation. The different median and standard deviation interpretations lie on different levels of 
the ground-motion logic tree. To calculate the weighted average hazard, each of the 17-median 
ground-motion models need to be assigned weights that sum to one.  

Assigning weights is a fraught process and is often based on expert judgement rather than 
clear evidence. The method used to derive the seventeen models, however, mitigates one 
common issue of model weighting through expert judgement, where two models that predict 
similar ground motion are assigned different weights. In this section, weights are assigned 
using two separate methods, (a) where weights are assigned without data using prior 
information and (b) where weights are assigned based on comparison of the models against 
recorded data from the New Zealand Strong Motion Database. These two methods are 
combined to obtain overall weights, that can be utilised to calculate seismic hazard spectra. 
These weighting methods are considered demonstrative only and can be iterated upon in the 
future to discern the best method for calculating model weights. 

7.1 Prior Weights 

In PSHA studies around the world, model weights are often assigned without using recorded 
data, because it is rare for apposite data for a given site to be available. Equal weights are 
often the default choice for many hazard analysts, which essentially corresponds to an 
uninformative prior. This study utilises the procedure for selecting models in section 5.2 to 
provide a more informative prior. The ellipse for defining the space was derived by fitting the 
convex hull to the seed models, which were scaled to define the 95% confidence interval 
boundaries of the Al Atik and Youngs (2014) epistemic uncertainty model. By making the 
assumption that this ellipse corresponds to the 95% confidence ellipse of a bivariate normal 
distribution, each selected common-form model can be assigned a weight based on its 
probability from this bivariate normal distribution. Examples of the probability density of this 
bivariate normal distribution for the PGA and SA(3s) predictions from the widely-applicable 
models are shown on the Sammon’s maps in Figure 7.1a and Figure 7.1c respectively. 
Recalling that the regions on the Sammon’s map for selecting models are defined by scaling 
the fitted ellipse by factors of 0.4, 0.8 and 1.2, these respectively correspond to error ellipses 
of 38%, 85% and 99% confidence. This means that the central model is assigned a weight of 
0.38, the eight models in the inner ring each receive weights of 0.06 and the eight models in 
the outer ring each receive weights of 0.017. These weights are normalised to sum to one. 
Examples of model weights are shown in Figure 7.1b and Figure 7.1d respectively. Note that 
the prior weights for each cell are identical for all cases. 

This procedure differs from that in Phung et al. (2019), who calculate sample probabilities from 
the multivariate normal parameter distribution to assign prior weights. In this study, the 
covariance matrix from the multivariate normal parameter distribution was not positive definite, 
so no density function exists, and the sample probability cannot be calculated. 
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Figure 7.1 (a) and (c) probability density of the bivariate normal distribution, based on the assumption that the 
fitted ellipse corresponds to a 95% confidence error ellipse, for PGA and SA(3s) respectively. (b)-(d) 
the corresponding model weights based on the density functions in (a) and (c).  

7.2 Data-Driven Weights 

Model weights can also be derived from data, using numerous methods. This study utilises 
two methods, based on model mean bias and model log-likelihood, similar to 
Goulet et al. (2018) and Phung et al. (2019). 

7.2.1 Selection of Data 

To compare the models to recorded data, it is important to select data that are as relevant as 
possible to the hazard-contributing scenarios. For example, events with moment magnitudes 
between MW5 and MW7 contribute strongly to the 10% probability of exceedance in 50-year 
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hazard in Auckland and Christchurch across most oscillator periods, while in Wellington, only 
events with MW > 7 have large influence. For this reason, the models for each location are 
compared to different subsets of the New Zealand Strong Motion Database 
(Van Houtte et al. 2017). Specifically: 

• For Auckland, the models are compared to all recorded crustal earthquake data with 
magnitudes between Mw4.5 and Mw7.5, with rupture distance Rrup < 100 km. 

• For Wellington, the models are compared to crustal data with MW > 6 and Rrup < 50 km, 
including data from the Cook Strait, Lake Grassmere and Kaikōura earthquakes. 

• For Christchurch, the test dataset consists of eight crustal events from the Canterbury 
earthquake sequence with Rrup < 80 km are compared to the derived models. 

• The widely-applicable set of models are compared to all crustal data with MW > 5 and 
Rrup < 100 km. 

For all locations, a minimum of three recordings per event is required, and recordings are 
neglected if the accelerogram triggered on the S-wave instead of the P-wave. 

7.2.2 Mean Between-Event Residual  

To address the mean bias of the common-form models with respect to the recorded data, it is 
necessary to calculate residuals between the common-form models and the data. As empirical 
ground-motion models are typically hierarchical models that separate event-specific and 
site-specific effects, residuals need to be partitioned accordingly when comparing models 
against a test dataset. The event-specific effect or between-event residual, δBe, is the residual 
of interest when comparing the modes against data, because bias from between-site residuals 
can be addressed with site-specific modelling in partially-ergodic hazard assessment. 
To calculate the between-event residuals, the data are corrected using the δS2Ss terms 
calculated in Section 6.0, then the between-event residuals are calculated using the following 
equation, adapted from Abrahamson and Youngs (1992), 

(7.1) 

i corresponds to the event number, ni is the number recordings in event i, j is the index of each 
recording, μ is the median prediction and lnY is the observation. ϕSS is used in the denominator, 
rather than ϕ, because the data are corrected by the δS2Ss terms. 

Contours of the mean between-event residuals for the widely-applicable set of PGA and 
SA(3s) models are shown in Figure 7.2. The weights in each cell are determined by 

(7.2) 

in each cell c, where I is the total number of events in the test dataset, k is the model index, 
Nk,c is the total number of k models in cell c, Ac is the area of the cell on the Sammon’s map 
and C is the total number of cells. A constant α of 0.015 is added to δBe to avoid singularities. 
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The quantity in equation (7.2) is calculated across all cells then normalised to sum to one. 
The model weights based on this procedure are also shown in Figure 7.2. 

 
Figure 7.2 (a) and (c) the mean between-event residual for the widely-applicable set of models, for PGA and 

SA(3s) respectively. (b)-(d) the corresponding model weights based on the mean between-event 
residuals in (a) and (c).  

7.2.3 Log-Likelihood 

Another method of comparing models against data is through the log-likelihood of the model 
given the observations. This method tests models based on their predicted standard deviation 
information as well as overall bias. As empirical ground-motion models are hierarchical, the 
model log-likelihood for each model is calculated using the multivariate log-likelihood score of 
Mak et al. (2017). 
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As described in Section 7.2.2, residuals are corrected using the δS2Ss terms before comparing 
to the models, and as such the standard deviation term used for log-likelihood calculation is 
σSS rather than the total σ. Figure 7.3a and Figure 7.3c shows the log-likelihood contours for 
the same models in Figure 7.2.  

Weights can be calculated from the log-likelihood data using different methods. A very popular 
method is that of Scherbaum et al. (2009), based on the negative average sample 
log-likelihood, −𝐿𝐿𝐿𝐿𝐿𝐿��������. In this approach, the weight for model k is calculated using 

(7.3) 

Weights determined using this approach do not converge to the best model and tend not to 
distinguish strongly between well-performing and poorly-performing models. Mak et al. (2017) 
propose a frequentist weight, that we have adapted slightly here. 

(7.4) 

In this equation, the weight w in cell c is determined by the number of times, over Nbs cluster 
bootstrap samples, that the kth model in cell c with the largest log-likelihood ℒ is equal to the 
maximum log-likelihood of all k models located in all c cells. The double-struck 1 is the indicator 
function that takes a value of 1 if the statement in brackets is true, and zero otherwise. 
One bootstrap sample s consists of the suite of I events in the test dataset sampled I times 
with replacement, and Nbs equals to 2000. Mak et al. (2017) interpret this weight to be the 
probability that the model is better than the other models. In this study, this meaning is altered 
to be the probability that the selected model from cell c is better than the selected models in 
all other cells, assuming that the selected model from cell c is a good representation of the 
best model within that cell. The weights from this approach are shown in Figure 7.3b and 
Figure 7.3d. 

7.3 Overall Weights 

To determine overall model weights, a ‘weights on weights’ approach is taken, similar to 
Goulet et al. (2018) and Phung et al. (2019). For example, the overall weights woverall can be 
calculated using  

(7.5) 

where a + b = 1 and c + d = 1, wprior are the prior weights, wδBe are the data-driven weights 
using mean between-event residual criterion and wLL are the data-driven weights calculated 
using equation (7.4). The values of a, b, c and d should typically be dependent on intensity 
measure and determined through expert elicitation, but some example weights, independent 
of intensity measure and probability of exceedance, are shown in Table 7.1. These weights 
are utilised for seismic hazard outputs in the following section.  
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Figure 7.3 (a) and (c) the log-likelihood contours for the widely-applicable set of models, for PGA and SA(3s) 

respectively. (b)-(d) the corresponding model weights based on the mean between-event residuals 
in (a) and (c).  

Table 7.1 Example “weights on weights” used to calculate hazard results. 

Model set a b c d 

Auckland 0.6 0.4 0.5 0.5 

Wellington 0.6 0.4 0.5 0.5 

Christchurch 0.2 0.8 0.5 0.5 

Widely-applicable 0.6 0.4 0.5 0.5 
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Figure 7.4 Weights for the widely-applicable model set for PGA (a) prior weights, (b) mean between-event 

residual, (c) log-likelihood and (d) overall weights. 
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8.0 ERGODIC HAZARD RESULTS 

Using the suite of common-form crustal models, mean ergodic uniform-hazard spectra are 
calculated for hypothetical Auckland, Wellington and Christchurch rock sites using the 
OpenQuake Engine. For Auckland and Wellington, the mean hazard spectra for the models 
derived in this study have a total of 153 branches (17 crustal median models, three crustal τ 
models, three subduction interface models one seismic source model) using the 2010 NSHM 
seismic source model. For Christchurch, the Van Houtte and Abbott (2019) version of the 
Canterbury Seismic Hazard Model source model also has nine branches, so the mean hazard 
spectra are derived from 1,377 separate branches. The subduction interface models consist 
of the three “upper”, “central” and “lower” variants of the Abrahamson et al. (2018) model. 

The uniform hazard spectra calculated using these ground-motion characterisation models are 
compared to mean hazard spectra calculated using the seed models with equal weights and 
compared to NZS1170.5:2004 code spectra in Figure 8.1. For Auckland, the common form 
models yield slightly higher uniform hazard spectra than the equally-weighted seed models. 
For Wellington, the differences are smaller because a large proportion of the hazard in 
Wellington is from the Hikurangi subduction interface, and both curves are underpinned by the 
same Abrahamson et al. (2018) subduction interface ground-motion models. For oscillator 
periods greater than 1 s, however, the uniform hazard spectrum from the common-form models 
is lower than the seed-model spectrum, which is a result of the prior weights providing lower 
hazard spectra than the data-driven weights. A more rigorous selection of the ‘weights on 
weights’ in Table 7.1 may yield more comparable long-period hazard spectra between the seed 
and common-form models. For Christchurch, the uniform hazard spectra have some 
differences, with the seed models yielding higher hazard at long oscillator periods and lower 
hazard at short oscillator periods. The hazard spectra for the common-form models are not 
smooth across oscillator periods because the model selection procedures are calculated 
without correlation across oscillator periods, and the weights are calculated using recorded 
data. 

To assess the validity of the widely-applicable set of models derived using generic scenarios, 
Figure 8.2 shows the uniform hazard spectra for Auckland, Wellington and Christchurch 
calculated using the location-specific suite of models and the widely-applicable set of models. 
For Auckland and Wellington, the hazard spectra are relatively similar. For Christchurch, the 
models have some differences, likely due to the different data selection for the weighting 
schemes. The location-specific models have a more refined estimate of the epistemic 
uncertainty so are considered preferable where available. 
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Figure 8.1 Uniform hazard spectra for generic rock sites in (a) and (b) Auckland, (c) and (d) Wellington and (e) 

and (f) Christchurch, determined using the seed models with the Al Atik and Youngs (2014) epistemic 
uncertainty model (solid black line) and Wellington-specific common-form models (dotted black line) 
relative to the NZS1170.5:2004 code spectra (solid grey lines). (a), (c) and (e) correspond to hazard 
spectra with 10% probability of exceedance in 50 years, while (b), (d) and (f) are for 2% probability 
of exceedance in 50 years.  
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Figure 8.2 Uniform hazard spectra for generic rock sites in (a) and (b) Auckland, (c) and (d) Wellington and (e) 

and (f) Christchurch, determined using the location-specific common form models (solid black line) 
and suite of widely-applicable common-form models (dotted black line) relative to the 
NZS1170.5:2004 code spectra (solid grey lines). (a), (c) and (e) correspond to hazard spectra with 
10% probability of exceedance in 50 years, while (b), (d) and (f) are for 2% probability of exceedance 
in 50 years.  
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9.0 PARTIALLY-ERGODIC HAZARD RESULTS 

Partially-ergodic uniform-hazard spectra are calculated for six locations in Wellington and 
Christchurch using the models derived in this study. The Wellington- and Christchurch-specific 
set of models are utilised for each city. The mean hazard spectra for the Wellington results are 
a result the weighted mean from 459 possible logic tree branches (17 crustal median models, 
three crustal τ models, three δS2Ss terms per site and three subduction interface models). 
The Christchurch results are the weighted mean of 4,131 possible branches, due to the nine 
branches of the seismic source model and are not presented for computational reasons. 
The partial removal of the ergodic assumption is currently only possible for the crustal models, 
so the hazard from the subduction interface is still ergodic. The partially-ergodic uniform hazard 
spectra for Wellington are compared to ergodic hazard spectra in Figure 9.1, Figure 9.2 and 
Figure 9.3. The δS2Ss terms from Figure 6.12 are repeated alongside the hazard spectra to 
facilitate the interpretation of the differences between the ergodic and partially-ergodic uniform 
hazard spectra. 

The partially-ergodic hazard spectra can be higher or lower than the corresponding ergodic 
hazard spectra depending on the δS2Ss terms. For example, the δS2Ss terms for the WNAS 
site suggest that this site has smaller site amplification effects than indicated by the assigned 
VS30 and Z1 data in Kaiser et al. (2017). The partially-ergodic hazard spectra in Figure 9.1 are 
lower than the ergodic spectra except at around an oscillator period of 1 s, where the δS2Ss 
terms indicate a minor site amplification peak. At 1 s oscillator period, the partially-ergodic and 
ergodic hazard spectra are nearly equal. At the VUWS site, on the other hand, the δS2Ss terms 
indicate a broadband amplification in site response at short oscillator periods, relative to the 
assigned VS30 and Z1 values. The resultant partially-ergodic hazard spectra are higher than the 
corresponding ergodic hazard spectra across a broad oscillator period range. The clearest 
example of the benefits of the partially-ergodic approach is TEPS in Figure 9.3, with its strong, 
well-known site amplification at 1 s oscillator period. The partially-ergodic hazard spectra are 
higher than the ergodic hazard spectra around 1 s, but lower otherwise. 

An interesting case for partially-ergodic hazard spectra is that of the rock site, POTS, in 
Figure 9.1. As a reference rock site for Wellington, one would expect the hazard spectra at this 
site to correspond to a benchmark rock hazard spectrum and Z factor for Wellington. The δS2Ss 
data indicate that site amplification effects are generally higher than what would be predicted 
by its assigned VS30 and Z1, particularly at long periods. This may indicate that the full-basin 
amplification response in Wellington at 1–2 s also amplifies ground motion for rock sites 
outside the basin. The partially-ergodic hazard spectrum at 10% probability of exceedance in 
50 years is substantially higher than its ergodic counterpart for periods greater than 1 s, but 
slightly lower at short periods. At short periods, however, both the partially-ergodic and ergodic 
hazard spectra are higher than the NZS1170.5:2004 code spectra. The ergodic hazard spectra 
indicate a Z factor of around 0.7, as defined as the rock PGA hazard, but the partially-ergodic 
approach indicates a Z ~ 0.6. Such analysis of Z can be misleading, however, as the class B 
code spectra for Z = 0.4, the current design standard, is quite close to the partially-ergodic one 
for oscillator periods greater than 1 s. Changes to the Z factor are unlikely to resolve issues 
with the code spectra in Wellington, and a wholesale redefinition of the code spectral shapes 
appears to be necessary. Additionally, partially-ergodic hazard calculations can either be 
derived using recorded data, as in this report, or using simulated data from ground-response 
analysis relative to reference rock spectra. For Wellington, the POTS partially-ergodic hazard 
spectra represent a starting point for such ground-response analyses, which assists the 
calculation of partially-ergodic hazard at any site in Wellington, not just at a GeoNet recording 
site. 
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Note that a large part of these ‘partially-ergodic’ hazard results are made up of an ergodic 
hazard contribution from the Hikurangi subduction interface. It is expected that the differences 
between ergodic and partially-ergodic hazard spectra will become more pronounced should 
partially-ergodic subduction interface predictions be incorporated in the future. For example, 
the 1 s peak for the TEPS site in Figure 9.3 would likely become more pronounced. This issue 
is discussed in more detail in section 10.3.1. 

 
Figure 9.1 Partially-ergodic hazard results for the WNAS and POTS sites. (a) and (b) show the δS2Ss terms 

derived in Section 6.4, (c) and (d) show the uniform hazard spectra for 10% probability of exceedance 
in 50 years, and (e) and (f) show the uniform hazard spectra with 2% probability of exceedance in 50 
years.  
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Figure 9.2 Partially-ergodic hazard results for the WEMS and VUWS sites. (a) and (b) show the δS2Ss terms 

derived in Section 6.4, (c) and (d) show the uniform hazard spectra for 10% probability of exceedance 
in 50 years, and (e) and (f) show the uniform hazard spectra with 2% probability of exceedance in 50 
years.  
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Figure 9.3 Partially-ergodic hazard results for the TEPS and FKPS sites. (a) and (b) show the δS2Ss terms 

derived in Section 6.4, (c) and (d) show the uniform hazard spectra for 10% probability of exceedance 
in 50 years, and (e) and (f) show the uniform hazard spectra with 2% probability of exceedance in 50 
years.  
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10.0 DISCUSSION AND FUTURE WORK 

10.1 Use of These Crustal Models 

Using the models derived in this study, the ergodic seismic hazard has been calculated for 
reference rock sites in Auckland, Wellington, and Christchurch, and partially-ergodic seismic 
hazard has been calculated at six GeoNet stations in Wellington. In New Zealand, it is very 
rare for seismic hazard analysts to deviate from the ergodic assumption, even when calculating 
site-specific hazard at soil sites. Site response is often represented using generic, global site 
terms based on VS30 and Z1. The pitfalls of this approach are clear in Wellington, where these 
generic terms are in significant error for most locations in the Central Business District. 

While the models here include a linear and nonlinear site response model and can technically 
be used to calculate ergodic hazard spectra at any site by assigning VS30 and Z1, in the author’s 
opinion this procedure should no longer be permissible for site-specific hazard analysis in New 
Zealand for engineering design. To utilise these models in site-specific studies, the seismic 
hazard should be calculated for a reference rock condition, and the site-specific amplification 
should either be quantified with simulations or recorded data. The rock hazard and site-specific 
response should then be combined to obtain the site-specific hazard. This procedure is very 
common outside of New Zealand and is the recommended use case for the models in this 
study. 

10.2 Subduction Interface Models 

The largest uncertainty in New Zealand seismic hazard analysis is likely to come from the 
Hikurangi subduction zone, both in terms of the magnitude-frequency distributions of events 
and the ground-motion modelling. The models derived in this study cannot be used for 
subduction interface events, as ground-motion for subduction interface events often have 
different scaling characteristics. To capture the epistemic uncertainty in empirical subduction 
interface ground-motion models, a set of different seed models are required. Unfortunately, 
there are too few subduction zone seed models to derive a common-form model with a 
meaningful parameter covariance matrix. Many new subduction interface models may soon be 
available through the NGA-Subduction project (e.g. Kishida et al. 2018), after which a similar 
analysis to what is detailed in this report can be undertaken for subduction interface models 
too. The analysis of epistemic uncertainty in ground-motion prediction for New Zealand seismic 
hazard analysis is not complete until a representative suite of models is derived for subduction 
zone earthquakes as well as shallow crustal earthquakes. 

10.3 Further Development on Ergodic Assumption Removal 

10.3.1 δS2Ss Terms for Both Crustal and Subduction Zone Models 

Partial removal of the ergodic assumption is clearly the future of empirical ground-motion 
modelling for seismic hazard analysis. This is particularly the case for site-specific analyses, 
but likely also for hazard mapping. Currently, the consideration of site-specific data is only 
possible for shallow crustal ground-motion models, as no subduction interface data are 
available to derive site terms. The equivalence between response spectral site terms for 
shallow crustal and subduction interface hasn’t yet been well studied and requires further work. 
Several studies have demonstrated that linear site terms for response spectral models are 
magnitude and distance dependent (Zhang and Zhao, 2009; Zhao et al. 2009; 
Stafford et al. 2017), which is an important issue considering the typically large magnitude of 
subduction interface events. 
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Zhao et al. (2015), however, derived site models using data from both shallow crustal events 
and subduction interface events, with any differences in site response between shallow crustal 
and subduction interface earthquakes captured in the site model’s magnitude scaling. Both the 
Zhao et al. (2016b) shallow crustal model and the Zhao et al. (2016a) subduction interface 
model utilise the same Zhao et al. (2015) site model. If a magnitude-dependent site model that 
is common to both subduction interface and shallow crustal models, as modelled by 
Zhao et al. (2015), can be justifiably adopted, then the δS2Ss

 determined from crustal data can 
also be utilised in subduction interface models. The benefits will be large in Wellington, for 
example, where the Hikurangi subduction interface is a seismic source of great significance. 

10.3.2 Hazard Maps Using Partially-Ergodic Hazard Analyses 

The partially-ergodic seismic hazard results in this study are confined to GeoNet station 
locations, as the site-specific modifications require recorded ground-motion data. 
Landwehr et al. (2016) and Kuehn et al. (2019) have demonstrated that it is also possible to 
derive ground-motion models for calculating nonergodic hazard maps, by deriving models with 
spatially-varying coefficients. Both studies showed that such models are an improvement upon 
a typical ergodic-type model and do not overfit the data, at least in an overall sense. 
Abrahamson et al. (2019) combined the approaches of these two studies to calculate the first 
fully nonergodic seismic hazard analysis with epistemic uncertainty. These approaches have 
shown aleatory variability can be reduced by 30–40%, similar to the reductions provided by 
the CyberShake method when good-quality velocity models are available, yet the epistemic 
uncertainties are more quantifiable than those from the Cybershake method. These models 
continuously transition between nonergodic seismic hazard analysis where data are available, 
and ergodic seismic hazard analysis where there are none. While implementing these models 
is very difficult within current seismic hazard modelling codes, and the computational burden 
will be very high, these models could be a promising approach for the near future. If such 
models are derived for New Zealand, they could be combined using a similar approach in this 
study to derive nonergodic hazard maps that fully consider epistemic uncertainty in 
ground-motion prediction.  

10.4 Epistemic Uncertainty in Hanging Wall Effects 

In the models derived in this study, no epistemic uncertainty is applied in the modelling of 
hanging wall effects or site response, with both terms taken directly from the 
Abrahamson et al. (2014) model. The lack of uncertainty in site response is not too problematic 
if site-specific site-response modelling is used in the context of partially-ergodic hazard 
calculations. For ergodic hazard calculations, site response modelling will need more detailed 
consideration than what is applied here, but it is the author’s opinion that ergodic site response 
modelling provides misleading results, particularly in Wellington, and should no longer be 
utilised for site-specific seismic hazard assessment in New Zealand. 

Hanging wall effects, however, do have large epistemic uncertainty that need further 
consideration if seismic sources in the near-field significantly influence a site’s seismic hazard. 
In those instances, a ‘hanging wall logic tree’ should be developed with different models. 
Currently few such models exist. Modern hanging wall models are based on the work of 
Donahue and Abrahamson (2014), who derived simulated data using the 
Graves and Pitarka (2010) rupture generator, with 1D Greens functions, on the 
SCEC Broadband Platform (Maechling et al, 2014). Simulated data can be modelled in many 
different ways, and Withers et al. (2019a) for example, do not observe a strong hanging wall 
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effect when fault zone plasticity is modelled to simulated data. Additional models on different 
datasets would help to better model epistemic uncertainty in the hanging wall effect. 

10.5 Consideration of Simulated Data 

In recent years, a great deal of research effort has been directed towards semi-physical, semi-
empirical ground-motion simulations. The most widely discussed method for incorporating 
simulated data into seismic hazard maps is through the CyberShake methodology 
(Graves et al. 2011). Some difficulties associated with the CyberShake methodology are its 
limitation to simple seismic source models due to computation issues, the limited scientific 
understanding of source parameters and their covariances, the lack of consideration of 
epistemic uncertainty in simulation method, and pragmatic difficulties in combining hazard 
results from different software.  

The latter issue can be addressed using the models derived in this study. Simulated data can 
still provide valuable information for better constraining the seismic hazard. The models 
derived in this study can be compared to simulated data in much the same way as they are 
compared to recorded data in Section 7.2. Weights can be assigned to the common form 
models based on which locations on the Sammon’s map represent the same ground-motion 
values as the simulated data. These weights can then be incorporated into the overall hazard 
calculations using the “weights on weights” approach, i.e. equation (7.5) can be rewritten as 

(10.1) 

or similar. In this manner, simulated data can be used to tune the model weights, rather than 
forming part of the hazard calculations. This solution improves transparency by allowing the 
empirical evidence and simulated data to be clearly visualised, allows hazard calculations to 
be performed in a single step using a single seismic hazard software, and facilitates gradual 
uptake of simulated data by altering the “weights on weights” i.e. the ratio b / f in equation 
(10.1). 

10.6 Sensitivity Studies 

Numerous assumptions are required to derive a suite of common form models, for example 
the definition of the common-form equation, the seed model selection, the method of 
dimensionality reduction and the method for selecting models from the lower-dimensional 
ground-motion representation. Before the method outlined in this study can be used in PSHA 
applications, a large-scale sensitivity study needs to be conducted. 
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APPENDIX 1   WEIGHT CALCULATIONS FOR THE AUCKLAND-SPECIFIC 
MODELS 

 
Figure A1.1 Weights for the Auckland suite of PGV models for 0.1 probability of exceedance in 50 years. 



 

 

72 GNS Science Report 2020/02 
 

 
Figure A1.2 Weights for the Auckland suite of PGA models for 0.1 probability of exceedance in 50 years. 
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Figure A1.3 Weights for the Auckland suite of SA(0.01 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.4 Weights for the Auckland suite of SA(0.02 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.5 Weights for the Auckland suite of SA(0.03 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.6 Weights for the Auckland suite of SA(0.05 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.7 Weights for the Auckland suite of SA(0.075 s) models for 0.1 probability of exceedance in 50 

years. 
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Figure A1.8 Weights for the Auckland suite of SA(0.1 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.9 Weights for the Auckland suite of SA(0.2 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.10 Weights for the Auckland suite of SA(0.3 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.11 Weights for the Auckland suite of SA(0.4 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.12 Weights for the Auckland suite of SA(0.5 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.13 Weights for the Auckland suite of SA(0.75 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.14 Weights for the Auckland suite of SA(1 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.15 Weights for the Auckland suite of SA(1.5 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.16 Weights for the Auckland suite of SA(2 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.17 Weights for the Auckland suite of SA(3 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.18 Weights for the Auckland suite of SA(4 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.19 Weights for the Auckland suite of SA(5 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.20 Weights for the Auckland suite of SA(7.5 s) models for 0.1 probability of exceedance in 50 years. 
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Figure A1.21 Weights for the Auckland suite of SA(10 s) models for 0.1 probability of exceedance in 50 years. 
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