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Abstract—The assessment of sites for liquefaction potential in
earthquakes currently relies on the estimation of soil layer models
which is laborious and standard regression techniques ineffectual.
Although Parallel Linear Genetic Programming (PLGP) has
proven to be an effective method for classification tasks it has
not yet been applied to regression problems. This paper redefines
a time-consuming, operator intensive process as an Evolutionary
Computation (EC) regression task and designs a PLGP system
that can produce candidate solutions for an operator to review.
This paper introduces Evolutionary Spatial Auto-Correlation
(ESPAC) which is an EC technique that uses a similar structure
to PLGP programs to represent some layer models and evolve
them using error matching against the target curve as a fitness
function. The project achieves its goal of providing a working
proof-of-concept with resultant curve matching being improved
over that of a domain expert on four of the five datasets tested.

I. I NTRODUCTION

A model for characterising the soil shear-wave velocity
profile and liquefaction potential of a site during an earthquake
needs to be autonomously generated as human analysis is
laborious and standard regression techniques ineffectual. The
Christchurch area of New Zealand (NZ) suffered a series
of earthquakes and aftershocks between 2010 and 2012 that
highlighted the influence of local site conditions on patterns of
earthquake damage; in particular, liquefaction of soils resulted
in extensive ground, building, and infrastructure damage.
Knowledge of the site shear-wave velocity is of particular
importance for determining expected earthquake ground mo-
tions and the appropriate geological Site Class for earthquake-
resistant design [1]. In addition, the shear wave velocity of
the soil can be used to infer whether or not the site is prone
to liquefaction. There is a known boundary at a shear wave
velocity of 200 m/s where a materialwill not liquefy if it is
above that point, however itmay liquefy if below it [2][3].

Spatial Auto-Correlation (SPAC) is a non-invasive site in-
vestigation technique, for simple sites comprising horizontal
soft sediments over a stiff layer, which uses a spatial array
of seismic recorders to measure ambient surface wave vibra-
tions at a particular site [3][4][5][6][2][7]. The arrays can be
deployed quickly in an urban setting without the need for
consent such as that required for drilling. The instruments

Fig. 1: Theoretical coherency curve.

record vibrations for approximately half an hour, and the
subsequent data analysis and interpretation can be done in little
more than a day. This means that the classification of a site
can be determined relatively quickly compared to alternative
methods [3][4].

Surface wave tests take advantage of the dispersive nature
of Rayleigh waves, and knowledge that variation of phase
velocities with frequency results from the variation of shear
wave velocities with increasing depth [5][6]. Processing of
these records can allow determination of shallow shear wave
velocity profiles and the thickness of sub-surface layers. The
higher the shear wave velocity, the ‘more solid’ the ground is,
and the less prone to the ‘shaking up’ of porous spaces that
causes liquefaction [3][7]. A dispersion curve is determined
from a series of calculations based the wave field data recorded
by the sensors on the ground surface (thecoherencyof the
measurements from the recorders). This represents the way
in which surface waves spread out as they travel across the
surface of the earth, and a Bessel function is applied during
the inversionprocess. This produces a theoretical coherency
curve which is compared to the field-measured coherency to
give a goodness-of-fit of an estimated soil layer model. Figure
1 shows a field-measured coherency plot, with the measured
data shown in red and the theoretical coherency in blue.

The known underlying physical model means that regression



techniques that simply produce arbitrary models will not be
meaningful, as the evolved model must represent the soil
layers in a realistic manner. Constraints must be enforced in
various stages of the evolutionary process, for example model
initialisation and evolutionary operations, which are difficult
to capture in an error-based fitness function. The number of
layers is not knowna priori so must be determined as part of
the model, and is currently part of an operator-driven visual
evaluation process.

A. Motivations

Modelling of the surface layers is currently performed by
feeding an estimated model of the surface layers into mod-
elling software [8] with the layer structure being varied until
an optimal match is obtained. This process is performed using
the simplex algorithm [9] with intensive operator intervention
being required.

Whereas the rich program structure of Genetic
Programming (GP) has been used successfully to evolve
solutions to Symbolic Regression (SR) tasks [10][11][12],
it has not previously been applied to the Spatial Auto-
Correlation (SPAC) domain. The layer model used fits
particularly well into the structure of PLGP [13][14][15][16],
a system that has not previously been applied to the SR
domain.

B. Goals

This research will develop a working proof-of-concept for
ESPAC, a system that will handle the model estimation process
using PLGP to fit the data model within the known constraints.
The goal is to shift the burden of analysis of SPAC data
from a labour-intensive, operator-based process to one where
an intelligent system can produce good quality candidate
solutions for the operator to review. The specific objectives
of the project are as follows.

• Define the problem as one of SR and extend PLGP to
the regression domain.

• Use the existing Computer Programs in Seismology
(CPS) modelling software for the calculation of Rayleigh
wave dispersion.

• Provide curve matching results comparable to those
achieved by a domain expert.

C. Organisation

The rest of the paper is organised as follows. Section II
provides further background information on seismology and
EC topics, and Section III describes the design of the solution
presented by this project. Section IV gives details of the
experimental setup, with the results described in Section V.
Analysis is provided in Section VI and conclusions are made
in Section VII.

II. BACKGROUND

A. Spatial Auto-Correlation

Liquefactionis the process that leads to soil’s sudden loss of
strength, and is most commonly caused by the ground shaking

Model Thickness (m) Velocity (m/s)

Single layer
8.6 123.5
– –

Two layers 8.6 123.5
136.5 287.7

Fig. 2: Refining the curve by adding a layer.

during a large earthquake. If sands and silts, which are loose
in the ground, sit below the water table, the space between
the grains is filled with water. When an earthquake occurs,
the shaking of the ground causes the grains to compress the
water-filled space, forcing the water to build up pressure until
the grains ‘float’. At this point, the soil has liquefied and lost
its strength, and behaves as a fluid. It cannot support the weight
of whatever is lying above it and is forced into any gaps above
it as surface materials ‘sink’.

Spatial Auto-Correlation (SPAC) is a method of using array-
based micro-tremor records to evaluate theshear-wave velocity
of a soil column underlying a site [17][18][19][20]. Shear
wave velocity of a granular material is related to the porosity of
the material, such that a low shear wave velocity is associated
with a great deal of pore space. A layer is likely to liquefy
upon being shaken if it has a low shear wave velocity and the
pore spaces are filled with water. [3][4][7].

The measurement of fundamental-modeRayleigh waves
which are present in micro-tremors allows the constructionof
a dispersion curve and determination of a shear wave velocity
profile through the inversion process [3][4][7]. Thesite period
can also be determined when SPAC is used in conjunction with
Horizontal-to-vertical Spectral Ratio (HVSR) [21][22][20].

The Computer Programs in Seismology (CPS) software
suite consists of a number of modular programs for the
analysis of seismic data [8]. An estimation of the earth model
is presented to the CPS suite, consisting of one or more layers
represented by values for thickness and shear wave velocityof
each layer. The CPS suite calculates a theoretical dispersion
curve which is then passed to the inversion process, resulting
in a theoretical coherency curve which is matched for error
against the field measured data.

The heuristic approach currently used by GNS Science
[3] successively introduces layers above or below an initial
layer until adding layers no longer improves the model. Low
frequencies are corrected by adding deeper layers, and high
frequencies are corrected by adding a surface layer. This
process continues using the simplex algorithm to call CPS with



Fig. 3: GP Program.

candidate layer models, iteratively refining the model until
no further improvement can be made [3]. Figure 2 shows an
example of the fitting process, with the theoretical coherency
produced by a single layer shown by a black dotted line, and
a two layer model shown by a solid blue line. Beneath the
figure, the values for the layer models show that the two layer
model has had a layer added below the first layer.

B. Genetic Programming for Symbolic Regression

Regression tasks are those in which the objective can be
represented by a curve, and the objective is to estimate a model
that best fits that curve. The goals of this project can be easily
viewed as a regression task in which the measured coherency
represents the target curve and the theoretical coherency is
provided by existing seismology software. The goodness of
fit of this theoretical curve represents the fitness functionfor
an evolutionary process which will evolve layer models in a
guided stochastic process.

Genetic Programming (GP) is an effective evolutionary
approach to solving regression problems, due largely to the
structure of the programs that enables complicated functions
to be evolved from mathematical operators, random constants,
and features from the data [10]. Each program is evaluated
against somefitness measureto determine their effectiveness at
solving the task and therefore their suitability as donors for the
next generation. Mutation and crossover operations are applied
to produce a child generation from stochastically selected
parents, and elitism preserves the best solutions unmodified.
A GP program iterates through each data point in the input
set and calculates an output, representing the model that isto
be matched to the objective curve. Thefitnessof that program
is typically calculated by Root Mean Squared Error (RMSE)
or some other goodness-of-fit measure. After a predefined
number of generations, the best program that has been evolved
is chosen to represent the best model discovered by the system,
and that program represents the function that can be appliedto
the input to give the best estimation for the output. The most
common form of GP is Tree Based GP (TGP) [10], where
programs are structured similarly to Lisp S-expressions. An
example of a simple TGP program is shown in Figure 3.

Linear Genetic Programming (LGP) consists of a linear
sequence of instructions using a set of registers that may be
re-used during execution of the program and give multiple
outputs upon completion [12][23][24][25]. Similar to assembly
language, each instruction may use up to two registers as input
and apply the same genetic operators as TGP to produce a
single register as output. The strengths of LGP are that values
that have been computed by one instruction can be used by

Fig. 4: LGP Program.

another instruction later in the program execution, and that
LGP can easily produce multiple outputs, each representinga
particular class. This makes LGP a powerful technique that has
been shown to outperform TGP in multi-class classification
[24][25]. However, every time a result is reused aninstruction
dependencyis introduced, which means that a relatively minor
modification to one instruction (in evolution) may then cascade
throughout the program by altering the value in a register
that is used by multiple subsequent instructions. As large and
random changes are known to disrupt the performance of GP,
the strength of LGP is also a potential shortcoming.

An example of an LGP program is shown in Figure 4, where
a simple program performs a classification task on a data
instance comprised of two featuresf1 and f2. The program
is executed from top to bottom, and at each point where a
register is assigned to, that value is displayed in the appropriate
column on the right. The final register values forr1 · · · r4 are
listed, and in a classification task the index of the highest
register value corresponds to the classification made for that
data instance (in this example, class 3). There are several
instruction dependencies, where a previously computed value
is re-used from one of the registers.

Parallel Linear Genetic Programming (PLGP) was devel-
oped to limit instruction dependencies between instructions
by controlling the interaction between them [13][14]. Here,
n instruction sequences, calledfactors, are evaluated inde-
pendently to given register vectors which are then summed
to give a single result vector. Each program factor has its
own vector of registers which are initialised to zero before
execution and are not passed to the following factor. This
prevents instruction dependencies between factors, and limits
the potential number of instruction dependencies to the number
of instructions in each factor. By regarding each program as
an ordered list of factors, crossover is limited toequivalent
factors, i.e. those that occupy the same list position in both
programs. This constraint creates Enforced Sub-Populations
(ESP) where genetic material may flow within subpopulations
but not between them [26]. The concept of ESP was further ex-
tended in the Co-operative Coevolution Parallel Linear Genetic
Programming (CC-PLGP), Blueprint Search Parallel Linear
Genetic Programming (BS-PLGP) and Hill Climbing Parallel
Linear Genetic Programming (HC-PLGP) architectures, where
subpopulations of partial solutions were evolved in isolation



Fig. 5: PLGP Program.

from each other, and a complete solution was formed by
combining a number of partial solutions [13][15][16].

An example of a PLGP program is shown in Figure 5,
and closely resembles the LGP program shown in Figure 4.
The program has been broken into three factors, and before
each factor is executed the register values have been reset to
zero. The final register values are found by adding the vectors
that result after each factor is executed (which are shaded).
Breaking the program into factors has reduced the number
of instruction dependencies, and in this case has changed the
classification from class 3 to class 4. PLGP has been shown
to be an effective method for classification [13][14][15][16],
though it has not previously been applied to regression tasks.

III. E VOLUTIONARY SPATIAL AUTO-CORRELATION

(ESPAC)

ESPAC has been designed to perform a very specific real-
world task, and accordingly has a number of unusual mod-
ifications from what could be considered the norm. For this
domain, there is a paradigm shift when considering how best
to represent the population of PLGP programs. To help define
this, careful consideration must first be given to exactly how
ESPAC will fit into the existing process of model creation.

The required functionality of the CPSmodal summation
module [8] has been retained, and is implemented in this
project as a Java Native Interface (JNI) library that is called
from the Java ESPAC system. This modified library will
hereafter be referred to aslibCPS.

ESPAC evolvesmodels which represent some estimated
layer profile and will be checked for goodness of fit by
calculating and inverting the dispersion curve. A population of
randomly generated models is initially created by the system,
and these are evaluated and evolved by the system in place of
GP programs. Each model is to be evaluated by using libCPS
to calculate the theoretical coherency for that model, withthe
field measured coherency as the target value. An example of
an ESPAC model is shown in Figure 6, where the model is
similar in structure to a PLGP program with layers in place
of factors.

LibCPS represents the ‘execution’ phase of the evolution,
where candidate models produce an output which is measured
for goodness of fit against the target curve. High fitness models
are identified as useful donors for the next generation and

Fig. 6: ESPAC Layer model.

evolution is performed, where the evolution operators focus
on refining existing good solutions byadjustingthe values of
the layer model. The standard GP operations of mutation and
crossover are complemented with addition (ADD), subtraction
(SUB), division (DIV), and multiplication (MUL).

A. Redefined Structure of Candidate Solutions

PLGP programs consist of a number of factors, each con-
taining a number of assignments to registers and the result
vector from each factor is summed (as shown in Figure 5). This
structure is not useful for this domain, as the calculationsare
performed by libCPS and not the candidate solutions. ESPAC
instead useslayer modelsthat represent an estimate of the
soil profile. Each model consists of a number of layers which
are represented by athicknessand shear wave velocity. The
number of layers is not knowna priori, the determination of
which is part of the search process. A simplification has been
made for this project in which all models are defined as having
two layers, allowing the remaining parts of the system to be
developed to the working proof of concept stage.

The Enforced Sub-Populations (ESP) that is part of the
PLGP architecture is of particular interest, as is the special-
isation of partial solutions that results. By basing the layer
model on the PLGP architecture, crossover is constrained so
that genetic material can only be exchanged between layers
that occupy the same position in their respective models. For
example, the top layer of one model will only combine with
the top layer of any other model. The effect of this ESP
will be to refine each layer in isolation from the others.
Initial experimentation suggested that the structure of the
models, having only two layers and four values, was prone to
disruption if the subpopulations were not enforced, and when
the system is extended to allow a more dynamic number of
layers in the model, the constraints will allow the system to
search for partial solutions more effectively [27][28][29][30].

B. Redefined Genetic Operators

GP evolution tends to consist of crossover, mutation, and
elitism operations to evolve useful solutions, and a typical
system may use (for example) 70% crossover, 20% mutation,
and 10% elitism during the evolutionary process. Due to the
small number of values that make up the layer models, i.e. two
values for each of two layers, some consideration is necessary
to prevent layer models from being unduly disrupted by a
process that encouraged replacement rather than refinement.
Initial experimentation showed that an evolutionary process
that was predominantly driven by crossover tended to disrupt
diversity, as the fittest individuals had their values propagated
throughout the population quickly. Due to the underlying
geophysics of the SPAC process, replacing a value in a model



by crossover may make the model nonsensical and invalidate
the values that may have been useful.

A new range of ‘modification’ operators was used by
ESPAC to encourage layers to be ‘fine-tuned’, and they operate
alongside the traditional mutation, crossover, and elitism.
These new operators consisted of addition (ADD), subtraction
(SUB), multiplication (MUL) and division (DIV), and they
were bounded by range parameters. As ADD and SUB are
similar operations they shared the same range as each other,
and MUL and DIV shared the same range as each other. For
example, with an ADD/SUB range of 0.3, the ADD operator
would add some random amount in the range [0.0, 0.3], and
SUB would subtract an amount from the same range. With
a DIV/MUL range of 0.3, the MUL operator would multiply
the value by a random number in the range [1.0, 1.3] and
DIV would divide by a number in the same range. Note that
protected division is not required as there can be no division
by zero. The modification operators were applied to only a
single value, e.g. the thickness of the top layer, or the velocity
of the bottom layer. This was intended to allow the system to
react to small modifications, evaluating the fitness of individual
changes during the selection process.

Mutation replaced a single value with a new, randomly
generated value, e.g. replacing the thickness of the top layer
with a new value. As with initial model generation, the range
of these random values was defined by a parameter at the
beginning of the experiment. Crossover was also applied to
a single value, and this was constrained by ESP to only
permit material to be exchanged between equivalent layers.
For example, model A and model B may exchange the values
for thickness of the top layer, but the thickness may not be
from the top layer of model A and the bottom layer of model
B. Elitism simply preserved the best solutions unchanged in
the child generation.

C. Evolutionary Process

The evolutionary process for this project has not been
greatly modified from the norm. A population of models is
evaluated and the fittest individuals are selected as donors
using tournament selection. The resultant models are added
to the elite models in the child population until it reaches its
specified size. Once the evolutionary process is complete and
the child population is full, the models are again evaluatedand
the evolutionary process continues.

D. Redefined Execution / Fitness Environment

A traditional GP approach to regression uses the features
from the dataset as input and executes each of the programs
in the population, using that program’s output to determinethe
fitness. The execution phase in ESPAC is instead performed
by libCPS, using the layer models as input and the resultant
theoretical coherency as the curve we are attempting to fit
to the measured data. In performing the error matching, a
number of fitness functions were considered, and due to the
increased importance of the lower frequencies of the coherency
curve [3] the fitness function was weighted accordingly. Initial

experimentation showed better performance was achieved by
the following fitness function than RMSE. The error for each
data point is the absolute value of the error for that point,
divided by the frequency modified by a weighting parameter
α. The square root of the mean of those errors is ESPAC’s
fitness function.

√

√

√

√

n
∑

i=1

| θ̂i − θi |

n · α · frequencyi

θ̂ : Theoretical coherency
θ : Target coherency
frequency : The frequency for the given data point
α : Weighting parameter| set at 0.02
n : Number of data points

IV. EXPERIMENTAL SETUP

A. Datasets

Datasets are defined by a set of field measured coherency
values and the aperture size, or distance between the sensors
that recorded the data at that site. There are five sites used for
this project, simply referred to as sites 1 – 5, and all are from
the Christchurch area of NZ. Sites 1 and 2 were determined
by a human expert to be best represented by two layers, and
the best human defined model for sites 3 – 5 contained only
one layer.

1) Evolutionary Parameters:A population size of 1000 was
used, and due to time constraints, evolution was limited to 50
generations. Tournament selection was used with a tournament
size of 5. Crossover was set to 30%, mutation 10%, and elitism
10%. ADD and SUB were set to 15% each, and DIV and
MUL were both set to 10%. This balance of operators was
selected to encourage the adjustment of layer values rather
than the usual crossover-driven evolutionary process. A small
amount of mutation was allowed to prevent the evolution
becoming trapped in local optima, and elitism was anticipated
to provide a degree of backtracking by ensuring many of the
best solutions remained in the population.

2) ESPAC Parameters:The random layer generation range
was 0.01 for thickness (up to 10m), and 0.5 for velocity (up
to 500m/s). These parameters were set after observation of a
number of models that had been created by a human expert.
The random range for ADD and SUB were set to 0.1 (100m)
for thickness and 0.5 (500m/s) for velocity, to provide values
for modification that would encourage gentle adjustment. The
range for DIV and MUL was set to 0.5 for both thickness and
velocity, resulting in a division or multiplication in the range
[1.0, 1.5].

V. RESULTS

In this paper, the objective was to adapt PLGP to solve a
real-world problem and test the ability of ESPAC to produce
a comparable model to that of a domain expert. Rigorous
statistical significance testing over 30 or more runs was not



Model Thickness (m) Velocity (m/s) Fitness

Human-simplex
8.6 123.5

1.6666136.5 287.7

ESPAC 861.8 275.3 1.6136
15.7 111.0

Fig. 7: Human and ESPAC models for site 1.
Low fitness is preferred.

Model Thickness (m) Velocity (m/s) Fitness

Human-simplex 9.0 133.5 1.4217
163.0 273.1

ESPAC 1.3 279.8 1.61361.8 15.0

Fig. 8: Human and ESPAC models for site 2.
Low fitness is preferred.

required as the goal was not to measure the ability of the
method to solve regression tasks in general. Due to time and
resource constraints, there were only five replications of the
experiment performed on each site and the overall most fit
model has been represented in the results. An additional model
has been presented for site 4 to provide interesting context.
It is important to note that although the ESPAC curves are
displayed using a dotted black line, the dots do not represent
individual data points.

Site 1: The ESPAC model fits the field measured co-
herency very closely throughout the curve in Figure 7, and
was evolved in 49 generations. The table below the plot shows
that the two models were very different from each other, with
ESPAC defining a top layer that was ten times thicker than
the human-simplex model. The fitness given in the rightmost
column confirms a good representation of the curves.

Site 2: As shown in Figure 8, this is an example where
ESPAC has performed badly. There is rapid oscillation of
the curve beyond 8 Hz, and the curve also matches poorly

Model Thickness (m) Velocity (m/s) Fitness

Human-simplex
16.1 164.6

1.5573– –

ESPAC 9.8 157.5 1.5212
41.9 245.4

Fig. 9: Human and ESPAC models for site 3.
Low fitness is preferred.

Model Thickness (m) Velocity (m/s) Fitness

Human-simplex 17.4 146.9 1.7845
– –

ESPAC Model 1 736.4 284.4 1.67862.0 13.0

ESPAC Model 2
8.6 126.5

1.748141.0 245.9

Fig. 10: Site 4. Human and ESPAC model 1 (top) and
model 2 (bottom).Low fitness is preferred.

below that range. The models shown in the accompanying
table show that the fitness value is representative of the poor
fit. The thickness of the layers for the ESPAC model, which
was evolved in the 17th generation, show that ESPAC has
simply not been effective at solving this problem.



Site 3: Figure 9 shows that ESPAC has fitted the co-
herency curve tighter than the human-simplex model, and this
is reflected in the fitness value shown in the accompanying
table. This was the first example of a site where the human-
simplex method restricted the model to a single layer, and is
compared to a two layer ESPAC model that was evolved in
18 generations. The table shows that the shear wave velocities
for the top layer of both models were very similar.

Site 4: In Figure 10 two plots are shown to illustrate the
complexity of the domain, and is another example of a single
layer human-simplex model. ESPAC model 1, shown in the
top plot, had the overall best fitness value, evolved after 30
generations. Model 2, shown in the bottom plot, had a lower
fitness, and was evolved after 24 generations. Model 1 has an
very thick top layer and thin bottom layer. The plots clearly
show that, although the fitness of model 1 is the lowest, the
oscillations make it a poor fit. Model 2, however, fits well and
its fitness relative to the human-simplex model is reasonable.

Site 5: Figure 11 is another instance of a single layer
human-simplex model. The ESPAC model fits the lower fre-
quencies below 8Hz very well, and the human-simplex model
fits better over 10Hz. The ESPAC model has a better fitness
value, reflected by the importance given to lower frequencies.
The top layer thickness and velocity are similar for both
models, as shown in the accompanying table. This ESPAC
model was evolved in 41 generations.

VI. A NALYSIS

The results from sites 2 and 4 demonstrate that it is
possible to evolve models that clearly do not fit the data. The
rapid oscillations that are a feature of the evolved models is
representative of many models that are randomly generated
during the initialisation process. Whereas it would generally
follow that such oscillation could be caused by overfitting,it is
perhaps more indicative of the difficulty in finding solutions
that fit the constraints of the real world geophysical model
for this domain. It is immediately obvious to the observer
that these models fit poorly, but this judgement has not been
effectively captured in the fitness function, as indicated by the
good fitness values given to model 1 of site 4.

There are two approaches to the resolution of this problem,
and they can be broadly defined as matters of eitherconstraint
or evaluation. Using constraints to address the issue would
involve preventing nonsensical solutions from being evolved.
In part, this is the approach taken when using operator expe-
rience, being inefficient to expend effort on invalid models.
Some restraint must be exercised when enforcing constraints
on the evolutionary process, as the strength of GP is the ability
to discover solutions that a human may not conceive. The net
effect of this is the potential for the system to discover new
relationships and rules rather than being limited to confirming
those which are known. Improving the evaluation would pri-
marily involve a more effective fitness function, which could
include the penalisation or promotion of models according to
their structure. Complementing the fitness function in thisway
differs from constraints in that nonsensical models are allowed

Model Thickness (m) Velocity (m/s) Fitness

Human-simplex
19.3 268.7

1.6666– –

ESPAC 14.3 264.0 1.6136
1309.6 471.4

Fig. 11: Human and ESPAC models for site 5.
Low fitness is preferred.

to evolve, but their fitness is penalised. This retains diversity
in the population, as well as retaining the ability of GP to
‘stumble upon’ good solutions.

The results for site 1 (Figure 7) show two models that are
very similar in fitness and curve, although are very different in
composition. If the HVSR matching process were applied to
these models, it would be more clear which of these models
was more appropriate. A feature of the poorly fitting ESPAC
models for sites 2 and 4 is a very thin second layer, which
may have been exposed earlier using the HVSR technique.

The experimental design featured a large population of
models and a small number of evolutionary generations. Due
to the fact that only a small number of models are high fitness
parents, a better use of computational resources may have
been to reduce the population size and evolve them over a
larger number of generations. This would have resulted in a
larger number of genetic operations over a smaller number
of models rather than a large population that may have been
largely stagnant.

VII. C ONCLUSIONS

The ESPAC system has been effective at performing a real-
world regression task, which is a major contribution for PLGP.
However, the problem has not been defined as well as it might
as the models may be nonsensical or unrealistic in the real
world, and evaluation of them requires more considerations
than simple error matching. Analysis of these processes and
results by a domain expert is essential to re-evaluate some
of the assumptions and simplifications that have been made,
as well as investigating the effect of the parameters and
constraints that have been introduced. The conclusions with
regard to the specific objectives are as follows.

• PLGP has been successfully extended to perform the
regression task. The definition of the task will benefit
from further analysis of the results by a domain expert.

• libCPS has successfully captured the functionality of
CPS and enabled ESPAC to use the existing modelling
software. The execution phase of the process will benefit



from increasing the efficiency of libCPS, perhaps by
parallel processing.

• The models for sites 1, 3, and 4 (model 2) match the
objective curve more closely than the human-simplex
method, and site 5 is comparable. ESPAC was unable
to effectively evolve a model for site 2.

The number of layers was set to two for this project, al-
though this value is to be discovered by the search mechanism
in future work. By allowing a dynamic number of layers we
may allow a much better estimation of layer models and better
capture domain knowledge. A suggested approach would be
to evolve a population of single layer models for the firstn
generations, and then spend anotherm generations attempting
to find suitable layers to refine the models. A single layer
model’s fitness could be cached, and another layer is added
only if it improves fitness, allowing for backtracking.

The co-use of SPAC and HVSR would greatly aid the
process by refining the thickness of a second layer. This
effectively reduces the range of one of the variables and allows
the search to concentrate on the other unknowns.

As ESPAC is the first Evolutionary Computation (EC)
system applied to this problem, it should be compared to other
EC approaches, i.e. Genetic Algorithms, TGP, LGP, or Neural
Networks. This comparison would evaluate the ability of EC in
general to produce effective solutions to this domain in place
of human judgement.

To the best of our knowledge, this is the first application
of GP to this problem domain. While many aspects are worth
further investigation, initial experiments show that the results
are comparable to human experts and there is great potential
to apply GP to difficult problems in this domain.
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