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Abstract—The assessment of sites for liquefaction potential in M —— " Fnonelo
earthquakes currently relies on the estimation of soil layemodels =

which is laborious and standard regression techniques inéfctual.
Although Parallel Linear Genetic Programming (PLGP) has
proven to be an effective method for classification tasks it &s
not yet been applied to regression problems. This paper redi@es
a time-consuming, operator intensive process as an Evolathary .
Computation (EC) regression task and designs a PLGP system
that can produce candidate solutions for an operator to revéew.
This paper introduces Evolutionary Spatial Auto-Correlation
(ESPAC) which is an EC technique that uses a similar structue

Coherency

00

4

to PLGP programs to represent some layer models and evolve o 5 10 15 20
them using error matching against the target curve as a fithes Frequency(Hz)

function. The project achieves its goal of providing a working ) )

proof-of-concept with resultant curve matching being improved Fig. 1: Theoretical coherency curve.

over that of a domain expert on four of the five datasets tested

|. INTRODUCTION record vibrations for approximately half an hour, and the
A model for characterising the soil shear-wave Vebci@ubsequentdata analysis and interpretation can be doittéein |

profile and liquefaction potential of a site during an eantie M°"e than a dgy. This means that the classification of a fsite
needs to be autonomously generated as human analysiS38 be determined relatively quickly compared to alteveati
laborious and standard regression techniques ineffectiral Methods [3][4].

Christchurch area of New Zealand (NZ) suffered a seriesSurface wave tests take advantage of the dispersive nature
of earthquakes and aftershocks between 2010 and 2012 @faRayleighwaves, and knowledge that variation of phase
highlighted the influence of local site conditions on patteof Velocities with frequency results from the variation of ahe
earthquake damage; in particular, liquefaction of soitsitted Wave velocities with increasing depth [5][6]. Processirfg o
in extensive ground, building, and infrastructure damagﬂgl_ese records can allow determination of shallow shear wave
Knowledge of the site shear-wave velocity is of particulatelocity profiles and the thickness of sub-surface layete T
importance for determining expected earthquake ground nitigher the shear wave velocity, the ‘more solid’ the grousd i
tions and the appropriate geological Site Class for eagstkgu and the less prone to the ‘shaking up’ of porous spaces that
resistant design [1]. In addition, the shear wave velocity 6auses liquefaction [3][7]. A dispersion curve is detereain
the soil can be used to infer whether or not the site is profi@m a series of calculations based the wave field data redord

to liquefaction. There is a known boundary at a shear wab¥ the sensors on the ground surface (doderencyof the
velocity of 200 m/s where a materialill not liquefy if it is measurements from the recorders). This represents the way
above that point, however inay liquefy if below it [2][3]. in which surface waves spread out as they travel across the
Spatial Auto-Correlation (SPAC) is a non-invasive site insurface of the earth, and a Bessel function is applied during
vestigation technique, for simple sites comprising hartab the inversionprocess. This produces a theoretical coherency
soft sediments over a stiff layer, which uses a spatial arr&yrve which is compared to the field-measured coherency to
of seismic recorders to measure ambient surface wave vib@ie a goodness-of-fit of an estimated soil layer model. Figu
tions at a particular site [3][4][5][6][2][7]. The arraysan be 1 shows a field-measured coherency plot, with the measured
deployed quickly in an urban setting without the need f¢fata shown in red and the theoretical coherency in blue.
consent such as that required for drilling. The instrumentsThe known underlying physical model means that regression



S [ — . —— Measured

techniques that simply produce arbitrary models will not k 3 --=-_Sloglalayei
meaningful, as the evolved model must represent the s i T ]
layers in a realistic manner. Constraints must be enforned
various stages of the evolutionary process, for exampleeio:
initialisation and evolutionary operations, which arefidiflt N
to capture in an error-based fithess function. The number =11
layers is not knowra priori so must be determined as part o
the model, and is currently part of an operator-driven isu
evaluation process.
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A. Motivations ° ° et b =
Modelling of the surface layers is currently performed by Model Thickness (m)  Velocity (m/s)
feeding an estimated model of the surface layers into mod- Single layer 8_-6 12_3-5
elling software [8] with the layer structure being variediln
; i i i i i Two layers 8.6 1235
an optimal match is obtained. This process is performedjusin y 136.5 287.7

the simplex algorithm [9] with intensive operator intertien
being required.

Whereas the rich program structure of Genetic
Programming (GP) has been used successfully to evobering a large earthquake. If sands and silts, which areeloos
solutions to Symbolic Regression (SR) tasks [10][11][12]n the ground, sit below the water table, the space between
it has not previously been applied to the Spatial Autahe grains is filled with water. When an earthquake occurs,
Correlation (SPAC) domain. The layer model used fithe shaking of the ground causes the grains to compress the
particularly well into the structure of PLGP [13][14][18)], water-filled space, forcing the water to build up pressurd un
a system that has not previously been applied to the 3 grains ‘float’. At this point, the soil has liquefied andtlo
domain. its strength, and behaves as a fluid. It cannot support thghivei
B. Goals of whatever is lying above it and is forced into any gaps above

' it as surface materials ‘sink’.

This research will develop a working proof-of-concept for spatial Auto-Correlation (SPAC) is a method of using array-
ESPAC, a system that will handle the model estimation pcasased micro-tremor records to evaluateshear-wave velocity
using PLGP to fit the data model within the known constraintgf g soil column underlying a site [17][18][19][20]. Shear
The goal is to shift the burden of analysis of SPAC datgave velocity of a granular material is related to the pdyosi
from a labour-intensive, operator-based process to oneewhghe material, such that a low shear wave velocity is assetiat
an intelligent system can produce good quality candidajgth a great deal of pore space. A layer is likely to liquefy
solutions for the operator to review. The specific objestivgpon being shaken if it has a low shear wave velocity and the

Fig. 2: Refining the curve by adding a layer.

of the project are as follows. pore spaces are filled with water. [3][4][7].
« Define the problem as one of SR and extend PLGP toThe measurement of fundamental-moReayleigh waves
the regression domain. which are present in micro-tremors allows the constructibn

« Use the existing Computer Programs in Seismologydispersion curve and determination of a shear wave vglocit
(CPS) modelling software for the calculation of Rayleigiprofile through the inversion process [3][4][7]. Thite period

wave dispersion. can also be determined when SPAC is used in conjunction with
« Provide curve matching results comparable to thos¢orizontal-to-vertical Spectral Ratio (HVSR) [21][22]]R
achieved by a domain expert. The Computer Programs in Seismology (CPS) software

L suite consists of a number of modular programs for the
C. Organisation analysis of seismic data [8]. An estimation of the earth nhode
The rest of the paper is organised as follows. Section i presented to the CPS suite, consisting of one or moredayer
provides further background information on seismology andpresented by values for thickness and shear wave velafcity
EC topics, and Section Il describes the design of the smiutieach layer. The CPS suite calculates a theoretical digpersi
presented by this project. Section IV gives details of th@urve which is then passed to the inversion process, regulti
experimental setup, with the results described in Section |, a theoretical coherency curve which is matched for error
Analysis is provided in Section VI and conclusions are madgjainst the field measured data.
in Section VII. The heuristic approach currently used by GNS Science
[3] successively introduces layers above or below an initia
) i layer until adding layers no longer improves the model. Low
A. Spatial Auto-Correlation frequencies are corrected by adding deeper layers, and high
Liquefactionis the process that leads to soil's sudden loss bkquencies are corrected by adding a surface layer. This
strength, and is most commonly caused by the ground shakprgcess continues using the simplex algorithm to call CRB wi

Il. BACKGROUND
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candidate layer models, iteratively refining the model lunti Final register values 0.2 Jo2 [115]78
no further improvement can be made [3]. Figure 2 shows an
example of the fitting process, with the theoretical coheyen Fig. 4: LGP Program.

produced by a single layer shown by a black dotted line, and
a two layer model shown by a solid blue line. Beneath the
figure, the values for the layer models show that the two layanother instruction later in the program execution, and tha

model has had a layer added below the first layer. LGP can easily produce multiple outputs, each represeating
particular class. This makes LGP a powerful technique that h
B. Genetic Programming for Symbolic Regression been shown to outperform TGP in multi-class classification

Regression tasks are those in which the objective can [841[25]- However, every time a result is reusediastruction
represented by a curve, and the objective is to estimate aimddgPendencis introduced, which means that a relatively minor
that best fits that curve. The goals of this project can bdyeadedification to one instruction (in evolution) may then e
viewed as a regression task in which the measured coherefftipughout the program by altering the value in a register
represents the target curve and the theoretical coherancy/'gt i used by multiple subsequent instructions. As large a
provided by existing seismology software. The goodness Gndom changes are known to disrupt the performance of GP,
fit of this theoretical curve represents the fitness functn the strength of LGP is also a potential shortcoming.
an evolutionary process which will evolve layer models in a An example of an LGP program is shown in Figure 4, where
guided stochastic process. a simple program performs a classification task on a data

Genetic Programming (GP) is an effective evolutionarpistance comprised of two featurés and f2. The program
approach to solving regression problems, due largely to tifeexecuted from top to bottom, and at each point where a
structure of the programs that enables complicated funstigegister is assigned to, that value is displayed in the gpfate
to be evolved from mathematical operators, random corsstarolumn on the right. The final register values fdr- - - r4 are
and features from the data [10]. Each program is evaluaté@ed, and in a classification task the index of the highest
against sométness measur® determine their effectiveness ategister value corresponds to the classification made fatr th
solving the task and therefore their suitability as donorglie data instance (in this example, class 3). There are several
next generation. Mutation and crossover operations arkeapp instruction dependencies, where a previously computegeval
to produce a child generation from stochastically selectégire-used from one of the registers.
parents, and elitism preserves the best solutions unmddifie Parallel Linear Genetic Programming (PLGP) was devel-
A GP program iterates through each data point in the inpoped to limit instruction dependencies between instrustio
set and calculates an output, representing the model that idy controlling the interaction between them [13][14]. Here
be matched to the objective curve. Thiteessof that program n instruction sequences, callddctors are evaluated inde-
is typically calculated by Root Mean Squared Error (RMSE)endently to given register vectors which are then summed
or some other goodness-of-fit measure. After a predefingdgive a single result vector. Each program factor has its
number of generations, the best program that has been evolgen vector of registers which are initialised to zero before
is chosen to represent the best model discovered by thersystexecution and are not passed to the following factor. This
and that program represents the function that can be applieghrevents instruction dependencies between factors, arits li
the input to give the best estimation for the output. The mote potential number of instruction dependencies to thel@rm
common form of GP is Tree Based GP (TGP) [10], wheref instructions in each factor. By regarding each program as
programs are structured similarly to Lisp S-expressions. Aan ordered listof factors, crossover is limited tequivalent
example of a simple TGP program is shown in Figure 3. factors i.e. those that occupy the same list position in both

Linear Genetic Programming (LGP) consists of a linegrograms. This constraint creates Enforced Sub-Popuoktio
sequence of instructions using a set of registers that may (B&P) where genetic material may flow within subpopulations
re-used during execution of the program and give multipleut not between them [26]. The concept of ESP was further ex-
outputs upon completion [12][23][24][25]. Similar to asdaly tended in the Co-operative Coevolution Parallel Linear&ien
language, each instruction may use up to two registers as inprogramming (CC-PLGP), Blueprint Search Parallel Linear
and apply the same genetic operators as TGP to produc&enetic Programming (BS-PLGP) and Hill Climbing Parallel
single register as output. The strengths of LGP are thaegallLinear Genetic Programming (HC-PLGP) architectures, eher
that have been computed by one instruction can be usedsuppopulations of partial solutions were evolved in isofat
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L Fig. 6: ESPAC Layer model.
Factor r1 = 5.2 [/ 2 2.6 ol o o
2 M= 11 * 3 0 0 0| 7.8
0 0 0 0 . . .
== — ol ol 57 © evolution is performed, where the evolution operators $ocu
3 |n=28 - n 28 o] of o on refining existing good solutions adjustingthe values of

- the layer model. The standard GP operations of mutation and
Lo crossover are complemented with addition (ADD), subtoacti
Fig. 5: PLGP Program. (SUB), division (DIV), and multiplication (MUL).

A. Redefined Structure of Candidate Solutions

from each other, and a complete solution was formed byPLGP programs consist of a number of factors, each con-
combining a number of partial solutions [13][15][16]. taining a number of assignments to registers and the result
An example of a PLGP program is shown in Figure 5ector from each factor is summed (as shown in Figure 5). This
and closely resembles the LGP program shown in Figure structure is not useful for this domain, as the calculatiares
The program has been broken into three factors, and befperformed by libCPS and not the candidate solutions. ESPAC
each factor is executed the register values have been mesdnstead usedayer modelsthat represent an estimate of the
zero. The final register values are found by adding the vect®oil profile. Each model consists of a number of layers which
that result after each factor is executed (which are shadeak)e represented by thicknessand shear wave velocityThe
Breaking the program into factors has reduced the numbmrmber of layers is not knowa priori, the determination of
of instruction dependencies, and in this case has changedthich is part of the search process. A simplification has been
classification from class 3 to class 4. PLGP has been shomade for this project in which all models are defined as having
to be an effective method for classification [13][14][1H[1 two layers, allowing the remaining parts of the system to be
though it has not previously been applied to regressiorstaskleveloped to the working proof of concept stage.
The Enforced Sub-Populations (ESP) that is part of the
Ill. EVOLUTIONARY SPATIAL AUTO-CORRELATION PLGP architecture is of particular interest, as is the speci
(ESPAC) isation of partial solutions that results. By basing theelay
ESPAC has been designed to perform a very specific realodel on the PLGP architecture, crossover is constrained so
world task, and accordingly has a number of unusual moghat genetic material can only be exchanged between layers
ifications from what could be considered the norm. For thikat occupy the same position in their respective models. Fo
domain, there is a paradigm shift when considering how bestample, the top layer of one model will only combine with
to represent the population of PLGP programs. To help defitie top layer of any other model. The effect of this ESP
this, careful consideration must first be given to exactlwhowill be to refine each layer in isolation from the others.
ESPAC will fit into the existing process of model creation. Initial experimentation suggested that the structure & th
The required functionality of the CP8odal summation models, having only two layers and four values, was prone to
module [8] has been retained, and is implemented in thigsruption if the subpopulations were not enforced, andrwhe
project as a Java Native Interface (JNI) library that isemdll the system is extended to allow a more dynamic number of
from the Java ESPAC system. This modified library willayers in the model, the constraints will allow the system to
hereafter be referred to #CPS search for partial solutions more effectively [27][28][ED].
ESPAC evolvesmodelswhich represent some estimated ] .
layer profile and will be checked for goodness of fit bf3- Redefined Genetic Operators
calculating and inverting the dispersion curve. A popolabf GP evolution tends to consist of crossover, mutation, and
randomly generated models is initially created by the systeelitism operations to evolve useful solutions, and a tylpica
and these are evaluated and evolved by the system in placaysdftem may use (for example) 70% crossover, 20% mutation,
GP programs. Each model is to be evaluated by using libCBB8d 10% elitism during the evolutionary process. Due to the
to calculate the theoretical coherency for that model, with small number of values that make up the layer models, i.e. two
field measured coherency as the target value. An examplevafues for each of two layers, some consideration is nepessa
an ESPAC model is shown in Figure 6, where the model is prevent layer models from being unduly disrupted by a
similar in structure to a PLGP program with layers in placprocess that encouraged replacement rather than refinement
of factors. Initial experimentation showed that an evolutionary pssce
LibCPS represents the ‘execution’ phase of the evolutiothat was predominantly driven by crossover tended to disrup
where candidate models produce an output which is measudagersity, as the fittest individuals had their values pgatad
for goodness of fit against the target curve. High fitness tisod¢hroughout the population quickly. Due to the underlying
are identified as useful donors for the next generation agdophysics of the SPAC process, replacing a value in a model



by crossover may make the model nonsensical and invalidatgerimentation showed better performance was achieved by
the values that may have been useful. the following fitness function than RMSE. The error for each

A new range of ‘modification’ operators was used bylata point is the absolute value of the error for that point,
ESPAC to encourage layers to be ‘fine-tuned’, and they operdivided by the frequency modified by a weighting parameter
alongside the traditional mutation, crossover, and aiitis «. The square root of the mean of those errors is ESPAC’s
These new operators consisted of addition (ADD), subwactifitness function.
(SUB), multiplication (MUL) and division (DIV), and they
were bounded by range parameters. As ADD and SUB are n | d; — 6, |
similar operations they shared the same range as each other, Z
and MUL and DIV shared the same range as each other. For i=1
example, with an ADD/SUB range of 0.3, the ADD operato§ ) .

. Theoretical coherency
would add some random amount in the range [0.0, 0.3], and
G . Target coherency
SUB would subtract an amount from the same range. Wth -~ The frequency for the given data point
a DIV/IMUL range of 0.3, the MUL operator would multiply T_eque.ncy.' quency gV bol
. o Weighting parametef set at 0.02

the value by a random number in the range [1.0, 1.3] and Number of data points
DIV would divide by a number in the same range. Note thdt - Y pol
protected division is not required as there can be no dwisio
by zero. The modification operators were applied to only a IV. EXPERIMENTAL SETUP
single value, e.g. the thickness of the top layer, or theoiio

n-a- frequency;

of the bottom layer. This was intended to allow the system fy Datasets
react to small modifications, evaluating the fitness of iithlial Datasets are defined by a set of field measured coherency
changes during the selection process. values and the aperture size, or distance between the sensor

Mutation replaced a single value with a new, randomiipat recorded the data at that site. There are five sites vsed f
generated value, e.g. replacing the thickness of the togr laghis project, simply referred to as sites 1 — 5, and all arenfro
with a new value. As with initial model generation, the rang#he Christchurch area of NZ. Sites 1 and 2 were determined
of these random values was defined by a parameter at hea human expert to be best represented by two layers, and
beginning of the experiment. Crossover was also applied tie best human defined model for sites 3 — 5 contained only
a single value, and this was constrained by ESP to orfyie layer.
permit material to be exchanged between equivalent layersl) Evolutionary ParametersA population size of 1000 was
For example, model A and model B may exchange the valugsed, and due to time constraints, evolution was limitedOto 5
for thickness of the top layer, but the thickness may not lgenerations. Tournament selection was used with a tounmiame
from the top layer of model A and the bottom layer of modedize of 5. Crossover was set to 30%, mutation 10%, and elitism
B. Elitism simply preserved the best solutions unchanged 18%. ADD and SUB were set to 15% each, and DIV and

the child generation. MUL were both set to 10%. This balance of operators was
) selected to encourage the adjustment of layer values rather
C. Evolutionary Process than the usual crossover-driven evolutionary process. Allsm

The evolutionary process for this project has not beenmount of mutation was allowed to prevent the evolution
greatly modified from the norm. A population of models i®ecoming trapped in local optima, and elitism was antieigat
evaluated and the fittest individuals are selected as dontorgprovide a degree of backtracking by ensuring many of the
using tournament selection. The resultant models are addwst solutions remained in the population.
to the elite models in the child population until it reachiss i 2) ESPAC ParametersThe random layer generation range
specified size. Once the evolutionary process is complate amas 0.01 for thickness (up to 10m), and 0.5 for velocity (up
the child population is full, the models are again evaluaied to 500m/s). These parameters were set after observation of a

the evolutionary process continues. number of models that had been created by a human expert.
) ) ) _ The random range for ADD and SUB were set to 0.1 (100m)
D. Redefined Execution / Fitness Environment for thickness and 0.5 (500m/s) for velocity, to provide \eslu

A traditional GP approach to regression uses the featufes modification that would encourage gentle adjustmene Th
from the dataset as input and executes each of the prograarge for DIV and MUL was set to 0.5 for both thickness and
in the population, using that program’s output to deterntiee velocity, resulting in a division or multiplication in themge
fitness. The execution phase in ESPAC is instead perforn{éd, 1.5].
by libCPS, using the layer models as input and the resultant
theoretical coherency as the curve we are attempting to fit
to the measured data. In performing the error matching, aln this paper, the objective was to adapt PLGP to solve a
number of fitness functions were considered, and due to tteal-world problem and test the ability of ESPAC to produce
increased importance of the lower frequencies of the caologre a comparable model to that of a domain expert. Rigorous
curve [3] the fitness function was weighted accordinghti&hi statistical significance testing over 30 or more runs was not

V. RESULTS
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Frequency(Hz) Frequency({Hz)
Model Thickness (m)  Velocity (m/s)  Fitness Model Thickness (m)  Velocity (m/s)  Fitness
. 8.6 123.5 . 16.1 164.6
Human-simplex 136.5 287.7 1.6666 Human-simplex ” ~ 1.5573
861.8 275.3 9.8 1575
ESPAC 15.7 111.0 1.6136 ESPAC 419 2454 1.5212
Fig. 7: Human and ESPAC models for site 1. Fig. 9: Human and ESPAC models for site 3.
Low fitness is preferred. Low fitness is preferred.
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Human-simplex 163.0 2731 . ] 1 lﬁ'-w'f. —
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ESPAC 18 15.0 1.6136 |

Fig. 8: Human and ESPAC models for site 2.
Low fitness is preferred.
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required as the goal was not to measure the ability of tl
method to solve regression tasks in general. Due to time &
resource constraints, there were only five replicationshef t
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experiment performed on each site and the overall most Frequency(Hz)
model has been represented in the results. An additionaéimoa Model Thickness (m)  Velocity (m/s)  Fitness
has been presented for site 4 to provide interesting cantext  yman-simplex 17.4 146.9 1.7845
It is important to note that although the ESPAC curves are 7367 84 A
displayed using a dotted black line, the dots do not reptesen ESPAC Model 1 2.0 13.0 1.6786
individual data points. ESPAC Model 2 8.6 126.5 1.7481
Site 1: The ESPAC model fits the field measured co- 410 2459
herency very closely throughout the curve in Figure 7, and Fig. 10: Site 4. Human and ESPAC model 1 (top) and
was evolved in 49 generations. The table below the plot shows model 2 (bottom).Low fitness is preferred.

that the two models were very different from each other, with

ESPAC defining a top layer that was ten times thicker than

the human-simplex model. The fitness given in the rightmd3glow that range. The models shown in the accompanying
column confirms a good representation of the curves. table show that the fitness value is representative of the poo

Site 2: As shown in Figure 8, this is an example wherdit: The thickness of the layers for the ESPAC model, which

ESPAC has performed badly. There is rapid oscillation §f@s evolved in the 17th generation, show that ESPAC has
the curve beyond 8 Hz, and the curve also matches pootfPly not been effective at solving this problem.
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Site 3: Figure 9 shows that ESPAC has fitted the cc B "'?,;.;,.],‘, LS
herency curve tighter than the human-simplex model, argd tl
is reflected in the fitness value shown in the accompanyi .,
table. This was the first example of a site where the hume s~
simplex method restricted the model to a single layer, and 2
compared to a two layer ESPAC model that was evolved -
18 generations. The table shows that the shear wave vekci
for the top layer of both models were very similar.

Site 4: In Figure 10 two plots are shown to illustrate the

complexity of the domain, and is another example of asing =~ ¢ s 10 15 20
layer human-simplex model. ESPAC model 1, shown in tt Frequency(Hz)
top plot, had the overall best fithess value, evolved after 30 Model Thickness (m)  Velocity (m/s)  Fitness
generations. Model 2, shown in the bottom plot, had a lower  Human-simplex 18'3 26_8'7 1.6666
fithess, and was evolved after 24 generations. Model 1 has an

: : ESPAC 143 2640 6136
very thick top layer and thin bottom layer. The plots clearly 1309.6 471.4 :

shoyv that, although the fitqess of model 1 is thg lowest, the Fig. 11: Human and ESPAC models for site 5.
oscillations make it a poor fit. Model 2, however, fits well and
its fitness relative to the human-simplex model is reasanabl
Site 5: Figure 11 is another instance of a single laye evolve, but their fitness is penalised. This retains digr
human-simplex model. The ESPAC model fits the lower frén the population, as well as retaining the ability of GP to
quencies below 8Hz very well, and the human-simplex modgtumble upon’ good solutions.
fits better over 10Hz. The ESPAC model has a better fitnessThe results for site 1 (Figure 7) show two models that are
value, reflected by the importance given to lower frequesciesery similar in fitness and curve, although are very difféian
The top layer thickness and velocity are similar for botbomposition. If the HVSR matching process were applied to
models, as shown in the accompanying table. This ESPAGese models, it would be more clear which of these models
model was evolved in 41 generations. was more appropriate. A feature of the poorly fitting ESPAC
models for sites 2 and 4 is a very thin second layer, which
may have been exposed earlier using the HVSR technique.
The results from sites 2 and 4 demonstrate that it is The experimental design featured a large population of
possible to evolve models that clearly do not fit the data. Theodels and a small number of evolutionary generations. Due
rapid oscillations that are a feature of the evolved modelstb the fact that only a small number of models are high fitness
representative of many models that are randomly generajgffents, a better use of computational resources may have
during the initialisation process. Whereas it would gelyerabeen to reduce the population size and evolve them over a
follow that such oscillation could be caused by overfittittgs  larger number of generations. This would have resulted in a
perhaps more indicative of the difficulty in finding solut®n Jarger number of genetic operations over a smaller number
that fit the constraints of the real world geophysical modef models rather than a large population that may have been
for this domain. It is immediately obvious to the observeargely stagnant.
that these models fit poorly, but this judgement has not been
effectively captured in the fithess function, as indicatgdHe VII. CONCLUSIONS
good fitness values given to model 1 of site 4. The ESPAC system has been effective at performing a real-
There are two approaches to the resolution of this probleworld regression task, which is a major contribution for .G
and they can be broadly defined as matters of eitbestraint However, the problem has not been defined as well as it might
or evaluation Using constraints to address the issue wouls the models may be nonsensical or unrealistic in the real
involve preventing nonsensical solutions from being esdlv world, and evaluation of them requires more considerations
In part, this is the approach taken when using operator expgan simple error matching. Analysis of these processes and
rience, being inefficient to expend effort on invalid modelgesults by a domain expert is essential to re-evaluate some
Some restraint must be exercised when enforcing constraift the assumptions and simplifications that have been made,
on the evolutionary process, as the strength of GP is thigyabilas well as investigating the effect of the parameters and
to discover solutions that a human may not conceive. The genstraints that have been introduced. The conclusions wit
effect of this is the potential for the system to discover netgard to the specific objectives are as follows.
relationships and rules rather than being limited to corifign « PLGP has been successfully extended to perform the
those which are known. Improving the evaluation would pri- regression task. The definition of the task will benefit

Low fitness is preferred.

VI. ANALYSIS

marily involve a more effective fithess function, which cdul from further analysis of the results by a domain expert.
include the penalisation or promotion of models accordmgt « lIbCPS has successfully captured the functionality of
their structure. Complementing the fitness function in tidsy CPS and enabled ESPAC to use the existing modelling

differs from constraints in that nonsensical models aenadt software. The execution phase of the process will benefit



from increasing the efficiency of libCPS, perhaps byg] R. B. Herrmann, “Computer programs in seismology,” $aimuis

parallel processing.

o The models for sites 1, 3, and 4 (model 2) match thég]
objective curve more closely than the human-simplgxo]
method, and site 5 is comparable. ESPAC was unable

to effectively evolve a model for site 2.

(11]

The number of layers was set to two for this project, al-

though this value is to be discovered by the search mechani R

in future work. By allowing a dynamic number of layers we
may allow a much better estimation of layer models and better
capture domain knowledge. A suggested approach would 1)
to evolve a population of single layer models for the finst
generations, and then spend anotimegenerations attempting [14]
to find suitable layers to refine the models. A single layer

model’s fitness could be cached, and another layer is addes

only if it improves fitness, allowing for backtracking.

The co-use of SPAC and HVSR would greatly aid thﬁ16

process by refining the thickness of a second layer. This
effectively reduces the range of one of the variables aravall
the search to concentrate on the other unknowns.

As ESPAC is the first Evolutionary Computation (EC)
system applied to this problem, it should be compared torotH&g]

EC approaches, i.e. Genetic Algorithms, TGP, LGP, or Neur;

Networks. This comparison would evaluate the ability of BC i
general to produce effective solutions to this domain ircgla
of human judgement.

To the best of our knowledge, this is the first applicatiorzo]
of GP to this problem domain. While many aspects are worth
further investigation, initial experiments show that tlesults

to apply GP to difficult problems in this domain.
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