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1 Layman’s abstract

We investigate a new probabilistic method of estimating earthquake focal mech-

anisms — which describe how a fault is aligned and the direction it slips dur-

ing an earthquake — taking into account observational uncertainties. Robust

methods of estimating focal mechanisms are required for assessing the tectonic

characteristics of a region and as inputs to the problem of estimating tectonic

stress. We make use of Bayes’ rule, a probabilistic theorem that relates data to

hypotheses, to formulate a posterior probability distribution of the focal mech-

anism parameters, which we can use to explore the probability of any focal

mechanism given the observed data. We then attempt to summarise succinctly

this probability distribution by the use of certain known probability distribu-

tions for directional data. The advantages of our approach are that it (1) models

the data generation process and incorporates observational errors, particularly

those arising from imperfectly known earthquake locations; (2) allows explo-

ration of all focal mechanism possibilities; (3) leads to natural estimates of focal

mechanism parameters; (4) allows the inclusion of any prior information about

the focal mechanism parameters; and (5) that the resulting posterior PDF can be

well approximated by generalised statistical distributions. We demonstrate our

methods using earthquake data from New Zealand. We first consider the case

in which the seismic velocity of the region of interest (described by a veloc-

ity model) is presumed to be precisely known, with application to seismic data

from the Raukumara Peninsula, New Zealand. We then consider the case in

which the velocity model is imperfectly known, with application to data from

the Kawerau region, New Zealand. We find that our estimated focal mecha-

nism solutions are for the most part consistent with all available polarity data,

and correspond closely to solutions obtained using established methods. Addi-

tionally, the distribution of focal mechanism parameters can be accurately and



succinctly summarised by the parameters of the probability distributions we

have examined.

2 Technical abstract

We develop a new probabilistic (Bayesian) method for estimating the distribu-

tion of focal mechanism parameters based on seismic wave polarity data. We

investigate the use of generalised Matrix Fisher distributions for parameterising

focal mechanism uncertainties. The advantages of our approach are that it (1)

models the data generation process and incorporates observational errors, par-

ticularly those arising from imperfectly known earthquake locations; (2) allows

exploration of the entire parameter space; (3) leads to natural point estimates

of focal mechanism parameters; (4) allows the inclusion of a priori informa-

tion about the focal mechanism parameters; and (5) that the resulting posterior

PDF can be well approximated by generalised Matrix Fisher distributions. We

present here the results of our method in two situations. We first consider the

case in which the seismic velocity of the region of interest (described by a ve-

locity model) is presumed to be precisely known, with application to seismic

data from the Raukumara Peninsula, New Zealand. We then consider the case

in which the velocity model is imperfectly known, with application to data from

the Kawerau region, New Zealand. We find that our estimated focal mechanism

solutions are for the most part consistent with all available polarity data, and

correspond closely to solutions obtained using established methods. Further,

the generalised Matrix Fisher distributions we examine provide a good fit to

our Bayesian posterior PDF of the focal mechanism parameters. Finally, we

demonstrate how informative prior distributions on focal mechanism parame-

ters can be incorporated into our model.
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Abstract

A focal mechanism is a geometrical representation of fault slip during an earthquake. Reli-
able earthquake focal mechanism solutions are used to assess the tectonic characteristics of a
region, and are required as inputs to the problem of estimating tectonic stress. We develop a
new probabilistic (Bayesian) method for estimating the distribution of focal mechanism pa-
rameters based on seismic wave polarity data. Our approach has the advantage of enabling us
to incorporate observational errors, particularly those arising from imperfectly known earth-
quake locations, allowing exploration of the entire parameter space, and leads to natural point
estimates of focal mechanism parameters. We investigate the use of generalised Matrix Fisher
distributions for parameterising focal mechanism uncertainties by minimising the Kullback-
Leibler divergence.

We present here the results of our method in two situations. We first consider the case in which
the seismic velocity of the region of interest (described bya velocity model) is presumed to
be precisely known, with application to seismic data from the Raukumara Peninsula, New
Zealand. We then consider the case in which the velocity model is imperfectly known, with
application to data from the Kawerau region, New Zealand.

We find that our estimated focal mechanism solutions for the most part are consistent with all
available polarity data, and correspond closely to solutions obtained using established meth-
ods. Further, the generalised Matrix Fisher distributionswe examine provide a good fit to our
Bayesian posterior PDF of the focal mechanism parameters, enabling the posterior PDF to be
succinctly summarised by reporting the estimated parameters of the fitted distribution.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The focal mechanism of an earthquake describes the geometryof the fault on which the earth-
quake occurred using three angular parameters: the strike,dip and rake (see Section 1.2).
Reliable earthquake focal mechanism solutions can be used for assessing the tectonic char-
acteristics of a region (see e.g. Reyners & McGinty 1999), and are required as inputs to the
problem of estimating tectonic stress (see e.g. Arnold & Townend 2007), changes in which
have been hypothesised to occur following large earthquakes and volcanic eruptions (for a
recent review see Townend 2006).

Existing methods of focal mechanism estimation (see Section 1.3) make use of P-wave first
motion polarities (see Section 1.2.1) and/or S-wave information (see Section 1.2.2). These
methods can be characterised as either optimisation or probabilistic techniques.

The existing optimisation methods are, for the most part, unable to accommodate all of the
relevant sources of uncertainty in the underlying seismological data, although some studies
have applied a forward method to this problem (Hardebeck & Shearer 2002). Some of this
uncertainty stems from imprecise knowledge of the Earth’s seismic velocity structure. The
probabilistic methods in the literature (see e.g. De Nataleet al. 1991, Zollo & Bernard 1991)
take into account P-wave polarity uncertainties, but fail to account for the uncertainty in earth-
quake hypocentre location, and do not parameterise the resulting probability distribution.

Here we propose a new, probabilistic method of focal mechanism estimation, based on Bayes’
rule; a simple probabilistic theorem that can be used to assess the degree to which certain data
support certain hypotheses (Sivia 1996). A Bayesian approach allows a complete probabilis-
tic treatment of the problem, and leads naturally to robust point estimates of focal mechanism
parameters based on seismological data, taking into account the inherent uncertainties. This
is an extension of initial work undertaken by Bouley (2005).Having derived a method for
calculating the posterior distribution of the focal mechanism parameters, we investigate the
use of directional distributions for representing focal mechanism uncertainties. We attempt to
parameterise this uncertainty using generalised Matrix Fisher distributions, fitted by minimis-
ing the Kullback-Leibler divergence.
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The objectives of this project are, therefore, to:

1. Develop a probabilistic (Bayesian) model of the constraints imposed on focal mech-
anism parameters by first-motion data given imperfect hypocentre parameters and an
error-free velocity model;

2. Generalise the model developed in Objective 1 to situations in which neither the hypocen-
tre nor the velocity model are known perfectly;

3. Investigate the suitability of idealised error distributions (particularly generalised Matrix
Fisher distributions) for representing focal mechanism uncertainties.

1.2 Focal Mechanisms

A focal mechanism1 describes the geometry of a fault during an earthquake. Although not
always the case, it is generally assumed that the fault is a planar surface (known as thefault
plane) across which respective sides move (Stein & Wysession 2003). The alternative term
fault plane solution is sometimes used (Fowler 1990).

Focal mechanisms can be described by the three anglesstrike, dip andrake. Strike and dip
describe the orientation of the fault plane, subject to an ambiguity which we describe below,
while the rake describes the sense of relative motion duringthe earthquake. Here we represent
a focal mechanism by the following:

• The strike direction is the direction of a horizontal line inthe fault plane, while the
strike angleξ is the angle measured clockwise from north to the strike direction (0 ≤
ξ ≤ 360◦).

• The dip angleδ is the angle that the fault slants downwards from the horizontal to the
right of the strike direction(0 ≤ δ ≤ 90◦).

• The rake angleλ (also known as the slip angle) specifies the direction of motion of the
upper side of the fault (the hanging wall block) with respectto the lower side of the fault
(the foot wall block), measured in the fault plane anti-clockwise from the direction of
the strike (0 ≤ λ ≤ 360◦).

(Stein & Wysession 2003, Aki & Richards 2002), whereΘ = (ξ, δ, λ). This description can
be visualised in Figure 1.1.

Alternatively the fault plane can equivalently be described by a unitnormal vector̂n, and unit
slip vectorû, the direction of motion of the hanging wall block with respect to the foot wall
block (Stein & Wysession 2003). These two vectors are orthogonal, and together with thenull
vector â = n̂ × û constitute the orthogonal rotation matrixR(Θ) = [û â n̂], which entirely
describes the focal mechanism. These two equivalent definitions are related as described in
Appendix A.1.1.

1Italics denote terms explained further in the Glossary, p 133
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n Strike Direction

North

δ

ξ

λ

uSlip Direction

Figure 1.1: Visual representation of fault slip. Figure based on Aki & Richards (2002).

A focal mechanism is the most simple representation of faultslip. Another method of repre-
senting a seismic source is by way of themoment tensor(see Appendix A.8.1). The advantage
of the moment tensor is that it encompasses both fault geometry and earthquake magnitude,
and it can describe more complex seismic sources than simplyfault slip, such as opening
modes. Moment tensor inversion — estimating the moment tensor using the seismograms
of stations that recorded an event — is only possible for reasonably large events,> 3.5 ML

(J. Ristau, personal communication, April 4, 2008). These methods are beyond the scope of
this project since we assume a double couple source, which can be sufficiently described by
the focal mechanism. Focal mechanisms can also be computed for smaller earthquakes than
a moment tensor can be computed for, down to around2.3 ML in the New Zealand settings
considered here.

The following sections outline the basics of focal mechanism estimation.

1.2.1 P-wave First Motions

P-wavesare the seismic waves that travel fastest from the earthquake source (Stein & Wysession
2003). Afirst motionindicates the direction of motion, or polarity, of the first P-wave arrival
at a seismometer(Stein & Wysession 2003). By observing P-wave polarities ata number
of different seismic stations, the focal mechanism can be determined (Fowler 1990, Cox &
Hart 1986).

P-waves are an example of a longitudinal wave; the directionof oscillation of the wave is
in the same direction as the direction of wave propagation (Stein & Wysession 2003, Fowler
1990, Aki & Richards 2002). If the movement of the material near the fault is toward a certain
station (away from the earthquake source), the first motion of the P-wave that arrives at that
station will be upwards (termedcompressional). If the material moves away from the station
(toward the earthquake source), the first motion of the P-wave arriving at that station will be
downwards (dilatational) (Stein & Wysession 2003).

These first motions define four quadrants surrounding the source. As shown in Figure 1.2,
the division of these quadrants occurs at the fault plane anda plane perpendicular to the
fault plane, known as theauxiliary plane, which together are called thenodal planes(Cox &

3



Hart 1986, Fowler 1990, Stein & Wysession 2003). As explained in Section 1.2.3, one can
generally not distinguish between these two planes.

Figure 1.2: First motions of P-waves provide information about the nodal planes (Stein &
Wysession 2003).

The focal sphereis an imaginary sphere of negligible radius centered at and surrounding the
earthquake source (Stein & Wysession 2003, Cox & Hart 1986, Fowler 1990). Locations
of compressions and dilatations leaving the earthquake source can be represented as points
on the focal sphere. Because a sphere cannot be represented on paper without distortion
(Kagan 2005), a 2-dimensional stereographic projection ofthe lower hemisphere of the focal
sphere, known as astereonet, is commonly used (Stein & Wysession 2003, Fowler 1990).

To determine a focal mechanism, the polarities of P-wave first motions at seismometers are
first recorded. Each station corresponds to a point on the focal sphere where the P-wave left
the earthquake source en route to the seismometer. This point is usually defined in spherical
polar coordinates (see Appendix A.2) by itsazimuth, φ, the angle measured clockwise from
north to the point, and itstake-off angle, θ, the angle measured from the downward vertical
to the point (Stein & Wysession 2003, Fowler 1990, Udias 1999). Alternatively, the take-off
vector, the unit vector from the origin to the point(φ, θ) on the focal sphere, given by

p̂ = (sin θ cosφ, sin θ sinφ, cos θ)

can be used. As P-wave polarity at a station depends onΘ and location on the focal sphere
(φ, θ), this relationship can be formalised as follows

F P =2(p̂ · n̂)(p̂ · û)

= cos λ sin δ sin2 θ sin 2(φ− ξ) − cosλ cos δ sin 2θ cos(φ− ξ)+ (1.1)

+ sinλ sin 2δ(cos2 θ − sin2 θ sin2(φ− ξ)) + sinλ cos 2δ sin 2θ sin(φ− ξ) (1.2)

(Aki & Richards 2002) whereF denotes the radiation pattern, or normalised amplitude, ofthe
P-wave leaving the focal sphere at point(φ, θ).
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To plot points(φ, θ) onto a stereonet, we use a technique known as the Lambert-Schmidt
projection (see Section A.3). Once all points are plotted onthe stereonet, the focal sphere
is partitioned by two great circles — the nodal planes corresponding to the focal mechanism
solutionΘ — creating four quadrants (see Figure 1.3). Appendix A.3 describes howR(Θ) de-
fines the nodal planes. In principle (i.e. given perfectly observed data) each quadrant contains
only compressional or only dilatational first motions (Aki &Richards 2002). The quadrants
where the first motions are compressional are coloured dark,while the quadrants where the
first motions are dilatational are coloured white (Stein & Wysession 2003). This results in
a “beachball” appearance (see Figure 1.4); these stereographic projections are sometimes re-
ferred to as beachball diagrams.

Figure 1.3: Stereonet showing how the nodal planes partition the focal sphere into four
quadrants, each quadrant containing only compressional (blue) or dilatational (red) first
motions.

Figure 1.4: Example of a focal mechanism, with P wave first motions shown, represented
on a stereonet/beachball diagram (Stein & Wysession 2003).
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Beachball diagrams can indicate certain types of faulting.Strike-slip faulting occurs when
the two sides of the fault move horizontally past one-another (δ = π/2 andλ = 0 or π) (Aki
& Richards 2002). Dip-slip faulting occurs when the movement is vertical (δ = π/2 and
λ = π/2 or 3π/2). There are two types of dip-slip faults; reverse faults, occurring when the
hanging wall moves upwards relative to the foot wall (λ ∈ (0, π)), and normal faults, occur-
ring when the hanging wall moves downwards relative to the foot wall (λ ∈ (π, 2π)) (Aki
& Richards 2002, Stein & Wysession 2003). Figure 1.5 shows typical beachball diagrams
corresponding to these fault types.

(a) (b) (c)

Figure 1.5: Focal mechanisms for various types of fault. (a)shows strike-slip faulting, (b)
shows reverse faulting, and (c) shows normal faulting. Figure based on Stein & Wysession
(2003).

The dilatational quadrant of the focal sphere is bisected bythe pressure (or P-) axis, which
is parallel to û−n̂

2
, and the compressional quadrant is bisected by the tensional (or T-) axis,

parallel to û+n̂

2
(Arnold & Townend 2007, Aki & Richards 2002). We denote the unit vectors

in the direction of the P- and T-axesv̂P andv̂T respectively.

1.2.2 S-wave Information

S-waves, or secondary waves, are so-called because they are the slower of the two types of
seismic wave to arrive at seismometers (Udias 1999). These waves are transverse, meaning
that the direction of oscillation of the wave is perpendicular to the direction of the wave’s
propagation. S-waves are commonly used in two ways to supplement P-wave information in
determining focal mechanisms; S-wave polarisation andS/P amplitude ratios.

Determination of S-wave polarisation involves analysing the oscillation geometry of the S-
wave. A plane defined by two lines — the vertical and the path connecting an earthquake
hypocentre to a seismometer — is identified. The S-wave is split into two perpendicular com-
ponents, SV and SH, based on its oscillation in relation to this plane. The SV displacement is
vertical, in the plane, while the SH displacement is horizontal, normal to the plane (Stein &
Wysession 2003). As with P-waves, the radiation patternsF of SV and SH are directly related
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to fault geometryΘ and position on the focal sphere(φ, θ) (Aki & Richards 2002).

F SV = sinλ cos 2δ cos 2θ sin(φ− ξ) − cosλ cos δ cos 2θ cos(φ− ξ)

+
1

2
cosλ sin δ sin 2θ sin 2(φ− ξ) − 1

2
sinλ sin 2δ sin 2θ(1 + sin2(φ− ξ)) (1.3)

F SH = cosλ cos δ cos θ sin(φ− ξ) + cosλ sin δ sin θ cos 2(φ− ξ)

+ sin λ cos 2δ cos θ cos(φ− ξ) − 1

2
sinλ sin 2δ sin θ sin 2(φ− ξ) (1.4)

Thus S-wave polarisation can be used to help constrain a focal mechanism, particularly by
comparing theoretical and observed values ofF SV andF SH. However, S-wave information
can be sparse, since three-component seismometers are required to identify SV and SH com-
ponents (Zollo & Bernard 1991), and since the S-wave arrivesafter the P-wave, the S-wave
polarisation may be hard to measure.

Because P-wave amplitudes are small near nodal planes, whereas S-wave amplitudes are large,
S/P amplitude ratios can be useful in constraining focal mechanism solutions. LargeS/P
amplitude ratios indicate a point near a nodal plane and viceversa (Hardebeck & Shearer
2003). ObservedS/P amplitude ratios can be compared to theoretical ratios and the solu-
tion with the minimum misfit selected. Alternatively,SV/P and/orSH/P ratios can be used
(see, e.g. Rau et al. 1996, Snoke 2003). Log amplitude ratiosare often used when comparing
observed and theoretical values (see Section 1.3). To see why, consider that ifA ≥ B, then
A/B ∈ (1,∞], however ifA ≤ B thenA/B ∈ (0, 1). This lack of symmetry makes compar-
ing ratios difficult. Taking the log ratio restores the symmetry, i.e. log(A/B) = − log(B/A).

The advantage of using amplitude data is the increased number of observations over P-wave
data alone. One disadvantage is that, along with the focal mechanism, event magnitude, atten-
uation (the loss of energy, and thus amplitude, from the S-wave as it propagates), geometric
spreading (energy dispersion due to the expansion of the wavefront as it propagates), and site
effects can all influence the observed amplitude (Hardebeck& Shearer 2003, Rau et al. 1996).
Using amplitude ratios eliminates geometric spreading andmagnitude effects, however. An-
other disadvantage is that S-wave arrivals and amplitudes can be difficult to pick due to noise
caused by seismic wave scatter (Hardebeck & Shearer 2003, Nakamura 2002).

Due to the existence of these uncertainties, and the fact that S-wave data are not as commonly
available as P-wave data, we restrict our analysis to that ofP-wave first motions.

1.2.3 Focal Mechanism Ambiguities

There are two ambiguities associated with focal mechanism solutions that must be considered.
The first is the fact that a fault plane can be represented equally well by its fault normal in
either direction, thus[û â n̂] is equivalent to[−û + â − n̂] = [û â n̂]A2, where

A2 =





−1 0 0
0 1 0
0 0 −1



 .
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Adopting the convention that the dip lies in the range0 ≤ δ ≤ 90◦ dictates which of the
two equivalent directions will be referred to asn̂ for a given focal mechanism. Thus the fault
normal is an example of axial data, the treatment of which is discussed further in Chapter 2.

The second ambiguity arises because first motion and other remote observations alone are not
sufficient to infer which of the two nodal planes is the fault plane and which is the auxiliary
plane (Udias 1999, Stein & Wysession 2003, Aki & Richards 2002, Fowler 1990). This is
because the first motions, for example, produced by slip on either of the two planes would be
the same (Stein & Wysession 2003). This is equivalent to being unable to distinguish between
the slip vector̂u and the fault normal̂n, so[û â n̂] is equivalent to[+n̂ − â + û] = [û â n̂]C2,
where

C2 =





0 0 1
0 −1 0
1 0 0



 .

Lastly, if both ambiguities are combined we have a fourth equivalent representation of the
focal mechanism. Hence[û â n̂] is equivalent to[−n̂ − â − û] = [û â n̂]C2A2 (Arnold
& Townend 2007). Additional information can sometimes clarify the second ambiguity, such
as when the earthquake breaks the surface of the earth or subsequent seismicity (aftershocks)
delineates a planar structure and identifies the fault plane, but this information is usually not
available, especially for small earthquakes (Fowler 1990,Stein & Wysession 2003).

1.2.4 Solution Quality and Sources of Error

The quality of a focal mechanism solutionΘ is affected by a number of factors:

1. The number of seismometer stations with polarity readings. If there are a small number
of such stations, the solution is more sensitive to individual station polarities (Rabinowitz
& Hofstetter 1992, Zollo & Bernard 1991).

2. Station distribution. If observations are distributed unevenly over azimuthφ and take-
off angle θ, then the focal sphere will not be well covered. This can leadto large
uncertainties in the focal mechanism solutionΘ (Udias 1999, Rabinowitz & Hofstetter
1992, Zollo & Bernard 1991).

3. P-wave polarity readings. Measured polarities are uncertain due toπ′
p, the probability

of an incorrectly wired seismometer, andσa, the standard deviation of the amplitudeAi

of the first motion at stationi. If the ratio ofAi to σa is low, incorrect polarity readings
can occur, due to instrumental or human effects (Hardebeck &Shearer 2002).

4. Hypocentrelocationx. Focal mechanism estimation depends on the take-off parame-
tersφ andθ corresponding to the paths to each seismometer, which in turn depend onx.
The hypocentre location is uncertain due toseismic noise, which is here parameterised
byσti , the P-wave arrival time error at stationi. Seismic noise is created by fluctuations
in temperature and pressure, storms, ocean waves, solid earth tides, and human activity
(Aki & Richards 2002, Stein & Wysession 2003). The hypocentre location is also un-
certain if the seismic velocity structure — as represented by a velocity model— of the
region of interest is unknown.
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Given a large enough dataset, one can select events with a desired minimum number of po-
larity readings and good focal sphere coverage, thus mitigating the effects of Factors 1 and 2
above. Factors 3 and 4, however, are sources of error inherent in any earthquake observations.
Figure 1.6 shows the effect of uncertainty in hypocentre location — the locations of P-waves
leaving the source are uncertain, creating a cloud of corresponding positions on the focal
sphere. In this project we address this by constructing a Bayesian probability distribution for
the focal mechanism parameters that directly accounts for these errors.

toa1

Station

of different locations
Earthquake hypocentre: PDF

on the focal sphere
Cloud of points

toa2

Different take−off angles

Figure 1.6: Diagram illustrating the problem. Uncertainties in P-wave arrival times at
stations lead to different possible earthquake locations,each with its own take-off an-
gle. Hence, when considering take-off angles — an importantpart of estimating the focal
mechanism of an earthquake — we must take into account all possible hypocentre loca-
tions.

1.3 Previous Methods

In this section we discuss published methods of focal mechanism estimation, which can be
divided into two categories. The first category contains optimisation methods, in which the
number of discrepancies between the observed and theoretical polarities (given a certain fo-
cal mechanism solutionΘ) is minimised in some way. The second category contains those
methods in which a probability distribution is used for the data, given the parameters, and
a maximum likelihood or Bayesian approach is applied to estimateΘ. We briefly review
each method, the data used, and how uncertainties in the solutions are dealt with. Table 1.1
summarises the methods.
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1.3.1 Optimisation Methods

Reasenberg and Oppenheimer (1985) — FPFIT

FPFIT is a Fortran routine developed by Reasenberg & Oppenheimer (1985) that finds the
focal mechanismΘ that best fits P-wave first motion polarities. This involves atwo stage
(coarse then fine) grid search to find the value ofΘ that minimisesF , a weighted sum of
polarity discrepancies. There are two weights involved:

• The square root of the normalised theoretical amplitudeA∗
i at theith station, which

down weights observations near the nodal planes.

• A weight based on assessed quality codes for polarities, which are supplied by the
seismic analyst.

Uncertainties are parameterised by a one-sided 90% confidence interval forF , and the values
of Θ = (ξ, δ, λ) that result in a value forF inside this confidence interval. Also returned is
a value indicating the degree to which the observations lie close to the nodal planes of the
solution.

Rabinowitz and Hofstetter (1992)

Rabinowitz & Hofstetter (1992) used P-wave polarities and amplitudes to minimiseF in a
similar manner to that used by Reasenberg & Oppenheimer (1985). The algorithm imposes
the constraint that the theoretical P-wave amplitudeA∗

i at stationi resulting from the solution,
should be close to the observed amplitudeAi. This method uses an algorithm called the Flex-
ible Tolerance Method (FTM).

The FTM does not provide information on the uncertainty of the solution. The algorithm is
robust to changes in polarity, and the addition of amplitudeinformation provides more reliable
solutions than those found with FPFIT (Rabinowitz & Hofstetter 1992).

Snoke (2003) — FOCMEC

FOCMEC is another Fortran routine, published by Snoke (2003), that uses P- and S-wave
polarities and/or amplitude ratios to determine focal mechanisms. FOCMEC reports the set
of solutions satisfying a specified number of polarity and/or amplitude ratio misfits.

When using amplitude ratios, FOCMEC selects a best solutionbased on the minimum root
mean square (RMS) error (the square root of the sum of differences squared between the
calculated and observed log amplitude ratios).

Rau et al. (1996)

Rau et al. (1996) used P-wave polarities andSH/P amplitude ratios to calculate the focal
mechanisms of small to moderate events (2.7 ≤ ML ≤ 5.7) recorded by the Taiwan Seismic
Network. The authors used an early version of FOCMEC (Snoke 2003) and compared 1D and
3D velocity models using only P-wave polarity data, and thenusing both P-wave polarities
andSH/P amplitude ratios. They found the quality of the solutions tobe improved using
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the 3D model, and that incorporating amplitude ratios allowed them to select the solution
that was most consistent with the P-wave polarities, based on the minimum RMS error (Rau
et al. 1996).

Hardebeck and Shearer (2002) — HASH

Hardebeck & Shearer (2002) introduced a method (the HASH algorithm) that accounts for
uncertainties in velocity model, event location and P-wavepolarities. Using P-wave polarity
data from Northridge, California, take-off parameters were computed for a suite of 50 ran-
domly selected combinations of hypocentre locations (varying randomly in depth) and 1D
velocity models.

The set of focal mechanism solutions from each of the 50 runs that had less than 10% mis-
fit polarities were identified. This set of acceptable solutions was averaged, and solutions
that were greater than30◦ from the average were iteratively removed. When all solutions
lay within this tolerance, a final average was taken, termed ‘the most preferred solution’
(Hardebeck & Shearer 2002). The quality of the solution obtained in this manner is based
on how closely the set of acceptable solutions is clustered around the preferred solution.

The authors elected to deal non-parametrically with uncertainties in solutions, by reporting
the set of acceptable solutions that were within30◦ of the most preferred solution.

Hardebeck & Shearer (2002) tested their method using the fact that events occurring in spatial
clusters should have similar focal mechanisms, as they are likely to originate from the same
source. It was found that the method produced similar solutions for tightly spaced events, and
performed better in this regard than the FPFIT algorithm discussed above.

Hardebeck and Shearer (2003)

Hardebeck & Shearer (2003) investigated whether usingS/P wave amplitude ratios could
improve their focal mechanism solutions for the Northridgeevents, using two methods. Their
first method was to select the set of acceptable solutions from P-wave data using HASH
(Hardebeck & Shearer 2002), and from this choose the mechanism that minimised the misfit
of the log(S/P ) observations. For clusters of similar events, they found that the inclusion of
S/P ratio data reduced the similarity of the solutions; in otherwords theS/P ratios actually
downgraded the solution quality.

The authors observed a lot of noise in theS/P amplitude data. Thus their preferred approach
is said to account for the uncertainty inS/P observations, although how this is achieved is
omitted in their description. In this case theS/P data helped constrain solutions that were
of poor quality when estimated with P-wave data alone. The authors conclude thatS/P
amplitude ratio data can be useful when constraining poor quality solutions ifS/P amplitude
ratio noise is accounted for in the estimation procedure (Hardebeck & Shearer 2003).

Nakamura (2002)

Nakamura (2002) developed a method of using both P and S-wavepolarities. The motivation
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behind this was to use the extra information provided by S-waves, while eliminating the S-
wave amplitude noise that scattering creates. S-wave polarity is measured in the North–South
and East–West directions of a three component seismometer.

The method compares the observed and theoretical polarities: theoretical polarities for S-
waves are taken to besgn(F SH) andsgn(F SV ), whereF SH andF SH are as defined in Equa-
tions 1.4 and 1.3. A grid search overΘ is performed by calculating a weighted sumQ of the
difference between observed and theoretical polarities ateach value ofΘ.

Uncertainties in the solution are reported by finding the setof solutions that satisfyQmin ≤
Q ≤ Qmin + ǫ, whereǫ is said to account for the possibility of incorrect polarityreadings.
The set of solutions is better constrained when S-wave polarities are included, but the author
notes that S-wave polarities can be difficult to measure, anderrors can occur in cases in which
seismic anisotropy (when wave speed varies with direction)causes the splitting of the wave
(Nakamura 2002).

Reyners et al. (1997)

The method used by Reyners et al. (1997) and Reyners & McGinty(1999) places primary
importance on P-wave polarities and employs theoretical and observed log amplitude ratios
to improve the solution. The mechanism with the lowest number of polarity inconsistencies
and the lowest RMS error between the observed and theoretical amplitude ratios is termed
the “best” solution. This method uses the computer programsAMPRAT andMECHTOOL by
Robinson & Webb (1996).

1.3.2 Probabilistic Methods

Brillinger et al. (1980)

Brillinger et al. (1980) adopted a maximum likelihood estimation (MLE) approach. They as-
sumed that P-wave first motion polarities observed at station i are Bernoulli random variables

Yi =

{

+1 if the first motion is recorded as positive (a compression)

−1 if the first motion is recorded as negative (a dilatation)

with Bernoulli probability distribution

P (Yi = yi) = π
1

2
(1+yi)

i (1 − πi)
1

2
(1−yi) (yi = −1, 1)

where

πi = P (Yi = 1) = π′
p + (1 − 2π′

p)Φ

(

A∗
i

σa

)

.

Hereπ′
p denotes the probability of an incorrectly wired seismometer, A∗

i denotes the theoret-
ical amplitude at stationi andσa denotes the amplitude noise. This formulation is discussed
in more depth in Section 3.3.A∗

i is a function ofΘ (see Equation 1.2), which is how the
focal mechanism parameters enter the formulation. The values ofΘ that maximise the log
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likelihood are found numerically.

The uncertainties in the estimates ofΘ are parameterised by 95% confidence intervals ob-
tained from the asymptotic properties of MLEs — the estimators ofΘ are asymptotically nor-
mal with covariance matrix equal to the inverse of the Fisherinformation matrix (Brillinger
et al. 1980).

Zollo and Bernard (1991)

Zollo & Bernard (1991) used P-wave polarities and S-wave polarization angles in a Bayesian
approach (see Chapter 3) to estimateΘ. The posterior PDF ofΘ is given by

P (Θ|d) ∝ P (dS|Θ)P (Θ)µ0(Θ)

where the priorP (Θ) is taken to be the PDF of Brillinger et al. (1980), i.e.P (Θ) = P (dP |Θ)
andP (dS|Θ) is a conditional probability function for the observed S-wave polarisations. Also,
µ0(Θ) = const.sin δ is the non-informative PDF representing the state of total ignorance on
Θ. In this state, the normal vectorn̂ has equal probability in all directions on the focal sphere.
The area of any infinitesimal patch on the unit sphere createdby the differential anglesdξ,
dδ is equal tosin δdδdξ. Thesin δ term scales the area of the patch asn̂ tends towards either
pole, where the spacing betweenξ becomes very small.

Rather than giving point estimates and uncertainties forΘ, computing the posterior PDF al-
lows the authors to locate regions of high probability in theparameter space ofΘ, which are
displayed graphically. Including S-wave data better constrains the areas of high probability,
however one must carefully analyse the stability of the S-wave data before proceeding (Zollo
& Bernard 1991).

De Natale et al. (1991)

De Natale et al. (1991) used P-wave polarities, S-wave polarisations andS/P amplitude ratios
in another Bayesian approach. The posterior PDF ofΘ is

P (Θ|d) ∝ P (d1|Θ)P (d2|Θ)P (d3|Θ)P (Θ)µ0(Θ)

where

• P (d1|Θ) is Brillinger et al. (1980)’s PDF;

• P (d2|Θ) is a PDF for the observed S-wave polarisations similar to theone used by Zollo
& Bernard (1991);

• P (d3|Θ) is a PDF forS/P amplitude ratios;

• the priorP (Θ) modifies the posterior PDF in favour of parts of the parameterspace
that are likely to produce observable S-waves with stable polarisations, or measurable
amplitude ratios, at the stations where the data is available;

• µ0(Θ) is the non-informative PDF as in Zollo & Bernard (1991).

Again, regions of high probability in the parameter space can be displayed.
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Table 1.1: Summary of focal mechanism estimation methods

Optimisation Methods
Author Data Data errors Method Uncertainties inΘ
Reasenberg &
Oppenheimer
(1985)

P-wave polarities Allows for uncertainty in
polarity via quality codes

MinimisesF , a weighted sum of polarity discrep-
ancies

ReportsΘ that fit
inside a 90% CI
for F

Rabinowitz &
Hofstetter (1992)

P-wave polarities and am-
plitudes

Allows for polarity errors Minimises F while trying to match theoretical
and observed amplitudes

None

Snoke (2003) P- and S-wave polarities and
amplitude ratios

Allows for polarity and/or
amplitude ratio errors

Minimises RMS error of log amplitude ratios Reports set of ac-
ceptable solutions

Rau et al. (1996) P-wave polarities and
SH/P amplitude ratios

Allows for polarity and/or
amplitude ratio errors

FOCMEC None

Hardebeck &
Shearer (2002)

P-wave polarities Allows for uncertainty inx,
velocity model, and polarity

Find set of acceptable solutions averaged over
suite of 50 random combinations of hypocentre
locations and 1D velocity models

Reports set of ac-
ceptable solutions

Nakamura (2002) P and S-wave polarities Allows for polarity errors MinimisesQ, a weighted sum of polarity discrep-
ancies

ReportsΘ that fit
within Qmin ≤
Q ≤ Qmin + ǫ

Reyners et al.
(1997) and Reyn-
ers & McGinty
(1999)

P-wave polarities andP/S
amplitude ratios

Allows for polarity and/or
amplitude ratio errors

Calculates best value ofΘ - that consistent with
the lowest number of polarity errors and lowest
amplitude ratio error

Reports set of ac-
ceptable solutions

Probabilistic Methods
Author Data Data errors Method Uncertainties inΘ
Brillinger et al.
(1980)

P-wave polarities Accounts for uncertainty
in polarity, and amplitude
noise

MLE approach, assuming P-wave polarities are
Bernoulli random variables

95% CIs forΘ us-
ing properties of
MLEs

Zollo & Bernard
(1991)

P-wave polarities and S-
wave polarisations

Accounts for uncertainty
in polarity, and amplitude
noise

Bayesian approach A posterior PDF
overΘ

De Natale et al.
(1991)

P-wave polarities, S-wave
polarisations and amplitude
ratios

Accounts for uncertainty
in polarity, and amplitude
noise

Bayesian approach A posterior PDF
overΘ

1
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1.4 Contribution of this Thesis

While probabilistic methods of focal mechanism estimationhave a clear advantage over opti-
misation methods, in that the entire parameter space can be explored, the methods in the lit-
erature do not account for uncertainty in hypocentre location or velocity model. Additionally,
the resulting probability distributions (see e.g. Zollo & Bernard 1991, De Natale et al. 1991)
are not parameterised in any way.

In this project we develop a new probabilistic Bayesian method of focal mechanism estima-
tion that directly accounts for the sources of error mentioned in Section 1.2.4. We present the
resulting probability distributions visually so one can assess areas of high and low probability
in the parameter space. Point estimates ofΘ result naturally from the distributions.

Little research has been carried out into the nature of focalmechanism error distributions. We
explore directional distributions, in particular generalised Matrix Fisher distributions, that can
be used to parameterise the resulting probability distribution of Θ. We investigate whether
these directional distributions provide an appropriate fitto the distribution ofΘ, in the hope
of succinctly summarising the distribution ofΘ by reporting the estimated parameter(s) of the
fitted distribution.

1.5 Outline

The structure of this thesis is as follows. Directional statistical methods are introduced in
Chapter 2, which explains why and how directional methods are used, and introduces vari-
ous directional probability distributions, from simple tocomplex cases. Chapter 3 introduces
Bayes’ rule, the probabilistic theorem behind the models used in this thesis, with some ex-
amples of its use. We then describe the formulation of our Bayesian probability distribution
for the focal mechanism parameters in two specific cases; when the seismic velocity model
is precisely known, and when it is imperfectly known. Chapter 4 describes the various com-
putational techniques used in this project, and how they areused to compute the distribu-
tions introduced in the Chapter 2. In Chapter 5 we apply the probabilistic methods outlined
in Chapter 3, and estimation techniques described in Chapter 2, to seismic data from New
Zealand. We first consider the velocity model known case, with application to data from the
Raukumara Peninsula. This is followed by the velocity modelunknown case, applied to data
from the Kawerau region. Chapter 6 contains some concludingstatements. Appendix A con-
tains some useful techniques, definitions and mathematicalresults that are used throughout
this project, while Appendix B contains hypocentre summaryinformation for the earthquakes
examined in Chapter 5.
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Chapter 2

Directional Statistics

In this project, we are interested in variousdirectional data(directions, or unit vectors, in
space) andaxial data (directions in which the positive and negative directions are equiva-
lent). These observations are directions or axes in space, in which the sample space is often
a circle or sphere, and hence special directional methods are used to analyse them (Mardia &
Jupp 2000). To see why such methods are needed, consider the case of averaging angles, as
described in Appendix A.4. This chapter examines such directional methods, and introduces
probability distributions used to describe the data.

2.1 Circular Data

We start with the most simple directional case — that of circular data; directional data in 2D
space. An example of a circular datum is a compass bearing. Wecan represent such data
as points on the unit circle, or equivalently, unit vectorsx in the plane. Alternatively,x can
be represented by an angleφ rotated from a reference direction on the unit circle (Mardia &
Jupp 2000), in which casex = (cosφ, sinφ).

2.1.1 von Mises Distribution

The von Mises distributionis a probability distribution used to describe the distribution of
directions on circles. It is analogous to the Normal distribution used on lines (Mardia &
Jupp 2000).

The von Mises distributionM(φ0, κ) has PDF

f(φ|φ0, κ) =
1

2πI0(κ)
exp [κ cos(φ− φ0)] (2.1)

whereφ0 is the mean direction,κ is the concentration parameter andI0(κ) is the modified
Bessel function of the first kind

I0(κ) =
1

2π

∫ 2π

0

exp (κ cosφ) dφ (2.2)

(Mardia & Jupp 2000). The largerκ is, the more concentrated the distribution is around the
mean direction. Whenκ = 0 the distribution is uniform (Mardia & Jupp 2000).
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We can simulate from a von Mises distribution using the technique described by Best &
Fisher (1979), which uses a wrapped Cauchy distribution (the Cauchy distribution on the line
‘wrapped’ onto the unit circle) as an envelope for an acceptance-rejection sampling method.
Firstly, we set

a = 1 +
√

1 + 4κ2, b =
a−

√
2a

2κ
, r =

1 + b2

2b

then repeat the following steps until the necessary sample size is obtained.

1. Draw a sampleU1, U2, U3 from a Uniform(0,1) distribution;

2. Putz = cos(πU1), f = (1 + rz)/(r + z), c = κ(r − f);

3. If c(2 − c) − U2 > 0 go to step 5, else go to step 4;

4. If ln(c/U2) + 1 − c ≥ 0 go to step 5, else return to step 1;

5. φ = φ0 + sgn(U3 − 0.5) cos−1(f).

Figure 2.1 shows a sample of points, drawn in the above way using the computer softwareR,
marked on the unit circle. The bell-curved shape of the density illustrates the analogy of the
von Mises distribution to the Normal distribution.

Figure 2.1: A random sample of size 15 drawn from a von Mises distribution withφ0 = 0
andκ = 10. The density is also shown.

2.2 Spherical Data

Spherical data arise when the observations are directions in 3D space. Again, the data can be
directional or axial. In the directional case, these data can be represented as points on the unit
sphere, or as unit vectorsx. In the axial case, these data can be represented as antipodal points
on the unit sphere (Mardia & Jupp 2000). The unit vectorx can alternatively be represented
in spherical polar coordinates asx = (sin θ cosφ, sin θ sinφ, cos θ) (see Appendix A.2).
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2.2.1 von Mises-Fisher Distribution

A von Mises-Fisher distributionF (µ, κ) describes the distribution of a random unit vector
x on the surface of a sphere (Mardia & Jupp 2000). As in the circular case, the parameter
µ is the mean direction, whileκ is the concentration parameter (Mardia & Jupp 2000). The
probability density is given by:

f(x|µ, κ) =
κ

sinh κ
exp

(

κµTx
)

Alternatively, ifx andµ are written in spherical coordinates

x = (sin θ cosφ, sin θ sin φ, cos θ)T

µ = (sin θ0 cosφ0, sin θ0 sin φ0, cos θ0)
T

thendx = 1
4π

sin θdθ dφ and the probability density can be rewritten using the change of
variable technique (see Appendix A.5):

f(φ, θ|µ, κ) = f(x|µ, κ)
∣

∣

∣

∣

dx

dφ dθ

∣

∣

∣

∣

=
κ

4π sinhκ
exp (κ[cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0)]) sin θ

(0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π)

The largerκ is, the more concentrated the distribution is around the mean direction. When
κ = 0 the distribution is again uniform (Mardia & Jupp 2000).

We can simulate from the von Mises-Fisher distribution using the algorithm described by
Wood (1994). It uses the fact that the unit 3D vectorx has von Mises-Fisher distribution
with µ = (0, 0, 1)T if xT = (v

√
1 −W 2,W ) wherev is a unit 2D vector which is uniformly

distributed, andW is a random variable on[−1, 1] with density

f(w) =
exp(κw)
√

πκ
2
I 1

2

(κ)
.

Here I 1

2

(κ) is the modified Bessel function of the first kind and degree1/2 (Wood 1994).
Firstly, we set

b = −κ +
√
κ2 + 1

then repeat the following steps until the desired sample size is obtained:

1. Putx0 = (1 − b)/(1 + b) andc = κx0 + 2 log(1 − x2
0);

2. GenerateU1 andU2 from a Uniform(0,1) distribution and calculate

W =
1 − (1 + b)U1

1 − (1 − b)U1

;

3. If κW + 2 log(1 − x0W ) − c < log(U2) then go to Step 1, else go to Step 4;
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4. Generate the uniform 2D vectorV and setxT = (v
√

1 −W 2,W ).

Then x has aF ((0, 0, 1)T , κ) distribution. We can convert this to a draw from a general
F (µ, κ) by using a rotation matrix (see Appendix A.1). In general, ifx is a draw fromF (µ, κ)
thenx′ = Rx is a draw fromF (µ′, κ), whereµ′ = Rµ. So in this case, whereµ = (0, 0, 1)T ,
any rotation matrix in which the third column is equal to the desiredµ will convert x from
F ((0, 0, 1)T , κ) to F (µ, κ). This can be done by taking Euler angles(φ0, θ0, 0) and setting
R = R(φ0, θ0, 0), where (φ0, θ0) are the spherical coordinates ofµ.

Figure 2.2 shows a sample of points from the von Mises-Fisherdistribution, drawn in the
above way usingR, marked on the unit sphere, and shown in stereographic projection.

Figure 2.2: A random sample of size 50 drawn from a von Mises-Fisher distribution with
µ = (φ0, θ0) = (π

2
, π

4
) andκ = 20. The contours of the density are shown.

2.2.2 Bingham Distribution

TheBingham distributionis used to describe axial data on the sphere. In the case of axial data,
angles opposite each other are equivalent. Hence, vectorsx and−x cannot be distinguished.
The 3-dimensional Bingham distribution has density

f(±x|A) = 1F1

(

1

2
,
3

2
,A
)−1

exp
(

xT Ax
)

whereA is a symmetric, traceless3×3 matrix and1F1

(

1
2
, 3

2
,A
)

is the hypergeometric function
given by

1F1

(

1

2
,
3

2
,A
)

=

∞
∑

k=0

∑

κ

(1
2
)κ

(3
2
)κ

Cκ(A)

k!

=

∫

S2

exp
(

xT Ax
)

dx
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Here the integral is obtained over the surface of the sphere (Mardia & Jupp 2000). For more
details on hypergeometric functions refer to Appendix A.6.The distribution can be obtained
by conditioning the trivariate normal distribution on‖x‖ = 1. Hence ifx ∼ N3(0,Σ) then
x | (‖x‖ = 1) has Bingham distribution withA = −1

2
Σ−1 (Mardia & Jupp 2000). When the

Bingham distribution has rotational symmetry about some axis, it is known as the Watson
distribution (Mardia & Jupp 2000).

The behaviour of the distribution can be assessed by using aneigenvalue decomposition of
the parameter matrixA.

Theorem 2.1. [Eigenvalue Decomposition] A symmetric matrixA can be decomposed as

A = UDUT

whereD is a diagonal matrix of eigenvalues ofA and the columns ofU are the eigenvectors
of A, with UTU = I. This is also known as diagonalisation.

For a proof of this theorem see Anton (2000).

Theorem 2.1 impliesA can be decomposed intoA = UKUT . Varying the values inK re-
sults in various different shapes of the distribution (Mardia & Jupp 2000).

Wood (1987) describes a method with which we can simulate from the density

f(x|κ, β, γ) = [2πc]−1 exp
[

κx3 + γx2
3 + β(x2

1 − x2
2)
]

which, if we setκ = 0, is a Bingham distribution of the form

f(±x|A) ∝ exp





[

x1 x2 x3

]





β 0 0
0 −β 0
0 0 γ









x1

x2

x3







 .

whereβ ≥ 0 andγ ∈ (−∞,∞) (Wood 1987). (This algorithm is very lengthy; refer to Wood
(1987) for a description). After implementing the algorithm in R, we can simulate from a
Bingham distribution with mean direction(φ0, θ0) = (0, 0), from which a simulation from a
distribution with arbitrary mean can be straightforwardlyobtained by applying a rotation (as
was the case for simulating from the von-Mises Fisher distribution).

We can assess the behaviour of the density under various values ofγ andβ (see Figure 2.3).
It can be seen that whenγ = β = 0, the distribution is uniform. Meanwhile,γ acts as a
concentration parameter — the higherγ, the more concentration of points at the mean, while
with γ negative, the points tend to be situated near the equator. Weobserve a girdle shape
whenγ ≈ β 6= 0. Meanwhile, asβ increases, points are drawn away from the mean, to two
antipodal groupings on the equator.

2.3 Orientation Data

The spatial orientation of an object inp dimensions can be defined byn distinguishable di-
rections (Downs 1972). An example is anL-shaped object in three dimensions, the orienta-
tion of which is defined by two orthogonal unit vectors givingthe directions of its two arms
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β = 0 β = 10 β = 50

γ = −50

γ = 0

γ = 50

Figure 2.3: Random samples of size 100 drawn from a Bingham distribution with mean
(φ, θ) = (0, 0) (the center of the stereonet) and various values of parameters γ andβ.
Values on the upper sphere have been projected onto the lowersphere.

(Downs 1972). Ifx1 andx2 are the two orthogonal vectors that describe these directions,
then the3 × 2 matrix X, with columnsx1 andx2, describes the orientation completely, and
XTX = I2 (Downs 1972, Khatri & Mardia 1977).

In this section we will discuss the Matrix Fisher distribution, which is an extension of the von
Mises distribution, and is used to deal with data of this kind. Before discussing the Matrix
Fisher distribution, however, we introduce the concept of aStiefel Manifold.

2.3.1 Stiefel Manifolds

An orthonormal n-frame inRp is a set ofn vectors(x1, ...,xn) in R
p that are orthonormal, i.e.

xT
i xj = 0, i 6= j and each vector has length 1 (Mardia & Jupp 2000).

The set of all orthonormal n-frames inRp is known as theStiefel ManifoldVn(Rp) (Mardia
& Jupp 2000). For our purposes we can think of the Stiefel Manifold as the set of allp × n
matrices that describe the orientation of an object inp-dimensions, defined byn directions,
and for whichXTX = In, i.e.

Vn(Rp) =
{

X : XTX = In

}

(2.3)

(Khatri & Mardia 1977, Mardia & Jupp 2000).

A useful tool for considering distributions onVn(Rp) is the polar decomposition of matrices.
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Theorem 2.2. [Polar Decomposition] Anyp× n matrixX can be decomposed as

X = MK

whereM is thepolar part, in Vn(Rp), andK is theelliptical part, ann×n symmetric positive
semi-definite matrix. We can obtainM andK uniquely whenX is invertible.K is given by

K = (XTX)
1

2

and

M = XK−1

(Mardia & Jupp 2000).

To prove the uniqueness of the decomposition it suffices to show that a positive definite matrix
A has a unique positive definite square rootB = A

1

2 . If this is the case thenK is unique. For
a proof of this see Abadir & Magnus (2005, p 220).

2.3.2 Matrix Fisher distribution

TheMatrix Fisher distributiondescribes the distribution of matricesX on the Stiefel Manifold
Vn(Rp). It has PDF

f(X;F) =

[

0F1

(

p

2
;
1

4
FT F

)]−1

exp
[

tr(FT X)
]

(2.4)

whereF is ap×n parameter matrix, and0F1

(

p
2
; 1

4
FT F

)

is the hypergeometric function given
by

0F1

(

p

2
;
1

4
FT F

)

=
∞
∑

k=0

∑

κ

1

(p
2
)κ

Cκ(FT F)

k!

=

∫

Vn(Rp)

exp
(

tr(FTX)
)

dX

(Muirhead 1982, Mardia & Jupp 2000). HereCκ and(a)κ are as defined in Appendix A.6.

SinceF has polar decompositionF = MK andK, being symmetric, can be diagonalised as
K = UDUT for orthogonalU and diagonalD, then

FT F = KTMTMK = KTK = KK = UDUTUDUT = UD2UT .

Now, since the zonal polynomialCκ is a function of the eigenvalues of its argument, and since
for any two matricesA andB, AB andBA have the same eigenvalues, we find

Cκ(UD2UT ) = Cκ(D2UUT )

= Cκ(D2)
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and hence0F1

(

p
2
; 1

4
FT F

)

= 0F1

(

p
2
; 1

4
D2
)

= c(D). In other words, the hypergeometric func-
tion depends only onD, the eigenvalues ofK (Khatri & Mardia 1977).

The focal mechanism of an earthquake is an example of a 3-dimensional object whose ori-
entation can be described by three directions (the fault normal n̂, the slip vector̂u and null
vectorâ, which together form the matrixR(Θ) = [û â n̂]). Since focal mechanism estimation
is the central focus of this project, we will consider from here on only the case wherep = 3
andn = 3, i.e. a 3-dimensional object whose orientation can be described by three directions.
The relevant Stiefel Manifold isV3(R

3).

A Stiefel Manifold wheren = p, as in this case, is equivalent to theorthogonal groupof
p×p orthogonal matrices, denotedO(p) (Downs 1972, Khatri & Mardia 1977). If we add the
further restriction thatdetR = +1 then this becomes thespecial orthogonal groupSO(p).
Special orthogonal groupSO(3) contains the3× 3 matricesR(Θ) = [û â n̂] that describe all
possible orientations of the fault plane in 3 dimensions.

The shape of the distribution is controlled byM, U andD, whereK = UDUT . The density
has a mode at the value ofX where tr(FT X) is maximised. This occurs whenX = M, the
polar part ofF (Downs 1972). The larger the entries of the diagonal matrixD, the greater the
concentration of the distribution about the vectors definedby the columns ofM. Meanwhile,
U twists the shape of the distribution at the modes.U is a rotation matrix, and can hence be
defined by three Euler angles(φ, θ, ψ) whereU = Bz(φ)By(θ)Bz(ψ). The anglesθ andψ di-
rectly twist the distribution at the third of the modes (the normal vector̂n), while the twisting
of the other two modes is more complex.M is also a rotation matrix; overall therefore each
of the three matricesM, U andD is defined by 3 parameters, which together constitute the 9
parameters of the parameter matrixF = MUDUT .

Due to their aforementioned properties,M, D andU are called themodal matrix, concen-
tration matrix (Downs 1972) andspin matrixrespectively. WhenD is the zero matrix the
distribution is uniform. Figure 2.4 shows the shape of the distribution for various values of
these parameters.

A special case of the distribution, considered by Arnold & Townend (2007), occurs when
D = κI. In this caseF = MUDUT = κMUUT = κM, and so the distribution can
be described as the Matrix Fisher distribution with scalar concentration parameterκ. The
concentrations around each of the three modes are equal. Arnold & Townend (2007) assumed
that the distribution of focal mechanism parametersΘ could be fitted by this distribution.
Later we explore the validity of this assumption.

Error estimation

While D determines the concentration of the distribution ofR(Θ) around each of the three
modes, these values can be difficult to interpret. A more intuitive and interpretable measure
of spread is the standard deviation of the anglesΘ = (ξ, δ, λ) for a given Matrix Fisher dis-
tribution. Here we establish an approximate relationship between the concentration matrixD
and the standard deviationsσξ of the strike angleξ.

23



(a) (b)

(c) (d)

Figure 2.4: Contour plots of the Matrix Fisher density withM = R(α, β, γ) =
R(7π

8
, π

4
, 3π

4
) (marked as filled circles) andU and D as specified. The three modes

[û â n̂] are coloured green, red and blue respectively. Plot (a) hasD = diag(1, 1, 1)
and no spin, (b) hasD = diag(10, 5, 2) and no spin, (c) hasD = diag(10, 5, 2) and
U = R(α, β, γ) = R(2π

3
, 2π

3
, 0), while (d) hasD = diag(0.01, 0.01, 50) and no spin.

Firstly, we apply a change of variable to represent the Matrix Fisher PDFf(X;F) in terms of
Θ, whereX = R(Θ):

f(Θ) = f(R(Θ))

∣

∣

∣

∣

dR(Θ)

dΘ

∣

∣

∣

∣

∝ f(R(Θ)) sin δ

∝ c(D)−1 exp
[

tr(FTR(Θ))
]

sin δ

Now,

f(ξ) =

∫ π/2

0

∫ 2π

0

f(ξ, δ, λ) sin δ dλ dδ
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and substitutingsin δdδ = d(cos δ) gives

f(ξ) =

∫ 1

0

∫ 2π

0

f(ξ, cos δ, λ)dλ d(cos δ)

Here we integrate overcos δ since we tabulatef(R) on a grid inξ, cos δ, λ.

As described in Appendix A.4, the mean ofξ is

ξ̄ = tan−1

( 〈sin ξ〉
〈cos ξ〉

)

where in this case

〈sin ξ〉 = E(sin ξ) =
1

c

∫ 2π

0

sin ξf(ξ)dξ

≃ 1

c

2π

n− 1

n
∑

i

wif(ξi) sin ξi

〈cos ξ〉 = E(cos ξ) =
1

c

∫ 2π

0

cos ξf(ξ)dξ

≃ 1

c

2π

n− 1

n
∑

i

wif(ξi) cos ξi.

In the above we approximate the integrals using the trapezium rule (see Appendix A.7.1), with
w1 = wn = 1

2
, wj = 1 otherwise, withc =

∫

f(ξ)dξ a normalisation constant. The variance
of ξ is given by

σ2
ξ = E

[

(ξ − ξ̄)2
]

=
1

c

∫ 2π

0

f(ξ)Xdξ

=
1

c

2π

n− 1

n
∑

i

wif(ξi)Xi

whereX = min
(

|ξ − ξ̄|2,
(

|ξ − ξ̄| + 2π
)2
,
(

|ξ − ξ̄| − 2π
)2
)

and again we approximate the

integral using the trapezium rule.

We can now evaluateσξ for different values ofD and establish the relationship between these
two parameters. We firstly setM = R(π, π/2, π), so that we are evaluating the standard de-
viation far from the polar singularities of the coordinate system, and also setU = R(0, 0, 0),
i.e. no spin. We then setD = diag(d1, d2, k), allow onlyk to vary, and evaluateσξ for a range
of k values. Table 2.1 shows values ofσξ (in degrees) for four different combinations ofd1

andd2.

Figure 2.5 shows there is a roughly linear relationship between log(σξ) and k for various
values ofD = diag(d1, d2, k). The linear relationship is stronger for higher concentration
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Table 2.1: Table of the standard deviation of the strike angle σξ (in degrees) for various
values ofD.
k σξ|D = (0.01, 0.01, k) σξ|D = (0.01, 50, k) σξ|D = (50, 0.01, k) σξ|D = (50, 50, k)

0.0625 57.52 65.49 57.11 3.89
0.125 56.64 64.12 55.99 3.88
0.25 54.87 61.32 53.73 3.87
0.5 51.30 55.63 49.23 3.85
1 44.34 44.52 40.74 3.81
2 32.62 26.75 28.19 3.73
4 19.80 10.06 17.62 3.58
8 12.27 4.03 11.81 3.28
16 8.30 2.98 8.19 2.75
32 5.64 1.99 5.60 1.90
64 2.89 0.91 2.88 0.88
128 0.63 0.19 0.63 0.18
256 0.03 0.01 0.03 0.01
512 0.00 0.00 0.00 0.00

values. The overall relationship can be approximated by regressinglog(σξ) on k across all
chosen values ofD, and found to be:

σξ = exp (2.73738 − 0.02645k)

Thus standard deviations ofσξ = 1◦, 5◦, 10◦ and15◦ correspond tok values of approximately
100, 43, 16 and 1.1.

This relationship does not hold in certain cases, however, sincemax(σξ) = exp(2.73738) =
15.45◦. Clearlyσξ can exceed this value, as shown in Table 2.1, most obviously in cases in
which two of the concentration parameters are small(< 1). Thus we regresslog(σξ) onk for
k ≤ 1 andD 6= (50, 50, k), and obtain the following approximate relationship

σξ = exp (4.1196 − 0.3509k)

in the case when two or more of the components ofD are< 1.

In the case of the Matrix Fisher distribution with scalar concentration parameter, Arnold &
Townend (2007) established the following approximate relationship betweenκ and the stan-
dard deviationσΘ of the focal mechanism parameters (in degrees):

σΘ = exp (3.9155 − 0.5659 logκ) (2.5)

and thusσΘ values of1◦, 5◦, 10◦, 15◦, 20◦ and30◦, correspond toκ values of approximately
1000, 60, 17, 8, 5 and 2.5.

Simulation

To simulate from the Matrix Fisher distribution onV3(R
3) with parameter matrixF, we use the

method given by Chikuse (2003). The simulation procedure starts with generating a pseudo-
random uniform matrixX using the following method:
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Figure 2.5: Plot ofσξ (log scale) versusk for various values ofD = diag(d1, d2, k). Lines
of best fit given by regressinglog(σξ) onk for eachD are shown. The overall relationship
is indicated by the dotted line.

1. Generate 9 independent realisations from the standard normalN(0, 1) distribution;

2. Arrange these into a3 × 3 matrixL;

3. X = L(LT L)−
1

2 is a pseudo-random uniform matrix onV3(R
3).

We then generate a random uniform realisationu on (0,1). Ifu < exp
[

tr(FT X− D)
]

, where
D is the diagonal matrix of eigenvalues ofK, then we acceptX as a random matrix from the
Matrix Fisher distribution with parameter matrixF. Otherwise we rejectX and repeat the
procedure starting from Step 1 above.

Since the modal matrixM is orthogonal and the columns define the modal directions of the
distribution, we can always setM as the identity, simulate, and then rotate the sample to a
desired mean direction specified by three Euler angles. Figure 2.6 shows some simulations
with various parameter values.

Parameter Estimation — Kullback-Leibler Divergence

We use here a Matrix Fisher distributionf(R(Θ)|F) to approximate a Bayesian posterior
P (R(Θ)|d) based on datad. We now briefly describe the estimation of the value ofF that
yields the best approximation toP (R(Θ)|d). We use theKullback-Leibler divergence, H(θ),
as a measure of the discrepancy between the true distribution P (y|d) of some parametery,
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Figure 2.6: Random samples of size 100 drawn from a Matrix Fisher distribution with
modeM = R(α, β, γ) = R(π

4
, π

4
, π

8
) (marked as filled circles) with no spin andD as

specified. Each observation is marked (1,2,3) for the(x, y, z) directions respectively.
Values on the upper sphere have been reversed onto the lower sphere. Plot (a) hasD =
diag(0, 0, 0) (the uniform case), (b) hasD = diag(5, 5, 5), (c) hasD = diag(20, 10, 5)
and (d) hasD = diag(1000, 0.01, 0.01).

based on datad, and a model distributionf(y|θ) that is defined by a parameterθ (see e.g.
Gelman et al. 1995). The Kullback-Leibler divergence for a given value ofθ is

H(θ) = E

(

log
P (y|d)

f(y|θ)

)

=

∫

log

(

P (y|d)

f(y|θ)

)

P (y|d)dy

= const.−
∫

P (y|d) log f(y|θ)dy (2.6)

The aim is to find̂θ that minimises this divergence. To find̂θ we minimise Equation 2.6

θ̂ = argmin
θ

H(θ) = argmax
θ

∫

P (y|d) log f(y|θ)dy
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Consider the case in which the model densityf(y|θ) is the Matrix Fisher densityf(X;F).
The density given by Equation 2.4 can be rewritten as

f(X;F) = c(D)−1 exp
[

tr(FT X)
]

so that

F̂ = argmax
F

∫

P (X|d) log
[

c(D)−1 exp
(

tr(FT X)
)]

dX

= argmax
F

[
∫

P (X|d)tr
(

FT X
)

dX −
∫

P (X|d) log c(D) dX

]

= argmax
F

[

tr

(

FT

∫

P (X|d)X dX

)

− log c(D)

∫

P (X|d) dX

]

If the densityP (X|d) is unnormalised we divide through by
∫

P (X|d)dX

F̂ = argmax
F

[

tr
(

FT
∫

P (X|d)X dX
)

∫

P (X|d) dX
− log c(D)

∫

P (X|d) dX
∫

P (X|d) dX

]

= argmax
F

[

tr

(

FT

∫

P (X|d)X dX
∫

P (X|d) dX

)

− log c(D)

]

= argmax
F

[

tr
(

FT X̄w

)

− log c(D)
]

(2.7)

whereX̄w is the mean weighted by the true density. In this projectP (X|d) is available on a
grid {Xi}j=1,...,k. In that case the weighted mean can be approximated by

X̄w ≃
∑k

i=1wiP (Xi|d)Xj
∑k

i=1wiP (Xi|d)

using the trapezium rule (see Appendix A.7.1). Equation 2.7is equivalent to the log-likelihood
of the Matrix Fisher distribution. The maximisation in Equation 2.7 is thus exactly analogous
to Maximum Likelihood Estimation ofF in the case when a random sample of matrices has
been drawn from the true density, rather than a tabulated grid of matrix values{Xi}j=1,...,k as
in our case.

We now demonstrate how to solve Equation 2.7, in which the following theorem will be useful.

Theorem 2.3. If a matrixA commutes with an arbitrary diagonal matrixD,

AD = DA

thenA must also be diagonal.

Proof.

(AD)ij =
∑

k

AikDkj =
∑

k

AikDkkδkj = DjjAij

(DA)ij =
∑

k

DikAkj =
∑

k

DiiδikAkj = DiiAij

DjjAij = DiiAij

(Djj −Dii)Aij = 0
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where

δij =

{

1 i = j

0 i 6= j

SinceDii = Djj only if i = j, thenAij = 0 if i 6= j, soA is diagonal.

Given thatF can be decomposed into

F = MK = MUDUT

we can use Lagrange multipliers to maximise Equation 2.7 subject to the constraintsMT M =
I andUTU = I.

Firstly, note that

(MTM)ij =
∑

ℓ

MℓiMℓj

and similarly

(UTU)ij =
∑

ℓ

UℓiUℓj

and that the identity matrix can be expressed as(I)ij = δij . Hence the constraintsMTM = I
andUTU = I are equivalent to

∑

l MℓiMℓj = δij and
∑

ℓ UℓiUℓj = δij for the entry in the
ith row andj th column. So in the case of a3 × 3 matrix, this means there are nine constraint
equations for each of the two constraintsMTM = I andUTU = I. Each constraint equation
adds a separate term given by

λij

(

δij −
∑

ℓ

MℓiMℓj

)

and

µij

(

δij −
∑

ℓ

UℓiUℓj

)

onto the objective function, whereλij andµij are Lagrange multipliers. Hence the objective
function to be maximised is

G(M,U,D)

= tr(FT X̄) +
∑

ij

λij

(

δij −
∑

ℓ

MℓiMℓj

)

+
∑

ij

µij

(

δij −
∑

ℓ

UℓiUℓj

)

− log c(D)

= tr(MT A) +
∑

ij

λij

(

δij −
∑

ℓ

MℓiMℓj

)

+
∑

ij

µij

(

δij −
∑

ℓ

UℓiUℓj

)

− log c(D)
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whereA = X̄wUDUT . Now we differentiate G with respect toMab:

G =
∑

ij

MijAij +
∑

ij

λij

(

δij −
∑

ℓ

MℓiMℓj

)

+
∑

ij

µij

(

δij −
∑

ℓ

UℓiUℓj

)

− log c(D)

∂G

∂Mab
= Aab −

∑

j

λbjMaj −
∑

i

λibMai

= Aab − (MλT )ab − (Mλ)ab
set
= 0

Hence

A = M(λT + λ),

λT + λ is symmetric and henceM is the polar part ofA. Thus

M = A(ATA)−
1

2 = X̄wK(KX̄T
wX̄wK)−

1

2 .

Now if we putB = MT X̄w then

tr(FT X̄w) = tr(UDUTMT X̄w) = tr(UDUTB).

Differentiating G with respect toUab gives

G =
∑

ijkℓ

UijDjkUℓkBℓi +
∑

ij

λij

(

δij −
∑

ℓ

MℓiMℓj

)

+
∑

ij

µij

(

δij −
∑

ℓ

UℓiUℓj

)

− log c(D)

∂G

∂Uab
=
∑

kℓ

DbkUℓkBℓa +
∑

ij

UijDjbBai −
∑

j

µbjUaj −
∑

i

µibUai

= (BTUD)ab + (BUD)ab − (UµT )ab − (Uµ)ab
set
= 0

and hence

(BT + B)UD = U(µT + µ)

(BT + B)UDUT = U(µT + µ)UT

(X̄T
wM + MT X̄w)K = U(µT + µ)UT

X̄T
wMK + MT X̄wK = UHUT

whereH = (µT + µ). Now recall that

M = X̄T
wK(KX̄T

wX̄wK)−
1

2

which means that

MT X̄wK = (KX̄T
wX̄wK)−

1

2 KX̄T
wX̄wK = (KX̄T

wX̄wK)
1

2

and so

X̄wMK + (KX̄T
wX̄wK)

1

2 = UHUT
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Now the second and third matrices in this expression are symmetric. The first matrix must
therefore also be symmetric, i.e.

X̄T
wMK = KMT X̄w

X̄T
wX̄wK(KX̄T

wX̄wK)−
1

2K = K(KX̄T
wX̄wK)−

1

2KX̄T
wX̄w

KX̄T
wX̄wK(KX̄T

wX̄wK)−
1

2KK = KK(KX̄T
wX̄wK)−

1

2 KX̄T
wX̄wK

(KX̄T
wX̄wK)

1

2KK = KK(KX̄T
wX̄wK)

1

2

(KX̄T
wX̄wK)KK = (KX̄T

wX̄wK)
1

2KK(KX̄T
wX̄wK)

1

2

Overall, therefore, the right hand side of this expression is symmetric, and hence so is the left
hand side, i.e.

(KX̄T
wX̄wK)KK =

[

(KX̄T
wX̄wK)KK

]T
= KK(KX̄T

wX̄wK). (2.8)

Now X̄w has polar decomposition

X̄w = RS

whereR is the polar part andS is the elliptical part. Further,S has eigenvalue decomposition

S = VEVT

meaning that

X̄T
wX̄w = VEVTRTRVEVT = VE2VT

and Equation 2.8 can be written

(KVE2VTK)KK = KK(KVE2VTK)

SinceK is invertible we can cancelK twice from both sides of this expression

VE2VTKK = KKVE2VT

VE2VTUD2UT = UD2UT VE2VT

(UTVE2VTU)D2UT U = UTUD2(UTVE2VTU)

(UTVE2VTU)D2 = D2(UTVE2VTU)

Now D2 is a diagonal matrix that commutes withUTVE2VTU and hence by Theorem 2.3
UTVE2VTU is also diagonal. SinceE2 is diagonal, it follows thatVTU = I and hence
U = V. This means that the eigenvectors ofK̂ are the same as the eigenvectors ofS.
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Now if we collect all these results together we find that

X̄w = RS = RVEVT (polar decomposition)

K̂ = VD̂VT

Û = V

D̂ must be obtained numerically (see below)

M̂ = X̄wK(KX̄T
wX̄wK)−

1

2

= RVEVTVDVT (VDVTVEVTRTRVEVTVDVT )−
1

2

= RVEDVT (VDE2DVT )−
1

2

= RVEDVT (VDEVT )−1

= RVEDVTVE−1D−1VT

= R

F̂ = M̂K̂ = RVD̂VT

So, to find the estimatêF that maximises Equation 2.7, given a grid of matrices{Xi}i=1,...,k,
we first computēXw, decompose it intoR andS, and then decomposeS into S = VEVT .
We next find the valuêD for which Equation 2.7 is maximised based on these values forR,
S andV, and finally form

F̂ = RVD̂VT

We can carry out the maximisation overD̂ using theoptim() function inR. This function
allows us to specify a lower bound of diag(0, 0, 0) for D̂, to ensure that the eigenvalues ofK,
and thus the concentrations of the Matrix Fisher distribution, are non-negative.

In the case of the Matrix Fisher distribution with scalar concentration parameter, we simply
setD = κI in theoptim() procedure to obtain the estimate of the scalar concentration pa-
rameterκ. The estimate ofM remains as above.

To demonstrate this method we run the procedure using simulated data. Note that here we
do not use a grid of matrices{Xi}i=1,...,k, but a random sample, making this example one
of Maximum Likelihood estimation rather than minimisationof the Kullback-Leibler diver-
gence. The two are equivalent, as mentioned above.

We take a sample of size 100 of matricesX1, ...,X100 from the Matrix Fisher distribution with
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arbitrary parameter matrixF = MUDUT where

U = R(α, β, γ) = R

(

π,
2π

3
, 0

)

=





0.500 0.000 −0.866
0.000 −1.000 0.000
−0.866 0.000 −0.500





D =





8 0 0
0 4 0
0 0 2





M = R(α, β, γ) = R

(

7π

8
,
π

4
,
3π

4

)

=





0.191 0.733 −0.653
−0.845 0.462 0.271
0.500 0.500 0.707





implying that,

F = MUDUT =





2.367 2.930 −4.743
−3.659 1.848 3.953
−0.087 2.000 3.297





We then calculatêF given the sample mean̄X. As the data are sampled from a Matrix Fisher
distribution, one would expectF andF̂ to be similar:

Û =





0.405 0.453 −0.794
0.453 −0.854 −0.256
−0.794 −0.256 −0.551





D̂ =





8.081 0 0
0 2.863 0
0 0 2.342





M̂ =





0.182 0.728 −0.661
−0.855 0.449 0.259
0.485 0.518 0.704





and,

F̂ = M̂ÛD̂ÛT =





2.498 4.282 −5.731
−3.012 0.518 2.308
0.744 1.061 2.286





The actual and estimated modal (M) matrices are very similar, while the actual and estimated
parameter (F), concentration (D) and spin (U) matrices are reasonably similar. In the case of
the spin matrixU, it is important to remember that the eigenvectors are defined only up to a
constant.

We can compareF andF̂ visually by plotting the distributions using each matrix, as seen in
Figure 2.7. The similarity of the two contour plots indicates the validity of the estimation
method.
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Figure 2.7: Marginal PDF plots of the Matrix Fisher distribution givenF (left) and theF̂
(right) using simulated data.

2.3.3 8-Mode Matrix Fisher distribution

The Matrix Fisher distribution can be generalised to situations in which there are ambiguities
regarding the directions defined by the columns of the matrixX, i.e. to axial data.

Of particular interest in this project, given the two ambiguities surrounding focal mechanisms
mentioned in Section 1.2.3, and one further ambiguity discussed in Section 3.3.1, will be the
case in which there are eight equivalent representations ofX: X, XA2, XC2, XT2, XA2C2,
XA2T2, XC2T2 andXA2C2T2, where

A2 =





−1 0 0
0 1 0
0 0 −1



 C2 =





0 0 1
0 −1 0
1 0 0



 T2 =





1 0 0
0 −1 0
0 0 1





These ambiguities can be interpreted as follows:

• A2 reverses the first and third columns ofX. This is due to the axial nature of the fault
normal vector̂n.

• C2 swaps the first and third columns ofX. This is due to the inability to distinguish
between the slip vector̂u and normal vector̂n.

• T2 reverses the second column ofX, and reverses the sign of the determinant ofX.
This is due to the lack of dependence of our Bayesian posterior on the orientation of the
null vectorâ (see Section 3.3.1).
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To fit a probability distribution to data of this nature we must generalise the Matrix Fisher
distribution to account for the ambiguities. Here we introduce the8-mode Matrix Fisher
distribution, which has PDF

f(X;F) =

[

0F1

(

p

2
;
1

4
FTF

)]−1

× 1

8

{

exp
[

tr(FTX)
]

+ exp
[

tr(FT XA2)
]

+ exp
[

tr(FTXC2)
]

+

+ exp
[

tr(FTXT2)
]

+ exp
[

tr(FTXA2C2)
]

+ exp
[

tr(FTXA2T2)
]

+

+ exp
[

tr(FTXC2T2)
]

+ exp
[

tr(FTXA2C2T2)
]

}

(2.9)

where0F1

(

p
2
; 1

4
FTF

)

is the hypergeometric function of matrix argument. This gives equal
weight to each of the eight equivalent representations ofX.

Figure 2.8 shows the shape of the 8-mode distribution under various values of the concentra-
tion and spin matrices. The ambiguities cause each of the vectors [û â n̂] to have multiple
modes. It can be seen that if there is no spin, the axesû and n̂ have identical probability
contours (e.g. the blue contours coincide exactly with, andthus overplot, the green contours
in plots (a) and (b)), while if spin is present and the concentrations vary (plots (c) and (d))
then the probability contours of the two axes are distinct.

Simulation

To simulate from the 8-mode Matrix Fisher distribution withparameter matrixF we adjust
slightly the method of Chikuse (2003) described in Section 2.3.2.

We first generateX, a random matrix from the Matrix Fisher distribution with parameter ma-
trix F. Then, with uniform probability1

8
, we select randomly one of the 8 transformations (I,

A2, C2, T2, A2C2, A2T2, C2T2, A2C2T2), and apply the selected transformation toX.

Figure 2.9 shows some samples from the 8-mode Matrix Fisher distribution for a variety of
parameter matrices. The ambiguities are most evident in plot (c) (high concentration).

Parameter Estimation — Kullback-Leibler Divergence

The procedure described in Section 2.3.2 must also be adjusted. Here we will adopt an iter-
ative procedure. To find the estimate ofF that minimises the Kullback-Leibler divergence,
given a grid of matrices{Xi}j=1,...,k, calculate the true PDF atP (Xi|d) at eachXi and then
perform the following steps:

1. FindXi : f(Xi;F) ≥ f(Xj;F) ∀j 6= i, and setM̂ = Xi. This is the first estimate of
M, the modal part ofF;

2. For everyXi in the grid, find which of the eight possible representationsof the matrix
Xi has maximum tr(M̂T X) — call that representationX∗;
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(a) (b)

(c) (d)

Figure 2.8: Contour plots of the 8-Mode Matrix Fisher density with M = R(α, β, γ) =
R(7π

8
, π

4
, 3π

4
) andU andD as specified. The three axes[û â n̂] are coloured green, red and

blue respectively. Plot (a) hasD = diag(1, 1, 1) and no spin, (b) hasD = diag(10, 5, 2)
and no spin, (c) hasD = diag(10, 5, 2) andU = R(α, β, γ) = R(2π

3
, 2π

3
, 0), while (d) has

D = diag(0.01, 0.01, 50) andU = R(α, β, γ) = R(2π
3
, 2π

3
, 0).

3. Calculate the weighted mean using the trapezium rule

X̄w =

∑k
i=1wiP (Xi|d)iX

∗
i

∑k
i=1wiP (Xi|d)i

;

4. Use the mean to calculate a new estimate ofM - the polar part of̄Xw;

5. Now using these values implement the procedure as described at the end of Section 2.3.2
to getF̂, an estimate ofF.

From then on, repeat the process from Step 2, except that in Step 2 classify each grid point
according to which representation gives maximum tr(F̂TX). The process continues untilF̂

converges.
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Figure 2.9: Random samples of size 100 drawn from the 8-Mode Matrix Fisher distribu-
tion with modeM = R(α, β, γ) = R(π

4
, π

4
, π

8
) (marked as filled circles),D as specified

and no spin. The observations are marked (1,2,3) for the(x, y, z) axes. Values on the
upper sphere have been reversed onto the lower sphere. Plot (a) hasD = diag(0, 0, 0)
(the uniform case), (b) hasD = diag(5, 5, 5), (c) hasD = diag(10, 10, 10) and (d) has
D = diag(1000, 0.01, 0.01).

The justification for this procedure is that due to the ambiguities, we cannot just use the mean
of the matrices. Instead we take a first guess at the modal matrix of the distribution: the max-
imum of the posterior PDF (or any maximum, if more than one exist), which we callM̂. We
then look at all eight matrix representations at each sampled point and choose the one which
is closest to the modeM. This representation,X∗, is used to form the mean. Using this mean
we get a better estimate ofM, following which we again check which of the eight matrices is
closest to the mode, and then recalculate the average. This process will eventually converge
to a single estimate ofM, and hence ofF.

To demonstrate this method we ran the procedure using the same simulated data as was used in
Section 2.3.2, with one of the eight transformations randomly applied to each. The calculated
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estimates are

Û =





0.473 −0.723 0.503
0.585 0.685 0.434
−0.659 0.089 0.747





D̂ =





7.169 0 0
0 3.391 0
0 0 2.648





M̂ =





0.219 0.736 −0.641
−0.846 0.471 0.251
0.486 0.487 0.725





hence,

F̂ = M̂ÛD̂ÛT =





2.470 4.625 −4.524
−3.374 0.965 1.593
1.343 1.413 1.812





All four matrices are similar to the matrices used to generate the data specified in Section 2.3.2.
We again compareF andF̂ visually by plotting the marginal 8-mode Matrix Fisher distribu-
tions (see Figure 2.10). The similarity of the two plots shows F̂ approximatesF well, and
reinforces the validity of the iteration procedure.

2.3.4 Goodness of Fit Testing

Ideally, we would like to perform a test of the goodness of fit that a generalised Matrix Fisher
distributionf(R(Θ)|F) provides to a Bayesian posterior distributionP (R(Θ)|d) based on
datad. Unfortunately, as will be shown in subsequent chapters, computation of the empirical
distributionP (R|d) is sufficiently computationally intensive that resamplingmethods such as
the bootstrap (in which the earthquake data generation process would be repeated using re-
sampledΘ’s from the empirical distribution) are not feasible for statistical testing of the fitted
parameter values.

There is no statistical test for goodness of fit in the case where our empirical PDF is evaluated
on a grid of points{Xi}j=1,...,k across the sample space, as in the case of the Kullback-Liebler
divergence. However, if our parameter estimate had been obtained from a random sample of
matrices from the true probability density, the goodness offit tests on the Stiefel Manifold
V3(R

3) described by Jupp (2005) could be applied. There are two teststatistics that can
be used to test the null hypothesis that the probability density function that generated the
observed data is inF , whereF is a family of probability density functionsF = {f(·; θ) : θ ∈
Θ}. The weighted Rayleigh test statistic is

TwR = 3ntr(X̄T
wX̄w)

whereX̄w is a weighted mean

X̄w =
1

k

k
∑

i=1

Xi

f(Xi; θ̂)
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Figure 2.10: Marginal PDF plots of the 8-Mode Matrix Fisher distribution givenF (left)

and theF̂ (right) using simulated data.

and the weighted Giné test statistic (based on Giné (1975)’s tests of uniformity) is

TwG =
1

k

k
∑

i=1

k
∑

j=1

(

1
2
− 3π

32

√

tr(I3 − XT
i Xj)

)

f(Xi); θ̂)f(Xj; θ̂)

Significance is evaluated by resampling from the fitted distribution.
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Chapter 3

Bayesian Methods

3.1 Bayes’ Theorem

Bayes’ Theoremis a simple rule in probability theory that forms the basis ofthe estimation
techniques used in this project.

Theorem 3.1. [Bayes’ Theorem] For two random variablesX andY :

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(3.1)

Proof. The theorem is proved by noting thatP (X, Y ) = P (Y,X), and

P (X, Y ) = P (X|Y )P (Y )

P (Y,X) = P (Y |X)P (X)

by the product rule. Therefore,

P (X|Y )P (Y ) = P (Y |X)P (X)

=⇒ P (X|Y ) =
P (Y |X)P (X)

P (Y )
.

Sivia (1996) explains the importance of the theorem for dataanalysis. Often we observe the
result of some event (our data), and we want to establish the underlying cause or causes of this
outcome. This is not always an easy task. The reverse, working out the probability that some
event occurs given we know the cause, is much easier. For example, suppose we flip a coin
10 times and obtain 6 heads. We then determine the probability that this is a fair coin, given
the observations. Intuitively this is not simple, but if we were to determine the probability of
a fair coin producing 6 heads in 10 flips, this probability is simply determined by the binomial
distribution.

If we replace X and Y in Equation 3.1 by hypothesis and data, then:

P (hypothesis|data) ∝ P (data|hypothesis)P (hypothesis)
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Here, the probability that the hypothesis is true, given thedata, is related to the probability
that the data occurred given the hypothesis, the latter of which we are more likely to be
able to calculate (Sivia 1996).P (hypothesis) is known as theprior probability — our prior
knowledge of the hypothesis. This prior knowledge is influenced by thelikelihood function
P (data|hypothesis). The likelihood is a function of the hypothesis; the the dataremain fixed.
This outputs theposteriorprobabilityP (hypothesis|data), our knowledge of the hypothesis
given the data (Sivia 1996). Note that the denominator in Equation 3.1 has been dropped,
because it does not depend on the hypothesis, and is simply a normalisation constant. Note
that this does require an enumeration of the hypothesis space, and the specification of a set of
prior probabilities for all possible hypotheses.

3.2 Examples

In this section we will consider two examples of situations in which a Bayesian approach can
be applied. The first example, the lighthouse problem, is a canonical problem that provides a
relatively straightforward introduction to a real-world situation in which Bayesian techniques
can be used. The second example, the earthquake hypocentre location problem, is particularly
relevant to this project, as it underpins the algorithm we will use to locate earthquakes. These
locations are necessary inputs to the main problem solved inthis project; the determination of
focal mechanism parametersΘ.

3.2.1 Lighthouse Problem

We now consider an example of a situation in which a Bayesian approach can be applied. The
problem is defined as follows: “A lighthouse is somewhere offa piece of straight coastline at
a positiona along the shore and a distanceb out at sea. It emits a series of short highly colli-
mated flashes at random intervals and hence at random azimuths. These pulses are intercepted
on the coast by photo-detectors that record only the fact that a flash has occurred, but not the
angle from which it came.N flashes have so far been recorded at positions{xk}. Where is
the lighthouse?” (Sivia 1996). Hereafter we let curly brackets denote a set.

xa

Lighthouse

c

b

Figure 3.1: Visual representation of the lighthouse problem
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Given that we know nothing about the lighthouse location, itis reasonable to assume a uniform
prior on the azimuthc of thekth observation:

P (c|a, b) =
1

π
(3.2)

as(−π
2
≤ c ≤ π

2
). Trigonometry tells us thatb tan(c) = xk − a. We can use the change of

variable technique (see Section A.5) to rewrite the PDF above as:

P (xk|a, b) =
b

π[b2 + (x− a)2]

So the probability of thekth flash being recorded atxk, given that we know where the light-
house is, follows a Cauchy distribution. We will now assume in this example thatb is known,
and we wish to find the posterior probability ofa:

P (a|{xk}, b) ∝ P ({xk}|a, b)P (a|b)
We know nothing abouta, so we will give it a uniform prior, which reflects our ignorance (i.e.
every possible distance along the shore is equally probable):

P (a|b) = P (a) =

{

A (amin ≤ a ≤ amax)

0 otherwise
(3.3)

whereA is equal to 1
amax−amin

. Now the recording of each signal is independent, so the
likelihood function is given by:

P ({xk}|a, b) =

N
∏

k=1

P (xk|a, b) (3.4)

Now we know the prior (Equation 3.3) and the likelihood function (Equation 3.4), which we
can put into Bayes’ Theorem to obtain an expression for the posterior PDF:

P (a|{xk}, b) ∝ A×
N
∏

k=1

b

π[b2 + (xk − a)2]

Table 3.1 illustrates how the various PDFs relate to those defined in Section 3.1.

Table 3.1: How PDFs in the lighthouse example relate to the PDFs in Section 3.1.
Prior Likelihood Posterior

In general P (hypothesis) P (data|hypothesis) P (hypothesis|data)
Lighthouse example P (a) P ({xk}|a, b) P (a|xk, b)

To get the best estimate ofa, we need to maximise the posterior PDF. It becomes easier to
deal with the log of the posterior PDF — the maximum will remain the same.

log[P (a|{xk}, b)] = logA+

N
∑

k=1

[

log(b) − log π − log(b2 + (xk − a)2)
]

= constant−
N
∑

k=1

log(b2 + (xk − a)2)
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To maximise this, we differentiate with respect toa and set it equal to zero:

d log[P (a|xk, b)]

da
= 2

N
∑

k=1

xk − a

b2 + (xk − a)2

set
= 0

This equation cannot be easily rearranged to expressa in terms ofxk andb, so we look at
the problem numerically. We calculate the posterior PDF formany different values ofa; the
largest PDF value will correspond to the best estimate ofa. We can perform this procedure
easily usingR, generating random azimuths using Equation 3.2, and converting these into po-
sitions{xk}. We also use fixed values ofb = 1, anda = 2, to generate the data. We can then
plot the posterior PDF against the lighthouse position,a, to find the best estimate ofa (see
Figure 3.2).
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Figure 3.2: Posterior PDF of the position,a, of the lighthouse givenb = 1. The number
of flashes observed is given byn.

The plots of the posterior PDF begin to narrow as the number offlashes increases, centering
ona = 2. This is the value of the estimate ofa, and, as mentioned, was the value ofa used to
generate the data.

3.2.2 Earthquake Hypocentre Location

A second example of a situation in which a Bayesian approach can be adopted is the prob-
lem of locating an earthquake’s hypocentre. This location algorithm is based on Tarantola &
Valette (1982)’s approach. Locating an earthquake is an example of a Bayesian problem in
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that we wish to use data (seismometer arrival times) to calculate parameter values that de-
scribe the system (the coordinates of the hypocentre) (Tarantola 2005).

Tarantola & Valette (1982) apply the inversion approach to the hypocentre location problem.
The unknown parameters are the hypocentre coordinates,x = (x, y, z), and the origin time,
T, while the known data are the seismic wave (P-, or both P- and S-) arrival times,{tobs

i }, at
stations. We assume we also know the locations of then stations,si, and the velocity model,
υ. P-wave arrival times are the main wave type used in hypocentre location, while S-wave
arrival times can be used to supplement the P-wave data and better constrain the hypocentre.
In that case two velocity models are used, but the formulation below is unaffected.

We seek an expression for the posterior PDF of the hypocentrelocationP (x|{ti}). This ex-
ample is slightly more complicated than the lighthouse example, as we have two unknown
parameters;x andT.

Tarantola & Valette (1982) consider two sources of error — those errors caused by the as-
sumed velocity model, and those caused by uncertainty in picking the exact arrival times at
stations. Let{tcal

i } = {tcal
i (x,T)} be the theoretical (calculated) arrival time at stationi from

a hypocentre locationx given a velocity model. We assume that{tcal
i } is normally distributed

with mean{tmi } and covariance matrixCT , where{tmi } represents the theoretical arrival time
at stationi from a hypocentre locationx given a perfectly implemented velocity model. We
also assume the data{tobs

i } are normally distributed with mean{tcal
i } and covariance matrix

Ct (Tarantola & Valette 1982).

From the above it follows that the likelihood of the data,{tobs
i }, given the parameters, is:

P ({tobs
i }|x,T) = exp

{

−1

2
[tobs − tcal]T (Ct + CT )−1[tobs − tcal]

}

(3.5)

This encompasses both the errors caused by the velocity model and the observational errors.
So, the posterior PDF of the unknown parametersx andT is given by:

P (x,T|{tobs
i }) ∝ P (x,T)P ({tobs

i }|x,T) (3.6)

∝ P (x,T) exp

{

−1

2
[tobs − tcal]T (Ct + CT )−1[tobs − tcal]

}

(3.7)

whereP (x,T) describes our prior information about the parameters. Tarantola & Valette
(1982) then assume a uniform prior onT, since we generally have no prior information about
the origin time. Hence,

P (x,T) = P (x).P (T) (due to independence)

∝ P (x) (due to uniformity ofP (T)) (3.8)

We now define the theoretical travel time{hcal
i (x)} between a hypocentre locationx and

stationi, which is simply the difference in time between the calculated arrival time and the
origin timeT:

hcal(x) = tcal − T (3.9)
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Since we are more interested in the location of the earthquake than the origin time, we wish to
obtain the posterior PDF of the hypocentre coordinates alone. We do this by integrating over
the range of the origin timeT in Equation 3.7:

P (x|{tobs
i }) =

∫

P (x,T|{tobs
i })dT

= P (x,T)

∫

exp

{

−1

2
[tobs − tcal]T (Ct + CT )−1[tobs − tcal]

}

dT (by 3.7)

∝ P (x)

∫

exp

{

−1

2
[tobs − tcal]T (Ct + CT )−1[tobs − tcal]

}

dT (by 3.8)

∝
∫

exp

{

−1

2
[tobs − hcal − T ]T · P · [tobs − hcal − T ]

}

dT (by 3.9)

whereP = (Ct+CT )−1,

∝
∫

exp

{

−1

2

∑

ij

[tobs
i − hcal

i − T] · Pij · [tobs
j − hcal

j − T]

}

dT

∝
∫

exp

{

−1

2

[

∑

ij

PijT2 − 2T
∑

ij

Pij(t
obs
j − hcal

j ) +

+
∑

ij

(tobs
j − hcal

j ) · Pij · (tobs
i − hcal

i )

]}

dT

Now let

a =
∑

ij

Pij

b =
∑

ij

Pij · (tobs
j − hcal

j )

c =
∑

ij

(tobs
j − hcal

j ) · Pij · (tobs
i − hcal

i ).
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Substituting these into the above gives:

P (x|{tobs
i }) ∝

∫

exp

{

−1

2

(

aT2 − 2Tb+ c
)

}

dT

∝
∫

exp

{

−1

2

(

aT2 − 2Tb+
b2

a
+ c− b2

a

)}

dT

∝
∫

exp

{

−1

2

[

a

(

T − b

a

)2

+

(

c− b2

a

)

]}

dT

∝ exp

{

−1

2

(

c− b2

a

)}∫

exp

{

−a
2

(

T − b

a

)2
}

dT

Now using
∫

exp(−sx2)dx =

√

π

s
gives

∝ exp

{

−1

2

(

c− b2

a

)}

√

2π

a

We now substitutea, b andc back in:

P (x|{tobs
i }) ∝

√

2π
∑

ij Pij
exp











−1

2






(tobs

i − hcal
i ) · Pij · (tobs

j − hcal
j ) −

(

∑

ij Pij(t
obs
j − hcal

j )
)2

∑

ij Pij

















∝
√

2π
∑

ij Pij
exp

{

−1

2

∑

ij

[

tobs
i − hcal

i −
∑

kl Pkl(t
obs
l − hcal

l )
∑

kl Pkl

]

·Pij ·
[

tobs
j − hcal

j −
∑

kl Pkl(t
obs
l − hcal

l )
∑

kl Pkl

]}

∝
√

2π
∑

ij Pij

exp

{

−1

2

∑

ij

(

[̃tobs − h̃
cal

(x)]T · P · [̃tobs − h̃
cal

(x)]
)

}

(3.10)

where,̃tobs is the observed arrival time minus the weighted mean of observed arrival times

t̃obs
i = tobs

i −
∑

kl Pkl · tobs
l

∑

kl Pkl

andh̃cal
i (x) is the computed travel time betweenx and stationi, minus the weighted mean of

computed travel times

h̃cal
i = hcal

i −
∑

kl Pkl · hobs
l

∑

kl Pkl

(Tarantola & Valette 1982).

To summarise, Equation 3.10 gives the posterior PDF for the spatial location of an earthquake
hypocentre, given the arrival time data{ti}. Note that this requires estimation ofP and a valid
velocity model for the region of interest.
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3.3 Application to Focal Mechanisms

We now turn our attention to the main aim of this thesis: the estimation of focal mechanism
parameters from a set of P-wave first motion data measured by an array of seismometers.

3.3.1 Velocity Model Known

In this section develop a probabilistic relationship between the focal mechanism parameters
Θ = (ξ, δ, λ) and the available data using Bayesian methods, taking into account the relevant
uncertainties (see Section 1.2.4). First we assume that thevelocity model is perfectly known.

Seismological Model

Given a focal mechanism represented byΘ = (ξ, δ, λ), we can compute the theoretical P-wave
amplitudeA∗

i at theith station using Equation 4.89 of Aki & Richards (2002):

A∗
i = 2(p̂i · n̂)(p̂i · û) (3.11)

whereû is the slip vector,̂n is the fault normal, and they are both defined in terms of the focal
mechanism parameters (Aki & Richards 2002):

û(Θ) = (sin ξ cos δ sin λ+ cos ξ cosλ,− cos ξ cos δ sinλ+ sin ξ cosλ,− sin δ sinλ) (3.12)

n̂(Θ) = (− sin ξ sin δ, cos ξ sin δ,− cos δ) (3.13)

Herep̂i is the unit vector from the hypocentre,x, to the point on the focal sphere correspond-
ing to stationi. The vector̂pi has azimuthφi and take-off angleθi:

p̂i(φi, θi) = (sin θi cosφi, sin θi sin φi, cos θi) (3.14)

In estimating a focal mechanism, we are more interested in the polarity of a P-wave first
motion than its amplitude. The approach of Brillinger et al.(1980) is adopted here. LetY
define P-wave first motions as follows:

Y =

{

+1 if the first motion is recorded as positive (a compression)

−1 if the first motion is recorded as negative (a dilatation)

Then we can treat observed polarities at theith station as Bernoulli random variables:

P (Yi = +1) = πi

P (Yi = −1) = 1 − πi

or alternatively

P (Yi = yi) = π
1

2
(1+yi)

i (1 − πi)
1

2
(1−yi) (yi = −1, 1)

To computeπi, we assume that the observed amplitudeAi is normally distributed:

Ai|A∗
i , c ∼ N(A∗

i , σ
2
a)

Ai|A∗
i ,−c ∼ N(−A∗

i , σ
2
a)
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wherec indicates a correctly wired station, and−c indicates cross-wiring (meaning that one
can expect to observe the negative of the true amplitude). Note that we assumeσa to be
constant across stations, in the absence of previous empirical studies. The conditional proba-
bilities of observing a positive amplitude, givenc and−c respectively, are:

P (Ai > 0|A∗
i , c) = 1 − Φ

(

0 − A∗
i

σa

)

= 1 − Φ

(−A∗
i

σa

)

= Φ

(

A∗
i

σa

)

P (Ai > 0|A∗
i ,−c) = 1 − Φ

(

0 − (−A∗
i )

σa

)

= 1 − Φ

(

A∗
i

σa

)

whereΦ is the Normal cumulative distribution function. Now letπp be the probability of a
a correctly wired station. Then, to work outπi, the probability of a positive observed first
motion, we note thatπi is equal to the probability of a positive observed amplitudeAi:

πi = P (Ai > 0|A∗
i )

= P (Ai > 0|A∗
i , c)P (c) + P (Ai > 0|A∗

i ,−c)P (−c)

= Φ

(

A∗
i

σa

)

πp +

(

1 − Φ

(

A∗
i

σa

))

(1 − πp)

= Φ

(

A∗
i

σa

)

πp + 1 − Φ

(

A∗
i

σa

)

− πp + πpΦ

(

A∗
i

σa

)

= 1 − πp + (πp − 1 + πp)Φ

(

A∗
i

σa

)

= 1 − πp + (2πp − 1)Φ

(

A∗
i

σa

)

= π′
p + (1 − 2π′

p)Φ

(

A∗
i

σa

)

(3.15)

whereπ′
p = 1−πp is the probability of an incorrectly wired station. Substituting Equation 3.11

into the above gives:

πi = π′
p + (1 − 2π′

p)Φ

(

2(p̂i · n̂)(p̂i · û)

σa

)

(3.16)

With precise data,πp is large (π′
p small) andσa small. This model has the property that the

larger the magnitude ofA∗
i , the greater the probability of the P-wave first motion having been

observed correctly (Brillinger et al. 1980). To summarise,the conditional probability of an
observed polarity given the true amplitude and the relevanterrors, is:

P (Yi|A∗
i , σa, πp) = π

1

2
(1+yi)

i (1 − πi)
1

2
(1−yi) (yi = −1, 1) (3.17)

whereπi is defined in Equation 3.16.
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Probabilistic Constraints

From here on, let curly brackets{} denote a set of values over the seismometer array(i =
1, . . . , n). We are interested in attaining a probabilistic relationship between the following:

• The data: arrival times{ti} and observed P-wave polarities{Yi}. Let

d = ({ti}, {Yi})

denote the data as a whole.

• The unknown parameters of interest: focal mechanism parametersΘ = (ξ, δ, λ).

• The nuisance parameters (unknown parameters that enter theanalysis but are not
of interest): the earthquake hypocentrex, the probability of a correctly wired station
πp, the amplitude noiseσa, and the theoretical amplitudeA∗

i . Let

ψ = (ψ1,x) = (πp, σa, A
∗
i ,x)

denote the nuisance parameters, whereψ1 = (πp, σa, A
∗
i ).

• The known parameters: station locations{si}, the P-wave arrival time errors{σti},

the velocity modelυ and the covariance matrixCT = σ2
T . exp

{

−1
2

D2

ij

∆2

}

describing the

theoretical errors in the hypocentre location model (see Sections 3.2.2 and 4.2.1). Let

ω = ({si}, {σti}, υ,CT )

denote the known parameters.

Our goal is to attain an expression for the posterior probability density of the focal mechanism
parameters, in terms of the data and the known parameters:

P (Θ|d, ω)

We splitd into its components and apply Bayes Rule as follows:

P (Θ|{ti}, {Yi}, ω) ∝ P (Θ)P ({Yi}|{ti},Θ, ω) (3.18)

whereP (Θ) is the focal mechanism prior of our choice, andP ({Yi}|{ti},Θ, ω) is the like-
lihood function of the data. Note that the prior could be denotedP (Θ|ω), whereω is all the
background information that we use to formulate the prior. In practice, however, we will later
adopt a non-informative parameterless prior, and so denotethe priorP (Θ). In the following
let MR denote the use of the marginalisation rule and PR the product rule. We will now work
with the likelihood function to obtain a solution for the posterior probability.

P ({Yi}|{ti},Θ, ω)

MR
=

∫

P ({Yi}, ψ|{ti},Θ, ω) dψ

PR
=

∫

P ({Yi}|ψ, {ti},Θ, ω)P (ψ|{ti},Θ, ω) dψ

=

∫

[

n
∏

i=1

P (Yi|ψ, ti,Θ, ω)

]

P (ψ|{ti},Θ, ω) dψ
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now splitψ into x andψ1 and apply the product rule

PR
=

∫∫

[

n
∏

i=1

P (Yi|x, ψ1, ti,Θ, ω)

]

P (x|ψ1, {ti},Θ, ω)P (ψ1|{ti},Θ, ω) dψ1 dx

nowYi ⊥⊥ (x, ti,Θ, ω)|ψ1 andx ⊥ ψ1,Θ

=

∫∫

[

n
∏

i=1

P (Yi|ψ1)

]

P (x|{ti}, ω)P (ψ1|{ti},Θ, ω) dψ1 dx

now splitψ1 into its components and apply the product rule

=

∫∫∫∫

[

n
∏

i=1

P (Yi|A∗
i , σa, πp)

]

P (x|{ti}, ω)P (A∗
i |σa, πp, {ti},Θ, ω)

× P (σa)P (πp) dx dA
∗
i dσa dπp

=

∫∫∫∫

[

n
∏

i=1

P (Yi|A∗
i , σa, πp)

]

P (x|{ti}, ω)δ(A∗
i − 2(p̂i · n̂)(p̂i · û))

× P (σa)P (πp) dx dA
∗
i dσa dπp

=

∫∫∫

[

n
∏

i=1

P (Yi|A∗
i = ai, σa, πp)

]

P (x|{ti}, ω)P (σa)P (πp) dx dσa dπp

whereai = 2(p̂i · n̂)(p̂i · û)

≃
∫∫ m

∑

j=1

[

n
∏

i=1

P (Yi|A∗
ij = aij , σa, πp)

]

P (σa)P (πp) dσa dπp (3.19)

whereaij = 2(p̂ij · n̂)(p̂ij · û), andm is the number of hypocentre locations sampled. In
Equation 3.19 we have used Monte Carlo integration; the integral

∫

f(x)P (x|{ti}, ω)dx is
approximated by evaluating the integrand at a random sampleof hypocentre locations (see
Appendix A.7.2 for details).

Note that for seismometeri, p̂i becomeŝpij, as it is now evaluated at a sample of hypocentre
locationsxj, j = 1 . . .m. Thus,

p̂ij(φij, θij) = (sin θij cosφij, sin θij sinφij , cos θij) (3.20)

and hence the amplitudeA∗
i , a function ofp̂, is evaluated at each hypocentre location and is

now denotedA∗
ij .

Substituting Equation 3.17 into Equation 3.19 and then intoEquation 3.18 we have an expres-
sion for the posterior PDF of the focal mechanism that we can evaluate, given by:

P (Θ|d, ω) ∝ P (Θ)

∫∫ m
∑

j=1

[

n
∏

i=1

π
1

2
(1+yi)

ij (1 − πij)
1

2
(1−yi)

]

P (σa)P (πp)dσa dπp (3.21)
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whereπij is given by

πij = π′
p + (1 − 2π′

p)Φ

(

2(p̂ij · n̂)(p̂ij · û)

σa

)

(3.22)

P (σa) andP (πp) are priors of our choice for the error termsσa andπp, andP (Θ) is the focal
mechanism prior. From hereon we shall refer to Equation 3.21as the velocity model known
posterior PDF, orVMK posterior PDF.

We useR to evaluate the VMK posterior PDF of the focal mechanism parameters, by numer-
ical evaluation of Equation 3.21. For each earthquake we cover the entire parameter space
of Θ = (ξ, δ, λ) by calculating the VMK posterior PDF at every point on a grid.We use 21
evenly spaced values over each ofξ, cos δ andλ, resulting in 9261 points. We usecos δ rather
thanδ to correct for the fact that if we took an even spacing overδ, we would have higher
node density nearδ = 0◦ than nearδ = 90◦.

We can then obtain an optimal solution forΘ based on the VMK posterior PDF. We find
argmax

Θ

P (Θ|d, ω), theΘ value on our grid for whichP (Θ|d, ω) is a maximum, and then con-

duct a local numerical optimisation of Equation 3.21 to obtain a finalΘ for whichP (Θ|d, ω)
is maximised. We refer to this value as themaximum a posteriori estimate(or MAP estimate)
of Θ.

A Further Ambiguity

The posterior PDF given by Equation 3.21 is dependent on the amplitude equation

A∗
i = 2(p̂ij · n̂)(p̂ij · û)

and hence the only dependence on the focal mechanism parametersΘ in the posterior PDF is
through the vectorŝn andû. There is no dependence on the orientation of the null vectorâ,
which is used in the construction of the rotation matrixX = R(Θ) = [û â n̂], the distribution
of which we are interested in. Thus as far as the posterior PDFis concerned,[û â n̂] is
equivalent to

[+û − â + n̂] = [û â n̂]T2 whereT2 =





1 0 0
0 −1 0
0 0 1



 .

This, combined with the two ambiguities discussed in Section 1.2.3, means that there are 8
equivalent representations ofR(Θ): R(Θ),R(Θ)A2,R(Θ)C2,R(Θ)T2,R(Θ)A2C2,R(Θ)A2T2,
R(Θ)C2T2 andR(Θ)A2C2T2. Each will have the same posterior PDF value. Note that the
transformation byT2 allowsdetX = ±1.

3.3.2 Velocity Model Unknown

In this section we adapt the probabilistic relationship between the focal mechanism parameters
Θ = (ξ, δ, λ) and the available data established in the previous section.Here we assume that
the velocity model is imperfectly known. Hardebeck & Shearer (2002) found that a change in
velocity model had more impact on focal mechanism estimation than a change in hypocentre
location.
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Probabilistic Constraints

The difference from Section 3.3.1 is that here the velocity model υ is unknown, and thus
becomes a nuisance parameter. The nuisance parameters are now

ψ = (ψ1, υ,x) = (πp, σa, A
∗
i , υ,x)

whereψ1 = (πp, σa, A
∗
i ). Again we apply Bayes Rule

P (Θ|{ti}, {Yi}, ω) ∝ P (Θ)P ({Yi}|{ti},Θ, ω)

and now work with the likelihood function to obtain a solution for the posterior probability.

P ({Yi}|{ti},Θ, ω)

MR
=

∫

P ({Yi}, ψ|{ti},Θ, ω) dψ

PR
=

∫

P ({Yi}|ψ, {ti},Θ, ω)P (ψ|{ti},Θ, ω) dψ

=

∫

[

n
∏

i=1

P (Yi|ψ, ti,Θ, ω)

]

P (ψ|{ti},Θ, ω) dψ

now splitψ into x, υ andψ1 and apply the product rule

PR
=

∫∫∫

[

n
∏

i=1

P (Yi|x, υ, ψ1, ti,Θ, ω)

]

P (x|ψ1, υ, {ti},Θ, ω)P (ψ1|υ, {ti},Θ, ω)

× P (υ|{ti},Θ, ω) dψ1 dx dυ

nowYi ⊥⊥ (υ,x, ti,Θ, ω)|ψ1, υ ⊥ ({ti},Θ, ω) andx ⊥ ψ1,Θ

=

∫∫∫

[

n
∏

i=1

P (Yi|ψ1)

]

P (x|{ti}, ω)P (ψ1|υ, {ti},Θ, ω)P (υ) dψ1 dx dυ

now splitψ1 into its components and apply the product rule

=

∫∫∫∫∫

[

n
∏

i=1

P (Yi|A∗
i , σa, πp)

]

P (x|υ, {ti}, ω)P (A∗
i |σa, πp, υ, {ti},Θ, ω)

× P (σa)P (πp)P (υ) dx dA∗
i dσa dπp dυ

=

∫∫∫∫∫

[

n
∏

i=1

P (Yi|A∗
i , σa, πp)

]

P (x|υ, {ti}, ω)δ(A∗
i − 2(p̂i · n̂)(p̂i · û))

× P (σa)P (πp)P (υ) dx dA∗
i dσa dπp dυ

=

∫∫∫∫

[

n
∏

i=1

P (Yi|A∗
i = ai, σa, πp)

]

P (x|υ, {ti}, ω)P (σa)P (πp)P (υ) dx dσa dπp dυ
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whereai = 2(p̂i · n̂)(p̂i · û.

≃
∫∫∫ p

∑

k=1

[

n
∏

i=1

P (Yik|A∗
ik = aik, σa, πp)

]

P (xk|υk, {ti}, ω)P (σa)P (πp) dx dσa dπp

(3.23)

≃
∫∫ p

∑

k=1

m
∑

j=1

[

n
∏

i=1

P (Yik|A∗
ijk = aijk, σa, πp)

]

P (σa)P (πp) dσa dπp (3.24)

whereaijk = 2(p̂ijk · n̂)(p̂ijk · û),m is the number of hypocentre locations sampled, andp is
the number of velocity models sampled.

In Equation 3.23 Monte Carlo integration is applied to approximate the integral ofP (υ) by
evaluating the integrand at a random sample of velocity models taken from the priorP (υ).
Thusp̂i becomeŝpik, andP (x|υ, {ti}, ω) becomesP (xk|υk, {ti}, ω) as for each sampled ve-
locity model the hypocentre location PDF varies.

In Equation 3.24 Monte Carlo integration is once again applied to approximate the integral
of P (xk|υk, {ti}, ω) by evaluating the integrand at a random sample of hypocentrelocations.
Herep̂ik becomeŝpijk, as it is now evaluated forp different samples ofm hypocentre loca-
tionsxjk, j = 1 . . .m, k = 1 . . . p, wherep andm are as described above.

Substituting Equation 3.17 into Equation 3.24 leaves an expression for the posterior PDF of
the focal mechanism that we can evaluate, given by:

P (Θ|d, ω) ∝ P (Θ)

∫∫ p
∑

k=1

m
∑

j=1

[

n
∏

i=1

π
1

2
(1+yi)

ijk (1 − πijk)
1

2
(1−yi)

]

P (σa)P (πp)dσa dπp

(3.25)

Hereπijk is given by

πijk = π′
p + (1 − 2π′

p)Φ

(

2(p̂ijk · n̂)(p̂ijk · û)

σa

)

and againP (σa) andP (πp) are priors of our choice for the error termsσa andπp, andP (Θ)
is the focal mechanism prior.

To distinguish this case from the previously established VMK posterior PDF, we shall from
hereon refer to Equation 3.25 as the velocity model unknown posterior PDF, orVMU poste-
rior PDF. Note that the VMK (Equation 3.21) and VMU (Equation 3.25) posterior PDFs are
similar. In the VMU case we effectively sum overp different VMK posterior PDFs, weighted
by their prior probabilitiesP (υ).

3.3.3 Probability Density of P- and T-axes

We can convert a PDF over focal mechanism parametersΘ to one over the P- or T-axes (see
Appendix A.8.1)v̂P andv̂T . For a given T-axis,̂vT || (u + n). The values of̂u andn̂ that
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correspond tôvT are not unique, aŝu + n̂ = (û + ∆) + (n̂−∆). In fact, for givenv̂T , û and
n̂ can swing around by up to360◦, as shown in Figure 3.3.

We now define a coordinate systemT, expressed in geographic coordinates. The vectorv̂T is
in thez-direction. Letm be an arbitrary vector not parallel tôvT . Thenb̂, a unit vector in the
direction ofm × v̂T , defines thex-direction, and̂c = v̂T × b̂ defines they-direction of the
coordinate system. Thus the coordinate systemT, expressed in geographical coordinates, has
coordinate axis unit vectorsRGT = [b̂ ĉ v̂T ].

Let ζ be the angle from thêb axis to the projection of̂u onto thexy plane. Note that̂u andn̂

are at45◦ to thexy plane. Then

û =
1√
2





cos ζ
sin ζ

1



 n̂ =
1√
2





− cos ζ
− sin ζ

1



 â = n̂× û

andR(ζ)T = [û â n̂]. We calculateP (v̂T ) as follows

P (v̂T ) =

∫

RG: v̂T || (û+n̂)

P (RG)dRG

=

∫ 2π

0

P (R(ζ)G)dζ

=

∫ 2π

0

P (RGTR(ζ)T)dζ

=

∫ 2π

0

P [Θ(RGTR(ζ)T)] dζ

≃ 2π

n− 1

n
∑

i=1

wiP [Θ(RGTR(ζi)T)]

where we approximate the integral overζ using the trapezium rule over a grid ofn ζ values
evenly spaced from 0 to2π. Also,Θ(RGTR(ζi)T) denotes the anglesΘ that correspond to the
matrixRGTR(ζi)T (see Appendix A.1.1). We obtainP [Θ(RGTR(ζi)T)] by linear interpolation
from the grid-tabulated posterior PDFP (Θ|d, ω).

The PDF over the P-axis is calculated similarly. We remain incoordinate systemT, and now
think of the T-/z-axis as the P-axis. SincêvP || (û − n̂), thenR(ζ)T = [−n̂ â û], and the
calculation remains otherwise the same.

We can calculate the MAP estimate of the P- and T-axes directly from our MAP estimate of
Θ, using the equationŝvP = 1

2
(û − n̂) andv̂T = 1

2
(û + n̂). In general the MAP P- and T-

axes will sit close to the maxima of the 2-dimensional (over spherical coordinatesθ, φ) PDFs
P (v̂P ) andP (v̂T ) respectively. However, since the MAP estimates are obtained from the
3-dimensional PDFP (Θ|d, ω), there may be slight differences.

Having now developed the theoretical and numerical approaches to the evaluation of the pos-
terior PDFs and appropriate summaries, we now turn to some practical matters of their imple-
mentation.
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Figure 3.3: Figure showing how vectorsû andn̂ correspond to the T-axis. For a given
T-axis, û andn̂ must stay locked at right angles, but can swing around as defined by an
angleζ from the b-axis in theT coordinate system.
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Chapter 4

Computing

This is a computationally intensive project in which several different software packages are
utilised. This chapter outlines this software and describes how each package is used.

4.1 R

We have chosen to implement the models in this project using the computer packageR (R
Development Core Team 2006).R is easy to use, and flexible due to its extensive range of
user-submitted packages and powerful graphical capabilities.

4.2 NonLinLoc

Evaluation of Equations 3.21 and 3.25 requires a sample of hypocentre locations with their
corresponding take-off angles for each station. Non-Linear Location, or NonLinLoc, is a soft-
ware package used “for velocity model construction, travel-time calculation and probabilistic,
non-linear, global-search earthquake location in 3D structures, and for visualisation of 3D
volume data and location results” (Lomax 2007). NonLinLoc will be used in this project to
give estimates of the take-off parameters for a sample of possible{xj} hypocentre positions
in a Cartesian coordinate system, and their posterior probabilities P ({xj}|{ti}) defined by
Equation 3.10.

4.2.1 Running NonLinLoc

Input data

NonLinLoc requires input phase data in one of a number of specific formats. In this project,
we use phase data obtained from http://www.geonet.org.nz,and convert it to NonLinLoc
Phase file format. GeoNet uses quality codes to describe the uncertainty of each arrival time
pick — from 0 for the clearest picks, to 4 for the noisiest picks (Clarke 2007). As the NonLin-
Loc Phase file format requires arrival time errors, we convert these quality codes into values
for σti as shown in Table 4.1. The noisiest picks are given an error of9999, which gives zero
weight to that particular phase. Station location data obtained from GeoNet is also formatted
to fit the format required by NonLinLoc.
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Table 4.1: GeoNet qualities and arrival time errorsσti

GeoNet quality σti (sec)
0 0.1
1 0.5
2 1
3 2
4 9999

Control File

NonLinLoc includes a highly customisable control file, witha variety of user-specified options
for running the earthquake location program. Below is a listof noteworthy commands. The
syntax involves a keyword followed by one or more parameters.

• TRANS— Set toSIMPLE, NonLinLoc will transform geographic coordinates to Carte-
sian coordinates. TheSIMPLE mode also means NonLinLoc will assume a flat earth,
rectangular, left-handed,(x, y, z) coordinate system (positivex = East, positivey =
North, positivez = down). The parameters define the geographic coordinates that will
be taken to be the origin of the Cartesian grid (Lomax 2007).

• VGGRID — Specifies the dimensions of the velocity model grid.

• GTFILES— Specifies input (velocity model) and output (time and take-off angle data)
files’ names and locations for use with the programGrid2Time (see Section 4.2.2).
Also specifies wave type (P or S).

• GTMODE — Specifies whether the velocity model is 2D or 3D, and whethertake-off
angles are to be stored.

• GTSRCE — Specifies station names and locations.

• LOCFILES— Specifies the input (earthquake phase data, and time data fromGrid2Time)
and output (location data) files’ names and locations for usewith the program NLLoc.

• LOCSEARCH— Defines the search method - either a Grid-Search, a stochastic Metropolis-
Gibbs sampling approach, or the oct-tree importance sampling algorithm.

• LOCGRID — Defines the size, origin and distance between nodes of the grid.

• LOCMETH— Specifies the location method - we set it to the inversion method of Taran-
tola & Valette (1982) described in Section 3.2.2, whether touse an S-wave velocity
model in the hypocentre location routine, and allows various data quality controls to be
implemented.

• LOCDELAY — Specifies station corrections. Only used in the velocity model unknown
case (Section 5.2).

• LOCGAU— Specifies the theoretical covariance matrixCT , of the formCT = σT exp
(

−1D2

ij

2∆

)

whereDij is the distance between stationsi andj, σT the theoretical arrival time error,
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and∆ is the correlation length that controls covariance betweenstations. Here we use
NonLinLoc default values ofσT = 0.2 and∆ = 1.

For a more in depth overview of all the commands in the controlfile, refer to the NonLinLoc
website (Lomax 2007).

4.2.2 Programs

The NonLinLoc package includes a range of different programs. The three programs we are
interested in areVel2Grid, Grid2Time andNLLoc.

Vel2Grid converts velocity model specifications into a 3D grid file in binary format, for use
with Grid2Time andNLLoc.

Grid2Time calculates the travel-times between a station and all nodesof anx, y, z spatial
grid — the velocity model grid — using the Eikonal finite-difference scheme of Podvin &
Lecomte (1991).Grid2Time can also calculate the take-off angles (φ, θ) for each point in
the grid for each station (i.e. for each node,x, y, z, on the grid, the take-off angles for a ray
leaving a theoretical earthquake at that point to a station,si, are calculated). This is done by
analysing the gradients of the travel-times along each axis(x, y andz) at the point, to create
a vector gradient of travel-times. The direction opposite to this vector determines the azimuth
and take-off angle (Lomax 2007).

A quality factor is also determined for each set of take-off angles. Essentially, the quality of
the take-off angle determination will be low if there may be two rays that arrive at the station
almost simultaneously, making it difficult to determine which ray’s take-off angles to report
(Lomax 2007).

Grid2Time is run with the relevant velocity model as the input file. Thisoutputs two files
for each station: the travel-time grid file, and the angles grid file. P-wave (Vp) or both P- and
S-wave (Vs) velocity models can be used as inputs.

Following this, theNLLoc program is run.NLLoc uses Tarantola & Valette (1982)’s Bayesian
method of calculating the posterior PDF of the hypocentre location outlined in Section 3.2.2.
We then specify one of three techniques available inNLLoc to search the posterior PDF for
the maximum likelihood hypocentre location: a systematic Grid-Search, a Metropolis-Gibbs
algorithm, or an Oct-tree importance sampling algorithm. We use the Oct-tree search in this
project. The advantages of this method are that it is much faster than the grid search method,
more global and complete than the Metropolis sampling algorithm, and only requires us to
specify the initial grid size and the number of samples to be taken (Lomax 2007).

The Oct-tree sampling method is started by defining a coarse grid on which to search. The
probability at the centre of each grid cell is determined from the posterior PDF, Equation 3.10,
and is multiplied by the volume of the cell to give the probability that the hypocentre is any-
where inside that cell. The probabilities are ordered in a listLp. The algorithm then runs as
follows:
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• Identify the cell with the largest probability fromLp. It is then divided into 8 new
smaller cells;

• The probability is calculated for these 8 cells;

• The listLp is updated by inserting these new probabilities.

These steps are then repeated until either the maximum specified number of nodes to process
has been reached, or the smallest specified node size is reached (Lomax 2007). Samples are
then drawn from the Oct-tree structure to give a sample fromP (x|{ti}, ω).

The NonLinLoc input files are the travel-time grid files generated byGrid2Time, and the
earthquake phase data provided by GeoNet. This outputs, among other results, estimates of the
PDF for a sample{xj} of possible(x, y, z) hypocentre locations in an output file known as a
scatter file. Unfortunately, the scatter file does not include take-off angle data for each of these
hypocentre locations. In the following section, we show howto interpolate this information
from the angles grid file that was output by theGrid2Time program.

4.2.3 Obtaining Take-off Parameters from NonLinLoc Output

The azimuth, take-off angle and a quality number for each station for a theoretical earthquake
occurring at each node on the velocity model grid are generated by the programGrid2Time,
and are stored in a binary file, i.e. for each point on a spatialgrid the azimuth and take-off an-
gle are tabulated. The sample of hypocentre locations{xj} output byNLLoc do not coincide
in general with the points of this grid, so we must interpolate to obtain an azimuth and take-off
angle for each sampled hypocentre, in order to define the take-off vector (Equation 3.20).

Only some stations in the data have P-wave polarities (Yi = ±1, see Section 3.3.1) recorded.
While we use all stations for the earthquake location methodcarried out by NonLinLoc, we
only interpolate the take-off parameters for stations thathave polarity data. As P-wave polar-
ity dataYi is required in the formulation of our posterior PDF, we need not calculate take-off
parameters for stations without polarities. Additionally, in this project, S-wave information is
only used for hypocentre location purposes, and therefore we need not obtain S-wave take-off
parameters.

Azimuth is stored as a 16 bit integer, 0 to 3600, in tenths of degrees, measured clockwise
from north. Take-off angle is stored as a 12 bit integer, 0 (down) to 1800 (up), also in tenths
of degrees. Quality number is a 4 bit integer, indicating 0 (low quality) to 10 (high quality).
We wish to interpolate linearly the azimuth, take-off angleand quality number from the nodes
of the velocity model grid to the sampled hypocentre locations{xj} given in the scatter file.

Initially, to make the binary files for each station easier toread intoR, they are converted to
text files using a C program written by Richard Arnold, rbuf2txt. We then useR to carry out
the linear interpolation, weighting each azimuth and dip byits quality number, as described
below.

The azimuth and take-off angle at a hypocentre location are calculated by a weighted average
of the azimuth and take-off angle values at the 8 nodes of the velocity model grid that surround
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that location. To calculate the weight that each of the 8 points has, three values,u, v andw,
are calculated:

u =
x− x0

x1 − x0

v =
y − y0

y1 − y0

w =
z − z0
z1 − z0

Where(x, y, z) are the coordinates of the hypocentre location,(x0, y0, z0) are the coordinates
of the node of the velocity grid closest to the origin of the entire grid, and(x1, y1, z1) are
the coordinates of the node of the velocity grid furthest from the origin. Essentially,u gives
the proportion of the distance traveled between adjacentx nodes of the velocity model grid
when the hypocentre location is encountered, and similarlyfor v andw. This is displayed in
figure 4.1.

0

u

w

v

(x,y,z)

0 0(x ,y ,z )

Figure 4.1: Three-dimensional linear interpolation:(x, y, z) marks the hypocentre lo-
cation we wish to interpolate to, whileu, v andw give the proportion of the distance
traveled between adjacent nodes of the velocity model grid where the hypocentre location
is encountered.

Since interpolation is a form of weighted average, and we aredealing with angles, we adopt
the averaging approach outlined in Appendix A.4. Thus,

φij = tan−1

( 〈sinφ〉ij
〈cosφ〉ij

)

gives the relevant interpolated azimuth value for stationi at hypocentre locationj, where
〈sinφ〉ij and〈cosφ〉ij are given by

〈sinφ〉ij =

∑8
k=1weightik sin(φik)
∑8

k=1weightik

〈cosφ〉ij =

∑8
k=1weightik cos(φik)
∑8

k=1weightik
.
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whereφik is the azimuth for stationi at thekth of the surrounding 8 nodes of the velocity
model grid surrounding locationxj, andweight is given by:

8
∑

k=1

weightik = (1 − u)(1 − v)(1 − w)quali1 + (1 − u)(1 − v)w · quali2

+ (1 − u)v(1 − w)quali3 + u(1 − v)(1 − w)quali4

+ (1 − u)v · w · quali5 + u(1 − v)w · quali6
+ u · v(1 − w)quali7 + u · v · w · quali8 (4.1)

Further,

θij = cos−1





〈cos θ〉ij
√

〈sin θ cosφ〉2ij + 〈sin θ sinφ〉2ij + 〈cos θ〉2ij





gives the interpolated take-off angle for stationi at hypocentre locationj, where

〈cos θ〉ij =

∑8
k=1weightik cos(θik)
∑8

k=1weightik

〈sin θ cosφ〉ij =

∑8
k=1weightik sin(θik) cos(φik)

∑8
k=1weightik

〈sin θ sinφ〉ij =

∑8
k=1weightik sin(θik) sin(φik)

∑8
k=1weightik

whereφik andθik are the azimuth and take-off angle respectively for stationi at thekth of the
surrounding 8 nodes of the velocity model grid, andweight is given in Equation 4.1.

Once the interpolation is carried out we have the polarityYi for stationi, azimuthφij and
take-off angleθij for stationi and sampled hypocentre locationxj , along with the hypocentre
location PDFP (xj|{ti}). This leaves us with all the information needed to constructthe
Bayesian posterior PDFs (Equations 3.21 and 3.25), as shownin Table 4.2.

Table 4.2: Sources of each element of Equation 3.21 and 3.25
Parameter/Value Description Source

{Yi} Polarities at stations Data
{si} Location of stations Data
{xj} Sample of hypocentres NonLinLoc

P (xj |{ti}, ω) Hypocentre PDF NonLinLoc
p̂ij / p̂ijk Ray take-off vector NonLinLoc

σa Amplitude noise User defined
π′

p Probability of cross wiring User defined
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4.3 Velest

Velest is a program that uses acoupled hypocentre-velocity modelmethod to determinemini-
mum 1-dimensional velocity models. Velest is used in this project to obtain a random sample
of velocity models from a given priorP (υ), as is required in Equation 3.25.

The coupled hypocentre-velocity model method is similar toTarantola & Valette (1982)’s
Bayesian method of hypocentre location described in Section 3.2.2 and implemented in Non-
LinLoc. The difference is that here it is assumed the velocity model is unknown to begin
with, and a solution for the velocity model is solved simultaneously with hypocentre loca-
tions (Kissling 1988).

An indication of the quality of a velocity model can be given by the differencetres
i between

the observed and theoretical arrival times at stationi

tres
i = tobs

i − tcal
i (4.2)

where the theoretical arrival timestcal
i = tcal

i (x̂, T̂, υ̂, yi), depend on an estimated hypocentre
locationx̂, estimated origin timêT, the implemented velocity modelυ̂ and station locations
yi. The observed arrival timestobs

i = tobs
i (x0,T0, υ0, yi) depend on the true hypocentre loca-

tionx0, true origin timeT0, the true velocity modelυ0 and station locationsyi (Kissling 1988).

Velest takes an initial input velocity model and hypocentrelocations and uses this to calculate
arrival timestcal

i . The program then adjusts hypocentral and velocity model parameters. To
do this, a relationship betweentres

i and the required adjustments is established. A first order
Taylor series expansion oftobs

i about the estimated parameters(x0 = x̂,T0 = T̂, υ0 = υ̂, yi =
yi) gives

tobs
i (x0,T0, υ0, yi) = tobs

i (x̂, T̂, υ̂, yi) +
∂ti
∂x

(x0 − x̂) +
∂ti
∂T

(T0 − T̂) +
∂ti
∂υ

(υ0 − υ̂)

+
∂ti
∂yi

(yi − yi)

= tobs
i (x̂, T̂, υ̂, yi) +

∂ti
∂x

(x0 − x̂) +
∂ti
∂T

(T0 − T̂) +
∂ti
∂υ

(υ0 − υ̂)

Substituting this into Equation 4.2 gives

tres
i = tobs

i (x̂, T̂, υ̂, yi) +
∂ti
∂x

(x0 − x̂) +
∂ti
∂T

(T0 − T̂) +
∂ti
∂υ

(υ0 − υ̂) − tcal
i (x̂, T̂, υ̂, yi)

=
∂ti
∂x

(x0 − x̂) +
∂ti
∂T

(T0 − T̂) +
∂ti
∂υ

(υ0 − υ̂) (sincetobs
i (x̂, T̂, υ̂, yi) = tcal

i (x̂, T̂, υ̂, yi))

=
∂ti
∂x

∆x +
∂ti
∂T

∆T +
∂ti
∂υ

∆υ (4.3)

where∆x is the required adjustment in estimated hypocentre location,∆T is the adjustment in
estimated origin time, and∆υ is the adjustment in the velocity model (Kissling 1988, Kissling,
Ellsworth, Eberhart-Phillips & Kradolfer 1994).
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The minimum 1D velocity model is the velocity model with minimum root mean square
(RMS) misfit of{tres

i }, where RMS is defined as

RMS(tres
i ) =

√

1

n

∑

i

(tres
i )2

This minimum 1D velocity model is given by solving Equation 4.3. This equation is non-
linear, and hence is solved numerically by Velest (Kissling1988).

The iterative procedure of Velest is as follows:

1. Solve the coupled hypocentre-velocity model problem forthe estimated hypocentres
and velocity model. This gives adjusted hypocentres and an adjusted velocity model;

2. Recalculatetcal
i based on these adjustments;

3. Check the RMS of the new velocity model — if it is lower, retain it. Return to 1.

Due to the non-linearity of the coupled hypocentre-velocity method, multiple local RMS min-
ima may occur over the velocity model solution space. Different input models may find differ-
ent local minima. A priori it is unknown where these minima occur so a number of Velest runs
are conducted using a variety of different input velocity models, resulting in a set of minimum
1D velocity models (Kissling 1995, Clarke 2007). Further specific details on how Velest was
run in this project are given in Section 5.2.2.

4.4 Grid Computing

As mentioned in Section 3.3.2, the VMU posterior PDF (Equation 3.25) is calculated using
Monte Carlo integration; summing overp different VMK posterior PDFs. Calculation of this
is particularly computationally intensive given the largesample of velocity models used in this
project (p ≃ 1000). Running the required programs and models on one machine would take
several days. To reduce this computation time we make use of the School of Mathematics,
Statistics and Computer Science’s computational grid, which comprises approximately 170
NetBSD (Unix) workstations.

The grid is particularly useful for multiple runs of the sameprogram with differing parameter
values, as is the case here. We break the job down into sets of 10 velocity models, and have
each computer on the grid evaluate the VMK posterior PDF for its set of 10 models. We then
retrieve each VMK posterior PDF from the grid and sum over all∼ 1000 to obtain the VMU
posterior PDF. This reduces the computation time from days to hours.
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Chapter 5

Applications

In this chapter we discuss the application of our Bayesian methods of focal mechanism estima-
tion to earthquake phase data from New Zealand. We consider two cases; the velocity model
known case, with data from the Raukumara Peninsula, and the velocity model unknown case,
with data from Kawerau.

5.1 Velocity model known — Raukumara Peninsula

We will use data from the Raukumara Peninsula, New Zealand, to illustrate the case in which
we presume that the uncertainties in the hypocentre location are caused solely by P-wave
arrival timing errors, and that the velocity model is error-free and known. The Raukumara
Peninsula is particularly suitable to study this objective, as the 3-dimensionalVp (P-wave
velocity) andVs (S-wave velocity) structures of the area have been determined by Reyners
et al. (1999).

5.1.1 Tectonic Setting

New Zealand lies at the boundary of the Pacific and Australiantectonic plates. To the east of
the North Island, the Pacific plate subducts beneath the overlying Australian plate. The two
plates converge at approximately 45 mm/yr in the region of interest; the Raukumara Peninsula,
on the East Cape of the North Island of New Zealand. The plate interface occurs at a depth of
approximately 15 km beneath the east of the Raukumara Peninsula (Reyners et al. 1999).

The Raukumara Peninsula (see Figure 5.1) lies 300 km southwest of the Tonga-Kermadec
and Hikurangi subduction zone junction. At this junction, crust to the north experiences sub-
duction along the Kermadec Trench, while to the south the subduction is influenced by the
Hikurangi Plateau (Reyners & McGinty 1999).

5.1.2 Velocity Model

The velocity model we use here is based on a 3D velocity model obtained by Reyners et al.
(1999). In a previous study by Reyners & McGinty (1999), 36 seismographs were deployed
over the Raukumara Peninsula between July and December 1994, the data from which en-
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Figure 5.1: Map of the Raukumara Peninsula. Symbols show theboundary of the Reyners
et al. (1999) velocity model (dark red line), temporary seismometers deployed by Reyners
& McGinty (1999) (white triangles), and permanent seismometers within the velocity
model bounds as at time of the Reyners & McGinty (1999) study (red squares).
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abled Reyners et al. (1999) to determine theVp andVs structure of the region.

The velocity model spans an irregular grid rotated36◦ east relative to north (see Figure 5.1).
It has 13x-nodes over a distance of 130 km, 11y-nodes over 200 km, and 9z-nodes to a
depth of 100 km. These nodes are at non-constant distances, while the format for use with
NonLinLoc requires constant grid spacing. Hence, we carry out a linear interpolation of the
velocities in Reyners et al. (1999)’s model, to obtain velocities at a constant 1km grid spacing
over the entire volume. We use both theVp andVs velocity models for the earthquake location
routine carried out by NonLinLoc. Although we do not use S-wave data in the formulation of
our posterior PDFs, theVs velocity model is used to better constrain the hypocentre location.

TheVp velocity structure is shown in Figure 5.2. Velocity generally increases with depth. It
can be seen that at shallow depths (< 20 km) Vp is lower in the southeast, and higher in the
northwest of the model. The subducted plate dips towards thenorthwest, meaning the plate
interface is shallower in the southeast, resulting in higher Vp in the southeast at depths> 20
km (i.e in the mantle just below the interface) (Reyners et al. 1999). TheVs velocity structure
is shown in Figure 5.3.

−60
−40

−20
0

20
40

−100
−50

0
50

100

0

5

10

15

20

25

30

35

40

 

Y − Distance (km)

X − Distance (km)

 

D
ep

th
 (

km
)

3

4

5

6

7

8

Figure 5.2: Cross section of theVp velocity model for the Raukumara Peninsula by Reyn-
ers et al. (1999). The model is rotated36◦ clockwise of north – this perspective is from
the south. Thex-axis is positive to the southeast, they-axis positive to the southwest. The
colours denote velocity in km s−1 according to the colour bar.

5.1.3 Data

We use GeoNet phase data in the region for the period from 1 January 1990 to 30 Septem-
ber 2005. Polarity data were provided by Reyners & McGinty (1999) who had re-analysed
earthquakes that occurred during the July to December 1994 period, and read many more first
motions than were obtained by routine processing of the GeoNet data. These first motions
were matched to the equivalent earthquakes in the GeoNet phase data catalogue. Station lo-
cation data were provided by Martin Reyners (for the locations of the portable seismographs
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Figure 5.3: Cross section of theVs velocity model for the Raukumara Peninsula by Reyn-
ers et al. (1999). The model is rotated36◦ clockwise of north – this perspective is from
the south. Thex-axis is positive to the southeast, they-axis positive to the southwest. The
colours denote velocity in km s−1 according to the colour bar.

used in the Reyners & McGinty (1999) study) and GeoNet (for the locations of the permanent
stations in the area).

It was decided, on the basis of discussion with Victoria University of Wellington and GNS
Science staff, that for an event to be worth analysing, a minimum of 10 stations with P-wave
polarity observations were required. Any fewer than 10 polarities would mean that the focal
mechanism of the event would be poorly constrained. There were 193 earthquakes with≥ 10
polarities.

Reyners & McGinty (1999) calculated 117 focal mechanism solutions for Raukumara earth-
quakes. Those solutions provide an opportunity to compare our MAP estimates to an estab-
lished method of focal mechanism estimation. Thus we only select here events for which a
solution was obtained by Reyners & McGinty (1999).

Using these criteria, 87 earthquakes were selected for analysis. All 87 events occurred be-
tween July and December 1994, the period for which Reyners & McGinty (1999) re-analysed
polarity readings. Appendix B summarises the 87 Raukumara earthquakes. Hypocentre lo-
cation and origin time are as calculated by NonLinLoc, whilemagnitudes are taken from the
GeoNet catalogue.
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87
Events with
>= 10 polarities

193
117

Events with a solution
in Reyners &
McGinty (1999)

Our selected events

Figure 5.4: Diagram showing our event selection criteria. For an event to be selected, it
must have≥ 10 polarity readings, and must have a corresponding solution by Reyners &
McGinty (1999).

5.1.4 Posterior PDF Particulars

Recall that the posterior probability for the velocity model known case is given by Equa-
tion 3.21:

P (Θ|d, ω) ∝ P (Θ)

∫∫ m
∑

j=1

[

n
∏

i=1

π
1

2
(1+si)

ij (1 − πij)
1

2
(1−si)

]

P (σa)P (πp)dσa dπp

We calculate this posterior PDF for all 87 events, under the following conditions:

• a uniform prior onΘ: P (Θ) ∝ sin θ ⇔ P (R(Θ)) ∝ 1

• P (σa) = δ(σa−σa0
), andP (πp) = δ(πp−πp0

) whereδ denotes the Dirac delta function
andσa0

andπp0
are values forσa andπp, assumed to be known. Due to the properties

of the delta function (see Appendix A.9), the posterior PDF becomes

P (Θ|d, ω) ∝ P (Θ)
m
∑

j=1

[

n
∏

i=1

π
1

2
(1+yi)

ij (1 − πij)
1

2
(1−yi)

]

whereπij is given by

πij = π′
p0

+ (1 − 2π′
p0

)Φ

(

2(p̂ij · n̂)(p̂ij · û)

σa0

)

This approach is equivalent to taking fixed values forσa andπp. For this to be valid we
require appropriate values for these parameters.

While the rate of polarity errors varies between datasets, we take the value used by Hardebeck
& Shearer (2002), who found that around 20% of ambiguously determined polarities were
inconsistent. Thus we take a (conservative) value ofπ′

p0
= 0.2.

For the amplitude noiseσa we take a value ofσa0
= 1

6
, based on values in Zollo & Bernard

(1991) and Brillinger et al. (1980).
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5.1.5 Results

Here we present results for nine of the Raukumara events, selected to show three poorly
constrained solutions, three intermediately constrainedsolutions and three well constrained
solutions. The determinant of the concentration matrixD̂ is used as a measure of constraint.
For each event, identified by its unique CUSP id, we present:

• Hypocentre summary information according to NonLinLoc.

• Stereonet showing P-wave first motion polarities, along with the beachball correspond-
ing to the MAP estimate forΘ based on our Bayesian posterior PDF, and the beachball
corresponding to the solution found by Reyners & McGinty (1999).

• Posterior PDF of P- and T-axes.

• The estimates of the parameters of both the full and scalar concentration 8-Mode Matrix
Fisher distributions that provide the best fit to our posterior PDF.

• Marginal plots of the posterior PDFP (Θ|d, ω), and both the full and scalar concentra-
tion 8-Mode Matrix Fisher distributions.

Table 5.1 contains a summary of this information for all nineevents. A common method
of comparing two focal mechanism solutions is theangular difference, a, between the two
rotation matrices that define the solutions (see e.g. Hardebeck & Shearer 2002, Arnold &
Townend 2007, Kagan 2007). Section A.1.3 describes the calculation of the angular differ-
ence. In Table 5.1σΘ is given by Equation 2.5.

Table 5.1: Summary table of results for the selected Raukumara events.

CUSPID MAP Θ̂ κ̂ σΘ Reyners & McGintyΘ̂ a
1. 646630 (22.62◦, 71.94◦, 250.96◦) 2.66 28.86◦ (353.43◦, 82.50◦, 202.32◦) 51.40◦

2. 672060 (229.32◦, 68.49◦, 296.00◦) 2.55 29.55◦ (209.60◦, 67.27◦, 277.35◦) 21.40◦

3. 668273 (343.51◦, 74.54◦, 233.53◦) 2.75 28.29◦ (23.23◦, 60.28◦, 232.59◦) 42.45◦

4. 640980 (24.46◦, 80.72◦, 72.64◦) 3.52 24.60◦ (191.71◦, 103.94◦, 305.19◦) 20.23◦

5. 636036 (124.13◦, 72.01◦, 12.88◦) 3.63 24.17◦ (308.00◦, 90.00◦, 337.20◦) 20.59◦

6. 635767 (253.18◦, 29.80◦, 141.65◦) 3.85 23.39◦ (38.04◦, 127.58◦, 254.31◦) 32.77◦

7. 669233 (128.39◦, 59.81◦, 19.72◦) 6.13 17.98◦ (202.83◦, 105.35◦, 217.61◦) 6.95◦

8. 665895 (165.52◦, 81.30◦, 240.41◦) 6.55 17.32◦ (178.24◦, 82.20◦, 240.75◦) 12.71◦

9. 675146 (154.11◦, 72.14◦, 134.26◦) 6.50 17.40◦ (348.02◦, 96.42◦, 218.02◦) 18.38◦
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1. EVENT 646630

Date Time Latitude Longitude Depth Magnitude
01/09/1994 09:19:42.86 -38.467 178.098 25.879 2.8

Figure 5.5: Stereonet for event 646630 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (22.62◦, 71.94◦, 250.96◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =51.403◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 646630 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−7.748 4.199 −1.669
2.443 −0.853 4.232
1.352 −0.603 0.629



 , M̂ =





−0.787 0.614 0.058
0.061 −0.016 0.998
0.613 0.789 −0.025



 ,

Û =





0.837 −0.241 −0.241
−0.433 0.257 −0.864
0.334 0.936 0.111



 , D̂ =





9.786 0 0
0 3.445 0
0 0 0.074





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.974 0.208 0.089
0.075 −0.074 0.994
0.213 0.975 −0.025



 , κ̂ = 2.657
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1. EVENT 646630
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Figure 5.6: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 646630.
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2. EVENT 672060

Date Time Latitude Longitude Depth Magnitude
16/10/1994 09:43:48.61 -37.834 178.378 10.449 2.9

Figure 5.7: Stereonet for event 672060 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (229.32◦, 68.49◦, 296.00◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =21.403◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 672060 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−2.902 −2.207 0.858
−9.267 −5.909 −6.192
1.499 0.807 −0.870



 , M̂ =





−0.149 −0.780 0.607
−0.677 −0.367 −0.638
0.721 −0.506 −0.474



 ,

Û =





−0.754 −0.339 −0.339
−0.486 −0.290 −0.825
−0.443 0.895 −0.054



 , D̂ =





12.971 0 0
0 2.916 0
0 0 0.266





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.359 −0.760 0.542
−0.754 −0.106 −0.649
0.550 −0.641 −0.474



 , κ̂ = 2.548
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2. EVENT 672060

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)
co

s(
di

p)
 (

co
s(

δ)
)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

Figure 5.8: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 672060.
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3. EVENT 668273

Date Time Latitude Longitude Depth Magnitude
02/10/1994 22:38:48.96 -37.866 178.084 30.957 2.9

Figure 5.9: Stereonet for event 668273 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (343.51◦, 74.54◦, 233.53◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =42.45◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 668273 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−1.809 −0.436 0.370
1.483 1.419 3.373
7.223 3.799 −1.185



 , M̂ =





−0.646 0.761 −0.056
0.180 0.224 0.958
0.741 0.609 −0.282



 ,

Û =





0.882 −0.025 −0.025
0.467 0.173 −0.867
−0.060 0.985 0.164



 , D̂ =





8.600 0 0
0 3.612 0
0 0 0.422





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.432 0.902 0.017
0.220 0.087 0.972
0.875 0.424 −0.282



 , κ̂ = 2.752
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3. EVENT 668273
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Figure 5.10: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 668273.
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4. EVENT 640980

Date Time Latitude Longitude Depth Magnitude
21/08/1994 13:36:52.95 -38.198 178.14 18.018 2.8

Figure 5.11: Stereonet for event 640980 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (24.46◦, 80.72◦, 72.64◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =20.229◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 640980 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





8.762 −5.091 −8.509
−4.196 1.625 5.049
−6.893 0.833 1.831



 , M̂ =





0.379 −0.794 −0.475
−0.122 −0.552 0.825
−0.917 −0.254 −0.306



 ,

Û =





−0.725 0.689 0.689
0.322 0.351 0.879
0.609 0.634 −0.476



 , D̂ =





16.072 0 0
0 3.599 0
0 0 1.067





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.389 −0.737 −0.553
−0.112 −0.633 0.766
−0.914 −0.235 −0.306



 , κ̂ = 3.524
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4. EVENT 640980
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Figure 5.12: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 640980.
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5. EVENT 636036

Date Time Latitude Longitude Depth Magnitude
03/08/1994 15:47:23.60 -38.518 177.848 33.398 2.8

Figure 5.13: Stereonet for event 636036 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (124.13◦, 72.01◦, 12.88◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =20.591◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 636036 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−4.127 2.514 −1.483
10.471 −2.686 −6.978
1.732 −1.610 −1.888



 , M̂ =





−0.543 0.495 −0.679
0.796 0.045 −0.604
−0.268 −0.868 −0.419



 ,

Û =





0.833 0.353 0.353
−0.258 −0.432 −0.864
−0.489 0.830 −0.269



 , D̂ =





13.553 0 0
0 3.896 0
0 0 1.190





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.574 0.449 −0.685
0.791 0.087 −0.606
−0.213 −0.889 −0.419



 , κ̂ = 3.635
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5. EVENT 636036
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Figure 5.14: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 636036.
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6. EVENT 635767

Date Time Latitude Longitude Depth Magnitude
31/07/1994 05:58:40.01 -38.361 177.872 23.73 3.0

Figure 5.15: Stereonet for event 635767 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (253.18◦, 29.80◦, 141.65◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =32.772◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 635767 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−0.765 0.470 2.140
7.809 4.612 −6.472
0.995 2.659 −6.776



 , M̂ =





−0.231 0.843 0.486
0.877 0.397 −0.271
−0.421 0.364 −0.831



 ,

Û =





−0.565 −0.762 −0.762
−0.405 −0.078 −0.911
0.719 −0.643 −0.265



 , D̂ =





12.848 0 0
0 4.100 0
0 0 1.276





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.183 0.876 0.446
0.897 0.335 −0.289
−0.403 0.347 −0.831



 , κ̂ = 3.852
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6. EVENT 635767
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Figure 5.16: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 635767.
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7. EVENT 669233

Date Time Latitude Longitude Depth Magnitude
03/10/1994 20:51:10.99 -38.544 177.814 26.123 3.0

Figure 5.17: Stereonet for event 669233 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (128.39◦, 59.81◦, 19.72◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =6.946◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 669233 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−6.597 5.783 −13.371
8.347 3.209 −7.075
−4.443 0.706 −4.984



 , M̂ =





−0.466 0.655 −0.595
0.829 0.087 −0.553
−0.310 −0.751 −0.583



 ,

Û =





0.284 0.958 0.958
−0.359 0.154 0.920
0.889 −0.243 0.388



 , D̂ =





17.661 0 0
0 10.842 0
0 0 1.177





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.461 0.615 −0.640
0.829 0.042 −0.557
−0.316 −0.787 −0.583



 , κ̂ = 6.130
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7. EVENT 669233
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Figure 5.18: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 669233.
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8. EVENT 665895

Date Time Latitude Longitude Depth Magnitude
09/10/1994 11:34:02.22 -38.549 178.062 20.898 3.0

Figure 5.19: Stereonet for event 665895 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (165.52◦, 81.30◦, 240.41◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =12.709◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 665895 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





11.004 −6.181 −6.035
−3.193 −0.898 −9.477
9.127 −2.334 −1.959



 , M̂ =





0.486 −0.835 −0.258
−0.306 0.114 −0.945
0.819 0.538 −0.200



 ,

Û =





0.822 0.474 0.474
−0.387 0.056 −0.921
−0.418 0.879 0.229



 , D̂ =





16.815 0 0
0 10.206 0
0 0 1.485





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.512 −0.814 −0.275
−0.310 0.123 −0.943
0.801 0.568 −0.200



 , κ̂ = 6.551
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8. EVENT 665895

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)
co

s(
di

p)
 (

co
s(

δ)
)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

Figure 5.20: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 665895.
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9. EVENT 675146

Date Time Latitude Longitude Depth Magnitude
24/10/1994 01:18:43.58 -38.539 178.098 25.488 2.9

Figure 5.21: Stereonet for event 675146 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (154.11◦, 72.14◦, 134.26◦)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular difference between the two
solutions =18.377◦. Blue points are compressions, red points are dilatations.PT contour
plot for event 675146 (right). Orange denotes the P-axis, green the T-axis. The circle
denotes the MAP estimate, while the triangle denotes the solution given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





15.673 5.546 −1.024
−6.887 −5.436 −11.816
−7.719 −1.964 −1.827



 , M̂ =





0.741 0.554 −0.381
−0.137 −0.430 −0.892
−0.658 0.713 −0.243



 ,

Û =





0.873 −0.372 −0.372
0.375 0.099 −0.922
0.312 0.923 0.226



 , D̂ =





20.998 0 0
0 10.892 0
0 0 1.124





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.775 0.521 −0.357
−0.162 −0.382 −0.910
−0.610 0.763 −0.243



 , κ̂ = 6.500
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9. EVENT 675146
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Figure 5.22: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 675146.
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The first event (CUSPID 646630, our first poorly constrained event) shows a large disparity
between the MAP solution ofΘ and that of Reyners & McGinty (1999, RM99), indicated
by the angular difference of51.403◦ and the fairly large disparity between the sets of nodal
planes on the stereonet (Figure 5.5, p71). The nodal planes should separate completely the
compressions (blue) and dilatations (red), as the MAP solution does. The probability con-
tours of the P-axis appear bimodal, with a mode near both the MAP estimate and the RM99
estimate of̂vP . The 8-mode Matrix Fisher distribution approximates fairly well the Bayesian
posterior PDF (Figure 5.6, p72), while the Matrix Fisher distribution with scalar concentra-
tion parameter is a slightly poorer approximation of the empirical distribution, e.g. it cannot
reproduce the bimodal maxima in the distribution of the rake.

The second event (CUSPID 672060) shows reasonable agreement between the MAP and
RM99 solutions. The MAP estimate completely separates the compressions and dilatations
(see Figure 5.7, p73) whereas the RM99 solution does not. The8-mode Matrix Fisher ap-
proximation is again close to the empirical distribution (Figure 5.8, p74). The third event
(CUSPID 668273) again has a large disparity between the MAP estimate and that of RM99,
and a misfit polarity is evident on the stereonet, near(φ, θ) = (π/2, π/2) (see Figure 5.9,
p75). The location of this dilatational point (red) amongsta group of compressions (blue)
indicates it may have been an incorrectly read polarity.

In general for these three poorly constrained events, we have seen large disparity between the
MAP estimates and the RM99 estimates ofΘ. Further, the P- and T-axis contours are poorly
constrained and can cross the nodal planes. The 8-mode Matrix Fisher distribution provides
a reasonable approximation to the empirical distribution,and the Matrix Fisher distribution
with scalar concentration parameter provides a slightly poorer approximation. The low values
of κ̂ (2.66, 2.55, and 2.75, for Events 1, 2 and 3 respectively), give an overall indication of the
poor constraint on the posterior PDFs.

The first intermediately constrained event (CUSPID 640980)shows reasonable agreement
between the MAP and RM99 solutions ofΘ. There is one polarity reading that crosses a
nodal plane boundary (see Figure 5.11, p77). The P- and T-axis contour plots appear better
constrained than the previous three events, as demonstrated by the narrower spread around
the modes. The 8-mode PDF provides a good fit to the empirical distribution (Figure 5.12,
p78). The second (CUSPID 636036) intermediately constrained event exhibits a similarly
constrained posterior PDF, and here the scalar concentration PDF appears to be almost as
good an approximation as the full Matrix Fisher (Figure 5.14, p80). The third (CUSPID
635767) intermediately constrained event shows less agreement between the MAP solution of
Θ and that of RM99 (see Figure 5.15, p81), but again the P- and T-axis plots are fairly well
constrained, and the Matrix Fisher approximations show good agreement with the Bayesian
posterior PDF (Figure 5.16, p82).

The first well constrained solution (CUSPID 669233) shows very good agreement between the
MAP and RM99 solutions ofΘ, with an angular difference of just6.946◦ (see Figure 5.17,
p83). Both Matrix Fisher approximations are very close to the Bayesian posterior PDF (Fig-
ure 5.18, p5.18). The same is true of both the second (CUSPID 665895) and third (CUSPID
675146) well constrained events. In the third of these events there appears to be one misfit
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polarity (see the upper left quadrant of Figure 5.21, p87). The well constrained events are
characterised by higĥκ (6.13, 6.55 and 6.50) compared to the poorer constrained events. The
P- and T-axis contours of all three events are tightly constrained. In general the well con-
strained events have a higher number of polarity readings and better focal sphere coverage
than the poorly and intermediately constrained events.

The better constrained events agree closely the established focal mechanism solutions of
RM99. The Matrix Fisher approximation tends to match well the Bayesian posterior PDF,
with the match appearing better for well constrained events. The full 8-mode Matrix Fisher
distribution with parameter matrix̂F generally provides a better fit than the scalar concentra-
tion version, at the cost of longer computation time and increased complexity, although the
difference in quality of fit is small for the better constrained events.

Figure 5.23 shows a map of all 87 MAP focal mechanism estimates obtained in this study.
The map corresponds closely to Figure 5.24, the solutions obtained in the RM99 study, except
for some small discrepancies which we discuss below.

Figure 5.25 shows a histogram of angular differences between our solutions and those of
RM99. For 75% of events, the solutions are within27.3◦ of each other, indicating that solu-
tions obtained by our method are generally similar to those obtained by RM99. The angular
differences between the two sets may be partly explained by the different focal mechanism
estimation methodology used and the hypocentral uncertainties considered here, but may also
be partly explained by differences in hypocentre location resulting from our interpolation of
the Reyners et al. (1999) velocity model to a constant grid spacing. Figure 5.26 shows a plot
of angular difference between solutions versus the distance between the epicentres as located
by RM99 and NonLinLoc in this study. There is no obvious relationship evident.
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Figure 5.23: Map of Raukumara showing MAP focal mechanism estimates obtained using
our method. Hypocentre locations are as calculated by NonLinLoc. Beachballs are scaled
relative to their magnitudes. The dark red line indicates the boundary of the velocity
model.
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Figure 5.24: Map of Raukumara showing focal mechanisms obtained by Reyners &
McGinty (1999). Hypocentre locations also from Reyners & McGinty (1999). Beach-
balls are scaled relative to their magnitudes. The dark red line indicates the boundary of
the velocity model.
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Figure 5.25: Histogram ofn = 87 angular differences between our MAP focal mechanism
estimates and the focal mechanisms of Reyners & McGinty (1999).

5.2 Velocity model unknown — Kawerau

In this Section the Bayesian model is applied in the situation in which neither the hypocentre
location of the earthquake nor the velocity model is known, with applications to data from the
Kawerau region of New Zealand.

5.2.1 Tectonic Setting

The Kawerau geothermal field is situated in the eastern TaupoVolcanic Zone (TVZ), in the
North Island of New Zealand. The field, a roughly circular area of 19-35 km2, is in the most
seismically active part of the TVZ, where many shallow earthquakes occur. The age of the
field has been estimated at around 200,000 years, and its energy output estimated at 100 MW
(Bibby et al. 1995). The Kawerau geothermal field lies to the east of the Taupo fault belt, and
to the west of the North Island dextral fault belt (Clarke 2007). As with the Raukumara Penin-
sula, seismicity here is caused by the Pacific plate subducting underneath the Australian plate
beneath the region. Previous focal mechanism studies in theTVZ have found mechanisms
that are predominantly normal or normal with a strike-slip component, with large variation in
strike (Hurst et al. 2002).
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Figure 5.26: Plot of angular difference versus distance between epicentres for our MAP
focal mechanism estimates and the focal mechanisms of Reyners & McGinty (1999).

5.2.2 Velocity Models

The velocity models used in this section were obtained by Clarke (2007) using Velest (Kissling
1995) (see Section 4.3) and phase data from GeoNet (see Section 5.2.3).

We drew a random sample of velocity models using a method described by Clarke (2007),
which we take as our priorP (υ) for the velocity model. Twelve layer boundaries were selected
at –3, 0, 2, 4, 6, 8, 10, 15, 20, 25, 30 and 40 km depth. Velest does not adjust the position of
the boundaries in its procedure. The procedure for assigning initial velocities was:

• Picku1 ∼ Uniform(1, 6) - the velocity in km/s for the top (-3km) layer.

• Picku2 ∼ Uniform(6, 10) - the velocity in km/s for the bottom (40km) layer.

• Picku3 ∼ Uniform(u1, u2) - an intermediate velocity in km/s for the 10km layer.

• Pick a sample of size 5 from Uniform(u1, u3), order from lowest to highest, and assign
as velocities in km/s to the 0, 2, 4, 6 and 8km layers respectively.

• Pick a sample of size 4 from Uniform(u3, u2), order from lowest to highest, and assign
as velocities in km/s to the 15, 20, 25 and 30km layers respectively.

94



176˚

176˚

177˚

177˚

-39˚ -39˚

-38˚ -38˚

-37˚ -37˚

176˚

176˚

177˚

177˚

-39˚ -39˚

-38˚ -38˚

-37˚ -37˚

0 50

km

Figure 5.27: Map of the Kawerau area. Lines show the boundaryof Clarke (2007)’s
selected earthquakes (yellow line) and the boundary imposed on the velocity models in
this study (dark red line). Symbols show the national seismograph network (red squares),
strong motion network (yellow squares), Rotorua network (green triangles), temporary
stations (white triangles), and other networks (blue triangles).
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Selection of the intermediate velocity third means the models will have different gradients in
the upper and lower parts. This ensures a wide range of input models are selected (Clarke
2007).

Clarke (2007) generated approximately 1000 P-wave velocity models in this manner, and
used these as a basis for joint P- and S-wave velocity model inversions using Velest. Ini-
tial P-wave velocities for this joint procedure were randomly selected within 1 standard de-
viation of the mean in each layer from the P-wave only models.Initial S-wave velocities
were chosen randomly, in a similar manner as the initial random P-wave models, except that
u1 ∼ Uniform(0, 3), u2 ∼ Uniform(3, 9), andVp ≥ Vs in every layer. For our hypocentre
location routine we use the models output from the joint P- and S-wave inversion. These 1000
models are shown in Figure 5.28.
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Figure 5.28: Plot of 1000 P- (black) and S-wave (blue) velocity models for Kawerau, as
obtained by (Clarke 2007) using Velest. The solid red line marks the mean velocity in
each layer, while the dashed lines mark one standard deviation from the mean.

Velest also outputs station corrections for each model, which are values oftres
i for a given ve-

locity model and stationi, averaged over all events (Kissling 1995). These station corrections
adjust for the true 3D variation in velocity that a 1D model cannot account for.

We convert the 1D velocity models to 3D for use with NonLinLoc, using theVel2Grid pro-
gram. This requires us to select the bounds for the model, as a1D velocity model inherently
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has none. As stations must be inside the model bounds forGrid2Time to calculate their
take-off angles, we use the tightest constraints on latitude and longitude such that all stations
for which polarities are recorded are encompassed by the model. This gives us latitude bounds
of −37.73◦ to−38.92◦, and longitude bounds of176.26◦ to 177.12◦, while we take a depth of
50 km as a lower boundary.

5.2.3 Data

Since the velocity models we will use are based on the research of Clarke (2007), we use
here the same phase data that was used in that study to construct the velocity models. Using
GeoNet phase data, Clarke (2007) selected earthquakes in the Kawerau region, with hypocen-
tre latitudes between−38◦ and−38.2◦, longitudes between175.55◦ and176.85◦, and depths
shallower than 20 km. From this set of 1875 earthquakes, the most reliable events were se-
lected. The selection criteria were:

• The event must have a minimum of 8 P-wave phases and 3 S-wave phases to ensure it
is able to be located reliably.

• Seismic stations receiving waves from the event must have a maximum azimuthal gap
of less than180◦ to guard against epicentral bias.

• The nearest station to the event must be maximum of 10km away from the epicentre
(as determined by the GeoNet hypocentre location) to ensuredepth is determined accu-
rately.

Meanwhile, we apply a further criterion that an event must have seven or more polarity read-
ings to ensure adequate coverage of the focal sphere. This number is slightly relaxed from the
value of 10 used in Section 5.1, as the GeoNet data contains relatively few polarity readings.
This selection criterion narrows our set of earthquakes to seven.

5.2.4 Posterior PDF Particulars

We assign equal prior weight to each of the∼ 1000 velocity models, and these together
constitute our prior for the velocity modelP (υ). Further work can and should be put into
establishing a better motivated prior for the velocity model, however for the purposes of this
project we have simply used the results of Clarke (2007) to provideP (υ). Thus our posterior
PDF becomes

P (Θ|d, ω) ∝ P (Θ)

p
∑

k=1

m
∑

j=1

[

n
∏

i=1

π
1

2
(1+yi)

ijk (1 − πijk)
1

2
(1−yi)

]

where

πijk = π′
p0

+ (1 − 2π′
p0

)Φ

(

2(p̂ijk · n̂)(p̂ijk · û)

σa0

)

and we adopt here the same set values forπ′
p andσa that were used for the velocity model

known case:π′
p0

= 0.2 andσa0
= 1

6
.
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5.2.5 Results

We present here results in the same format as in Section 5.1.5, for all seven events that meet our
selection criteria. For each event we present first the velocity model known results, followed
by the results in the velocity model unknown case. In the velocity model known case, we use
here the mean velocity model (see Table 5.2) given by the meanvelocity in each layer over
the set of 1000 models. The results of this will be used as a basis to which we can compare
the effect of adding uncertainty over the velocity structure into our probability model.

Table 5.2: Mean P- and S-wave velocity models with corresponding standard deviations
for Kawerau.

Depth
(km)

P-wave velocity
Vp (km/s)

Standard deviation
(km/s)

S-wave velocity
Vs (km/s)

Standard deviation
(km/s)

-3 4.254 0.275 2.481 0.297
0 4.485 0.372 2.620 0.247
2 4.973 0.153 2.756 0.232
4 5.335 0.147 3.124 0.131
6 5.808 0.074 3.396 0.126
8 5.918 0.068 3.530 0.111
10 6.073 0.040 3.627 0.074
15 6.113 0.055 3.744 0.107
20 6.228 0.123 3.828 0.121
25 6.649 0.253 3.956 0.151
30 7.389 0.228 4.097 0.176
40 7.980 0.422 4.477 0.350

We do not have previously published focal mechanism solutions for our selected events, al-
though there have been previous focal mechanism studies in the TVZ (see e.g. Hurst et al.
2002), to which we may compare the fault types of our solutions. In addition we use HASH
by Hardebeck & Shearer (2002) as a means of comparing solutions from an established focal
mechanism estimation method to our MAP solutions for the selected events. Table 5.3 con-
tains a summary of the results for our seven selected events:the estimates ofΘ for the VMK
and VMU cases, the HASH estimate ofΘ, and the angular differences between the VMU
MAP estimates (our maximal model) and the VMK and HASH estimates.

In the velocity model unknown case we slightly alter the stereonets, as we have sampled
hypocentre locations from∼ 1000 runs of NonLinLoc. This means that duplicate hypocentre
locations, and therefore points on the focal sphere, can occur. Instead of simply overplotting,
we take a grid of points over spherical coordinates(φ, θ), and count the number of points in
each cell. This gives a probability of a first motion for each cell, from which we can plot the
contours of the first motions.
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Table 5.3: Summary table of results for the selected Kawerauevents.

Velocity Model Unknown Velocity Model Known HASH Angular difference a

CUSPID MAP Θ̂ κ̂ σΘ MAP Θ̂ κ̂ σΘ Θ̂ HASH ↔ VMU VMK ↔ VMU
1. 731019 (127.20◦, 46.83◦, 357.70◦) 2.54 29.62◦ (130.88◦, 46.28◦, 1.28◦) 2.54 29.57◦ (205◦, 57◦,−161◦) 39.16◦ 2.92◦

2. 745516 (219.13◦, 70.46◦, 213.00◦) 2.58 29.35◦ (219.60◦, 71.43◦, 214.61◦) 2.71 28.52◦ (212◦, 83◦,−172◦) 27.34◦ 1.81◦

3. 788921 (250.38◦, 95.81◦, 170.73◦) 2.30 31.34◦ (71.99◦, 77.54◦, 200.30◦) 2.69 28.65◦ (78◦, 67◦,−167◦) 18.78◦ 12.75◦

4. 802105 (225.16◦, 62.10◦, 154.55◦) 2.30 31.32◦ (327.83◦, 67.96◦, 31.52◦) 3.14 26.25◦ (48◦, 82◦,−155◦) 36.01◦ 1.12◦

5. 802106 (224.40◦, 65.06◦, 181.43◦) 2.32 31.18◦ (132.93◦, 87.61◦, 334.19◦) 2.59 29.28◦ (39◦, 78◦, 172◦) 37.98◦ 1.63◦

6. 1697233 (233.93◦, 29.02◦, 264.41◦) 2.10 32.95◦ (60.65◦, 62.05◦, 273.25◦) 2.75 28.29◦ (62◦, 20◦,−106◦) 45.75◦ 0.96◦

7. 1728730 (273.08◦, 32.38◦, 312.36◦) 2.00 33.86◦ (278.70◦, 35.65◦, 317.51◦) 2.36 30.89◦ (31◦, 84◦, 145◦) 99.01◦ 4.55◦



1. EVENT 731019 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
06/02/1995 11:50:25.69 -38.101 176.689 -3.000 2.9

Figure 5.29: Stereonet for event 731019 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (130.88◦, 46.28◦, 1.28◦)] while the dotted line indicates
the solution given by HASH. Angular difference between the two solutions =41.852◦.
Blue points are compressions, red points are dilatations. PT contour plot for event 731019
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−2.458 4.127 −6.982
2.044 2.162 −3.319
−0.235 0.632 −1.818



 , M̂ =





−0.542 0.557 −0.630
0.840 0.390 −0.378
0.035 −0.734 −0.679



 ,

Û =





0.158 0.986 0.986
−0.501 0.126 0.856
0.851 −0.109 0.514



 , D̂ =





9.326 0 0
0 2.886 0
0 0 0.390





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.552 0.340 −0.761
0.832 0.285 −0.476
0.055 −0.896 −0.679



 , κ̂ = 2.545
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1. EVENT 731019 – Velocity model known
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Figure 5.30: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 731019.
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1. EVENT 731019 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
06/02/1995 11:50:25.69 -38.101 176.689 0.000 2.9

Figure 5.31: Stereonet for event 731019 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (127.20◦, 46.83◦, 357.70◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =39.156◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 731019
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−2.363 4.081 −6.857
2.075 2.188 −3.334
−0.186 0.646 −1.820



 , M̂ =





−0.543 0.557 −0.629
0.839 0.399 −0.371
0.045 −0.729 −0.683



 ,

Û =





0.145 0.988 0.988
−0.505 0.119 0.855
0.851 −0.098 0.516



 , D̂ =





9.205 0 0
0 2.889 0
0 0 0.387





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.552 0.340 −0.761
0.831 0.295 −0.471
0.064 −0.893 −0.683



 , κ̂ = 2.538
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1. EVENT 731019 – Velocity model unknown
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Figure 5.32: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 731019.
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2. EVENT 745516 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
18/02/1995 03:48:27.91 -38.102 176.707 2.000 2.5

Figure 5.33: Stereonet for event 745516 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (219.60◦, 71.43◦, 214.61◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =28.398◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 745516
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





7.350 −3.352 2.966
4.250 −3.585 −3.211
0.954 −0.405 −0.309



 , M̂ =





0.748 −0.298 0.593
0.346 −0.588 −0.731
0.567 0.752 −0.336



 ,

Û =





0.871 0.068 0.068
−0.486 0.276 −0.829
0.078 0.959 0.273



 , D̂ =





9.806 0 0
0 4.500 0
0 0 0.215





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.824 −0.117 0.555
0.507 −0.284 −0.814
0.253 0.952 −0.336



 , κ̂ = 2.713
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2. EVENT 745516 – Velocity model known
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Figure 5.34: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 745516.
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2. EVENT 745516 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
18/02/1995 03:48:27.91 -38.102 176.707 4.000 2.5

Figure 5.35: Stereonet for event 745516 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (219.13◦, 70.46◦, 213.00◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =27.341◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 745516
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





6.162 −3.302 1.840
4.067 −3.188 −2.859
1.299 −0.392 −0.033



 , M̂ =





0.686 −0.425 0.590
0.365 −0.501 −0.785
0.629 0.754 −0.189



 ,

Û =





0.853 0.133 0.133
−0.521 0.164 −0.838
−0.029 0.978 0.209



 , D̂ =





8.766 0 0
0 3.468 0
0 0 0.337





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.792 −0.254 0.555
0.486 −0.290 −0.825
0.371 0.923 −0.189



 , κ̂ = 2.580
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2. EVENT 745516 – Velocity model unknown

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cos(dip) (cos(δ))

ra
ke

 (
λ)

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)

co
s(

di
p)

 (
co

s(
δ)

)

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

strike (ξ)
co

s(
di

p)
 (

co
s(

δ)
)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

strike (ξ)

ra
ke

 (
λ)

Figure 5.36: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 745516.
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3. EVENT 788921 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
01/04/1995 11:28:04.73 -38.178 176.599 6.000 2.4

Figure 5.37: Stereonet for event 788921 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (71.99◦, 77.54◦, 200.30◦)] while the dotted line indicates
the solution given by HASH. Angular difference between the two solutions =15.068◦.
Blue points are compressions, red points are dilatations. PT contour plot for event 788921
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−3.783 −5.117 −10.223
−3.307 0.314 −0.500
0.996 −0.716 −1.052



 , M̂ =





−0.276 −0.532 −0.800
−0.825 0.558 −0.086
0.492 0.637 −0.594



 ,

Û =





−0.334 0.931 0.931
−0.419 −0.289 −0.861
−0.845 −0.225 0.486



 , D̂ =





12.150 0 0
0 3.358 0
0 0 0.047





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.237 −0.144 −0.961
−0.893 0.421 0.157
0.382 0.896 −0.594



 , κ̂ = 2.691
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3. EVENT 788921 – Velocity model known
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Figure 5.38: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 788921.
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3. EVENT 788921 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
01/04/1995 11:28:04.73 -38.178 176.599 8.000 2.4

Figure 5.39: Stereonet for event 788921 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (250.38◦, 95.81◦, 170.73◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =18.778◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 788921
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





2.098 −2.388 4.271
1.091 1.425 −2.277
0.604 2.279 −2.130



 , M̂ =





0.673 −0.211 0.709
0.693 −0.156 −0.704
0.259 0.965 0.041



 ,

Û =





0.154 0.960 0.960
−0.546 0.280 0.789
0.823 0.006 0.568



 , D̂ =





6.410 0 0
0 2.320 0
0 0 0.619





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.678 −0.118 0.726
0.715 −0.124 −0.688
0.171 0.985 0.041



 , κ̂ = 2.297
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3. EVENT 788921 – Velocity model unknown
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Figure 5.40: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 788921.
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4. EVENT 802105 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
03/05/1995 16:10:22.26 -38.174 176.645 10.000 2.5

Figure 5.41: Stereonet for event 802105 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (327.83◦, 67.96◦, 31.52◦)] while the dotted line indicates
the solution given by HASH. Angular difference between the two solutions =37.105◦.
Blue points are compressions, red points are dilatations. PT contour plot for event 802105
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





2.452 −3.531 5.088
−3.806 −3.843 7.715
−1.575 −0.132 −0.743



 , M̂ =





0.645 −0.667 0.373
−0.620 −0.173 0.765
−0.446 −0.725 −0.525



 ,

Û =





−0.178 0.978 0.978
−0.476 −0.186 0.860
0.861 0.100 0.499



 , D̂ =





10.746 0 0
0 4.495 0
0 0 0.707





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.642 −0.609 0.466
−0.620 −0.055 0.782
−0.450 −0.792 −0.525



 , κ̂ = 3.141
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4. EVENT 802105 – Velocity model known
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Figure 5.42: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 802105.
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4. EVENT 802105 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
03/05/1995 16:10:22.26 -38.174 176.645 15.000 2.5

Figure 5.43: Stereonet for event 802105 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (225.16◦, 62.10◦, 154.55◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =36.007◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 802105
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





2.346 −3.011 5.193
1.022 1.588 −2.882
0.207 1.596 −1.742



 , M̂ =





0.659 −0.273 0.701
0.718 −0.048 −0.694
0.223 0.961 0.164



 ,

Û =





0.209 0.977 0.977
−0.505 0.152 0.850
0.837 −0.153 0.525



 , D̂ =





7.375 0 0
0 2.100 0
0 0 0.485





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.677 −0.078 0.731
0.721 −0.123 −0.681
0.143 0.989 0.164



 , κ̂ = 2.299
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4. EVENT 802105 – Velocity model unknown
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Figure 5.44: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 802105.
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5. EVENT 802106 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
03/05/1995 16:13:44.42 -38.174 176.645 20.000 2.4

Figure 5.45: Stereonet for event 802106 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (132.93◦, 87.61◦, 334.19◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =38.563◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 802106
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−0.507 3.145 −5.190
4.740 4.235 −8.225
1.220 0.485 −0.775



 , M̂ =





−0.624 0.596 −0.505
0.678 0.090 −0.730
0.390 0.798 0.461



 ,

Û =





−0.344 0.933 0.933
−0.445 −0.257 0.858
0.827 0.250 0.504



 , D̂ =





11.767 0 0
0 2.994 0
0 0 0.155





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.633 −0.339 −0.696
0.684 0.176 −0.708
0.362 −0.924 0.461



 , κ̂ = 2.591
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5. EVENT 802106 – Velocity model known
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Figure 5.46: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 802106.
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5. EVENT 802106 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
03/05/1995 16:13:44.42 -38.174 176.645 25.000 2.4

Figure 5.47: Stereonet for event 802106 (left). The solid dark line indicates the MAP focal
mechanism solution[Θ = (224.40◦, 65.06◦, 181.43◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =37.975◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 802106
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





2.423 −3.058 5.097
1.157 1.525 −3.044
0.094 1.395 −1.624



 , M̂ =





0.667 −0.287 0.688
0.711 −0.032 −0.703
0.224 0.957 0.183



 ,

Û =





0.216 0.975 0.975
−0.501 0.060 0.863
0.838 −0.216 0.502



 , D̂ =





7.320 0 0
0 2.227 0
0 0 0.424





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.686 −0.055 0.726
0.715 −0.135 −0.686
0.135 0.989 0.183



 , κ̂ = 2.318

118



5. EVENT 802106 – Velocity model unknown
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Figure 5.48: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 802106.
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6. EVENT 1697233 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
27/02/2001 11:51:15.60 -38.124 176.701 30.000 2.6

Figure 5.49: Stereonet for event 1697233 (left). The solid dark line indicates the MAP fo-
cal mechanism solution[Θ = (60.65◦, 62.05◦, 273.25◦)] while the dotted line indicates the
solution given by HASH. Angular difference between the two solutions =46.511◦. Blue
points are compressions, red points are dilatations. PT contour plot for event 1697233
(right). Orange denotes the P-axis, green the T-axis. The circle denotes the MAP esti-
mate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





−4.707 3.198 −3.708
0.267 0.486 1.380
5.479 −3.001 −0.394



 , M̂ =





−0.292 0.562 −0.774
0.388 0.809 0.441
0.874 −0.172 −0.454



 ,

Û =





0.817 −0.271 −0.271
−0.497 0.113 −0.860
0.291 0.956 −0.042



 , D̂ =





8.769 0 0
0 3.190 0
0 0 0.671





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





−0.378 0.448 −0.810
0.246 0.892 0.379
0.892 −0.056 −0.454



 , κ̂ = 2.752
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6. EVENT 1697233 – Velocity model known
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Figure 5.50: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 1697233.
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6. EVENT 1697233 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
27/02/2001 11:51:15.60 -38.124 176.701 40.000 2.6

Figure 5.51: Stereonet for event 1697233 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (233.93◦, 29.02◦, 264.41◦)] while the dotted line in-
dicates the solution given by HASH. Angular difference between the two solutions =
45.754◦. Blue points are compressions, red points are dilatations.PT contour plot for
event 1697233 (right). Orange denotes the P-axis, green theT-axis. The circle denotes
the MAP estimate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





5.432 −3.776 2.941
2.514 −1.757 −0.806
0.040 0.223 −0.549



 , M̂ =





0.705 −0.355 0.614
0.393 −0.525 −0.755
0.591 0.773 −0.230



 ,

Û =





0.776 −0.281 −0.281
−0.541 0.166 −0.825
0.326 0.945 −0.023



 , D̂ =





7.684 0 0
0 1.932 0
0 0 0.201





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.752 −0.027 0.659
0.645 −0.179 −0.743
0.138 0.983 −0.230



 , κ̂ = 2.102
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6. EVENT 1697233 – Velocity model unknown
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Figure 5.52: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 1697233.
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7. EVENT 1728730 – Velocity model known

Date Time Latitude Longitude Depth Magnitude
01/05/2001 09:53:26.68 -38.152 176.695 -3.000 2.3

Figure 5.53: Stereonet for event 1728730 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (278.70◦, 35.65◦, 317.51◦)] while the dotted line in-
dicates the solution given by HASH. Angular difference between the two solutions =
95.427◦. Blue points are compressions, red points are dilatations.PT contour plot for
event 1728730 (right). Orange denotes the P-axis, green theT-axis. The circle denotes
the MAP estimate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





2.963 −3.600 5.780
−1.582 −0.375 0.022
−0.215 2.923 −4.952



 , M̂ =





0.650 −0.680 0.338
−0.627 −0.732 −0.267
0.429 −0.039 −0.902



 ,

Û =





0.273 0.960 0.960
−0.500 0.193 0.844
0.822 −0.202 0.533



 , D̂ =





9.244 0 0
0 2.315 0
0 0 0.296





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.699 −0.507 0.504
−0.564 −0.824 −0.047
0.439 −0.251 −0.902



 , κ̂ = 2.356
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7. EVENT 1728730 – Velocity model known
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Figure 5.54: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 1728730.
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7. EVENT 1728730 – Velocity model unknown

Date Time Latitude Longitude Depth Magnitude
01/05/2001 09:53:26.68 -38.152 176.695 0.000 2.3

Figure 5.55: Stereonet for event 1728730 (left). The solid dark line indicates the MAP
focal mechanism solution[Θ = (273.08◦, 32.38◦, 312.36◦)] while the dotted line in-
dicates the solution given by HASH. Angular difference between the two solutions =
99.014◦. Blue points are compressions, red points are dilatations.PT contour plot for
event 1728730 (right). Orange denotes the P-axis, green theT-axis. The circle denotes
the MAP estimate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

F̂ =





4.807 −3.504 2.717
2.076 −1.757 −1.118
−1.086 0.920 −0.404



 , M̂ =





0.751 −0.294 0.592
0.494 −0.344 −0.798
0.438 0.892 −0.113



 ,

Û =





0.759 −0.202 −0.202
−0.568 0.262 −0.780
0.320 0.944 0.084



 , D̂ =





7.028 0 0
0 2.050 0
0 0 0.081





8-mode Matrix Fisher Distribution with scalar concentration:

M̂ =





0.832 −0.054 0.552
0.458 −0.494 −0.739
0.313 0.868 −0.113



 , κ̂ = 2.004
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7. EVENT 1728730 – Velocity model unknown
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Figure 5.56: Marginal PDF plots for Bayesian posterior PDFP (Θ|d, ω) (left), fitted 8-

mode Matrix Fisher distributionP (Θ|F̂) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameterP (Θ|M̂, κ̂) (right) for event 1728730.
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For the first event (CUSPID 731019) there is very little difference between the VMK and
VMU results. In both cases the HASH solution is somewhat distant (30◦ − 40◦) from our
MAP solution, but our MAP solution again fits the first motionswell (see Figures 5.29, p100
and 5.31, p102). There is an angular difference of just2.92◦ degrees between the VMK and
VMU MAP solutions. The posterior and Matrix Fisher PDFs are similar for both cases (Fig-
ures 5.30, p101 and 5.32, p103), with the concentration parameters in the VMU case being
slightly lower — presumably caused by the added uncertaintyin velocity model. In both cases
the full Matrix Fisher distribution provides a better fit than the scalar concentration version.

The second event (CUSPID 745516) again exhibits very littledifference between the VMK
and VMU results (pp 104-107). The HASH estimates ofΘ, v̂P andv̂T are reasonably close
to the corresponding MAP solutions, and again there is only atiny difference (1.81◦) between
the MAP estimates ofΘ in the VMK and VMU cases (see Figures 5.33 p104 and 5.35 p106).
The concentration parameters of the posterior PDF in the VMUcase are again lower. The
Matrix Fisher fit is good for both cases, but appears slightlybetter for the VMK case (Fig-
ure 5.34, p105).

In the third event (CUSPID 788921) we see some differences between the VMK and VMU
results. The MAP solutions are similar in the two cases (see Figures 5.37 p108 and 5.39
p110), however the parameter estimates, P- and T-axis contours, and posterior PDFs are all
strikingly different. Notably the modes of the posterior PDF shift slightly from the VMK to
VMU case (Figures 5.38 p109 and 5.40 p111), and the concentration parameters are reduced.
The fourth and fifth events (CUSPIDs 802105 and 802106) also show differences between
their respective VMK and VMU results, characterised by a shift in the modes and reduced
constraint on the posterior PDFs, however the MAP estimatesremain similar. For all three of
these events the Matrix Fisher PDFs fit reasonably well, however this fit appears better for the
VMK cases. As the fourth and fifth events occurred in the same location just three minutes (in
time) apart, we would expect them to have the same focal mechanism. The posterior PDFs and
fitted parameters for the VMK case for both events are reasonably similar (see Figures 5.42,
p113 and 5.46, p117), while the VMU posterior PDFs (Figures 5.44, p115 and 5.48, p119)
and parameter estimates are almost identical.

The sixth event (CUSPID 1697233) exhibits a rather large disparity between the VMK and
VMU posterior PDFs (Figures 5.50 p121 and 5.52 p123), most notably in theλ versuscos δ
marginal plot. Here, adding the uncertainty in velocity model has resulted in a change from a
single mode in the VMK case to a bimodal plot in the VMU case, with the modes being either
side of the original single mode. In the VMU case the Matrix Fisher fit is not particularly
good. The seventh event (CUSPID 1728730) exhibits a poorer constrained posterior PDF in
the VMU case compared to the VMK case, evident in the plots (Figures 5.54 p125 and 5.56
p127) and the lower concentration parameters. The HASH estimate ofΘ is very different
from our MAP estimate in both cases, and the P- and T-axis contours are poorly constrained,
reflecting the poor focal sphere coverage of the first motionsin this event (see Figures 5.53
p124 and 5.55 p126).

In general the MAP estimate ofΘ did not change much between our VMK and VMU cases.
Adding uncertainty in velocity model has resulted in posterior PDFs ofΘ that tend to have
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broader maxima which constrainΘ less tightly. Some events showed very little difference
between the VMK and VMU PDFs, while others showed large differences. We can only con-
jecture over what causes the posterior PDF of an event to change dramatically when we add
uncertainty in velocity model into the formulation. Compare Figures 5.50 and 5.52. In the
posterior PDF (particularly theλ vs cos δ marginal plot) the single modes in Figure 5.50 are
split in two in Figure 5.52. This could indicate a posterior that is bimodal in velocity models
υ: with models where the velocity remains low for most depths being as favoured as models
where the velocity is uniformly high, but models with stronggradients in velocity not being
favoured by the data. Future work into a better motivated prior for υ would better inform us
of how the velocity model uncertainty affects the posteriorPDFs ofΘ.

The Matrix Fisher distribution, though fitting reasonably well in the VMU case, provides a
better fit in the VMK case. This corresponds to what we observed in Section 5.1.5, in that
the fit was better for the more well constrained events. Again, in the events seen here, the full
distribution is a more accurate fit than the simplified scalarconcentration version.

It should be noted that the data quality for Kawerau is poor. There are relatively few P-wave
polarity data compared to the Raukumara data, and due to the shallow depth of the events,
only the outer region of the focal sphere is well covered. This has resulted in poorly con-
strained posterior PDFs ofΘ, as demonstrated by the plots and the fact that all the estimates
of κ lie in the range∼ (2, 3.1), similar or more poorly constrained than the most poorly con-
strained of our chosen Raukumara events. A deployment of seismometers in the region could
resolve these data issues, but this is beyond the scope of this project. Note that the HASH
focal mechanism solutions are all of poor quality, as denoted by a quality code (“D” for each
of the seven mechanisms), and the RMS difference of the acceptable nodal planes from the
preferred solutions given in the results (all> 39◦).

A map of focal mechanism solutions obtained using the average velocity model is shown in
Figure 5.57. Our estimated focal mechanisms are predominantly normal (i.e. the dilatational
quadrant is in the centre of the focal sphere), with some having a strike-slip component. How-
ever, the most south-westerly located events appear to havestrike-slip mechanisms. These
results are consistent with the earlier focal mechanism study in the TVZ by Hurst et al. (2002),
which found mechanisms that were predominantly normal, or normal with a strike-slip com-
ponent.
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Figure 5.57: Map of Kawerau showing MAP focal mechanism estimates obtained using
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130



Chapter 6

Conclusions

In this project we have introduced a new probabilistic (Bayesian) method of focal mechanism
estimation that directly accounts for uncertainty in hypocentre location, seismic velocity struc-
ture, and P-wave polarities. We have examined the case when the velocity model is assumed
to be precisely known (VMK), with application to data from the Raukumara Peninsula, and
the case when the velocity model is imperfectly known (VMU),with application to data from
Kawerau. Introducing uncertainty over the velocity structure had the effect of reducing the
concentration of the resulting posterior PDFs of the focal mechanism parameters (Θ).

Our MAP estimates ofΘ have been shown to accurately divide the compressional and dilata-
tional first motions. Given reasonable data quality, the MAPestimates of focal mechanism
parameters that result from our method have also been shown to be consistent with established
methods of focal mechanism estimation, with the advantage of providing a full posterior dis-
tribution ofΘ values.

We have explored the use of two generalised Matrix Fisher distributions — the 8-mode Ma-
trix Fisher distribution, and the 8-mode Matrix Fisher distribution with scalar concentration
parameter — for approximating the posterior PDF of the focalmechanism parameters. The
full 8-mode Matrix Fisher distribution provides a superiorfit to the empirical distributions, al-
though, interestingly, for well-constrained events the scalar concentration distribution also fits
well. This appears to justify the approach taken by Arnold & Townend (2007), who assumed
that focal mechanism errors follow a Matrix Fisher distribution with scalar concentration pa-
rameter, in their work on estimating tectonic stress. It would be interesting to know if the
additional information of the full Matrix Fisher distribution has a significant impact on the
outputs of the stress estimation procedure, or whether a scalar representation is sufficient.

The advantages of our method over previously published methods are, therefore, (a) that the
entire parameter space can be explored, (b) that the estimates ofΘ are more robust, as the
relevant uncertainties are accounted for, and (c) that the posterior PDF ofΘ can be accurately
and succinctly summarised by the parameters of the fitted distribution.

This work suggests a number of possible avenues for further research. As mentioned in Sec-
tion 5.2.4, the approach taken here would benefit from further work into establishing a well
motivated prior for the velocity model in the VMU case, whichwould better inform us of how
the velocity model uncertainty affects the posterior PDFs of Θ. Future work could also inves-

131



tigate the formulation and use of more informative priors for the focal mechanism parameters
Θ, as we have only considered the state of total ignorance (a uniform prior) here.

Additionally, we have not examined the effect of varying theamplitude noiseσa and polarity
errorπ′

p parameters, and have not focused on robustly estimating these parameters. Sensitivity
analysis could be conducted, in order to assess how the posterior PDF changes as the param-
eters are varied. Establishing a well motivated prior for these parameters, rather than using
fixed values as in this project, could also be investigated. Furthermore, future work could
address the effect of varying other parameters that we have assumed known in this project
— σti , which we obtained from GeoNet quality codes as described inTable 4.1, andCT , for
which we have used the NonLinLoc default values.

The Kawerau case study described in Section 5.2 demonstrated the effect of poor data quality,
specifically that the low number of P-wave polarity readingsread in routine CUSP processing
resulted in poorly constrained posterior PDFs ofΘ. In future, P-wave data could perhaps be
supplemented with S-wave polarisation data or amplitude ratios, which would help constrain
the solutions when P-wave polarities are scarce. An adequate means of incorporating the S-
wave data and its inherent uncertainties into the formulation of the posterior PDF would need
to be established, but this would not affect the underlying Bayesian framework of our method.

To conclude, we have developed here a robust new method of focal mechanism estimation
by directly accounting for the relevant uncertainties. Robust focal mechanism estimates are
important tools in assessing the tectonic characteristicsof a region, and are inputs to the prob-
lem of estimating tectonic stress — changes in which may place constraints on the processes
involved in earthquake occurrence and volcanism. Thus the method developed here can be
seen as addressing one component of the wider problem of earthquake source characterisation
and tectonic interpretation.
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Glossary

The glossary contains a list of symbols used in this project and their meanings, followed by a
list of terms used in this project and their definitions.

Symbols

δ dip angle

â null vector

n̂ fault normal vector

p̂i unit vector from the hypocentre,x, to the point on the focal
sphere corresponding to stationi

û slip vector

v̂P unit vector in the direction of the P-axis

v̂T unit vector in the direction of the T-axis

λ rake angle

D concentration matrix of a Matrix Fisher distribution

d the data

F parameter matrix of a Matrix Fisher distribution

M modal matrix of a Matrix Fisher distribution

S stress tensor

U spin matrix of a Matrix Fisher distribution

x hypocentre location

ω known parameters

φ azimuth

π′
p probability of an incorrect polarity

πi probability of a positive observed first motion
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ψ nuisance parameters

σa the standard deviation of the amplitude of the first motion

σti P-wave arrival time error at stationi

CT covariance matrix of{tcal
i }

Ct covariance matrix of{tobs
i }

Θ the set of focal mechanism parameters(ξ, δ, λ)

θ take-off angle

υ velocity model

ξ strike angle

Ai amplitude of the first motion at stationi

A∗
i theoretical P-wave amplitude at stationi

H(·) The Kullback-Leibler divergence

hcal
i (x) calculated travel time between a hypocentre locationx and sta-

tion i

R(Θ) rotation matrix with columns[û â n̂], used to define the focal
mechanism

si location of seismic stationi

tcal
i calculated seismic wave arrival time at stationi given the im-

plemented velocity model

tobs
i observed seismic wave arrival time at stationi

tres
i the difference between the observed and theoretical arrival times

at stationi

Yi P-wave polarity at stationi

T earthquake origin time

Terms

8-Mode Matrix Fisher distributiona generalisation of the Matrix Fisher distribution to situ-
ations in which there is a two-fold ambiguity in the direction
defined by each column of the orthogonal matrix random vari-
able

angular difference minimum rotation about any axis needed to make two rotation
matrices coincide
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auxiliary plane one of two nodal planes of a focal mechanism, and perpendic-
ular to the fault plane

axial data directional data in which the positive and negative directions
are equivalent

azimuth angle measured clockwise from north

Bingham distribution probability distribution for axial data in 3D space, see Mardia
& Jupp (2000)

circular data directional data in 2D space

compression an upwards first motion

coupled hypocentre-velocity modelsolving simultaneously for the hypocentre location and
velocity model

dilatation a downwards first motion

dip angle the angle that the fault slants downwards from the horizontal
to the right looking along the strike direction

directional data observations that are directions, or unit vectors, in space

epicentre the point on the earth’s surface directly above the hypocentre
of an earthquake

equivalent body forces a model of the faulting process; the forces that would yield the
observed seismic wave radiation pattern

fault normal vector vector normal to the fault plane

fault plane planar surface on which an earthquake occurs

first motion the direction of motion, or polarity, of the first P-wave arrival
at a seismic station

focal mechanism geometrical representation of fault slip during an earthquake

focal sphere imaginary sphere of negligible radius surrounding the earth-
quake source

force couple two forces acting together

hypocentre the location of an earthquake

Kullback-Leibler divergence a measure of discrepancy between two probability distributions

likelihood probability density function describing the probability of the
observed data given a certain hypothesis

Matrix Fisher distribution probability distribution for matrices on the Stiefel Manifold,
see Downs (1972)
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minimum 1D velocity model velocity model with minimum root mean square (RMS) misfit
of {tres

i }

moment tensor a quantity that depends on source strength and fault orientation

nodal planes the fault plane and the auxiliary plane

NonLinLoc a software package used “for velocity model construction, travel-
time calculation and probabilistic, non-linear, global-search earth-
quake location”

null vector vector defined bŷn × û, i.e. perpendicular to the slip and
normal vectors

orientation data observations made up ofn directions describing ap dimen-
sional object

orthogonal group A Stiefel Manifold wheren = p; the group ofp×p orthogonal
matrices

P-wave longitudinal seismic wave that travels fastest from the earth-
quake source

posterior probability density function describing our knowledge of the
hypothesis given the data

prior probability density function describing our prior knowledge of
a given hypothesis

rake angle the direction of motion of the upper side of the fault with re-
spect to the lower side of the fault, measured in the fault plane
anti-clockwise from the direction of the strike

S-wave polarisation splitting the S-wave into two perpendicular components, SV
and SH

S-wave transverse seismic wave that travels more slowly than the P-
wave from the earthquake source

seismic moment a measure of the magnitude of an earthquake

seismic noise fluctuations in the seismic wave signal caused by external fac-
tors such as human activity

seismometer instruments that measure and record ground motions

slip vector vector in the direction the fault slipped during the earthquake

special orthogonal group The group ofp× p orthogonal matrices with determinant 1

spherical data directional data in 3D space

stereonet a 2D projection of the lower hemisphere of the focal sphere
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Stiefel manifold the set of allp× n matrices that describe the orientation of an
object inp-dimensions, defined byn directions, and for which
XTX = In

stress tensor a six component description of the tectonic stress field, used to
calculate the stress vector at a point for any plane that passes
through that point

stress a measure of force acting on a surface per unit area

strike angle the angle measured clockwise from north to the strike direction

strike direction the direction of a horizontal line in the fault plane

take-off angle angle measured from the downward vertical to the point on the
focal sphere where a P-wave left the earthquake source

velocity model a simplified representation of the seismic velocity structure of
the earth

VMK posterior PDF velocity model known posterior PDF of the focal mechanism
parameters

VMU posterior PDF velocity model unknown posterior PDF of the focal mecha-
nism parameters

von Mises distribution probability distribution for circular data, see Mardia & Jupp
(2000)

von Mises-Fisher distributionprobability distribution for spherical data, see Mardia & Jupp
(2000)

Grid2Time program that calculates travel-times and take-off angles be-
tween a station and all nodes of anx, y, z spatial grid

NLLoc program that implements Tarantola & Valette (1982)’s Bayesian
method of hypcentre location

Vel2Grid program that converts velocity model specifications into a 3D
grid file in binary format for use withGrid2Time andNLLoc

Velest a program that determines minimum 1-dimensional velocity
models
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Appendix A

Useful Definitions and Results

This appendix contains some useful definitions and results that are used in this project.

A.1 Rotation

A.1.1 Euler Angles

Euler AnglesΦ = (φ, θ, ψ) are used to describe a rotation in three dimensions, where

0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π

There are various definitions of Euler Angles, determined bywhich axes are rotated around
and in which order. Here we will use the definition provided byArnold & Townend (2007),
who use a zyz convention. If(x, y, z) are the coordinates of an initial coordinate system, the
Euler Angles are used to rotate the system as follows:

• Rotate the initial system anticlockwise byφ about thez axis to obtain(x′, y′, z′)

• Rotate(x′, y′, z′) anticlockwise byθ about they′ axis to obtain(x′′, y′′, z′′).

• Rotate(x′′, y′′, z′′) anticlockwise byψ about thez′′ axis to obtain the final coordinate
system(x′′′, y′′′, z′′′).

These rotations can be expressed as matrices

By(α) =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 Bz(α) =





cosα − sinα 0
sinα cosα 0

0 0 1





whereBi(α) describes a rotation of angleα about axisi (Arnold & Townend 2007). A rotation
matrix formed from the Euler Angles is given by

R(Φ) = R(α, θ, ψ) = Bz(φ)By(θ)Bz(ψ)

=





cosφ cos θ cosψ − sinφ sinψ − cos φ cos θ sinψ − sinφ cosψ cosφ sin θ
sin φ cos θ cosψ + cos φ sinψ − sinφ cos θ sinψ + cos φ cosψ sin φ sin θ

− sin θ cosψ sin θ sinψ cos θ




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Rotation matrices are orthogonal (RTR = I) and have detR = 1. Any rotation matrixR has
equivalent Euler angles, given by

φ = tan−1

(

R23

R13

)

, θ = cos−1R33, ψ = tan−1

(

R32

−R31

)

(Arnold & Townend 2007).

Euler anglesΦ = (φ, θ, ψ) are equivalent to focal mechanism parametersΘ = (ξ, δ, λ):

φ = ξ +
π

2
ξ = φ− π

2
θ = π − δ δ = π − θ

ψ = λ− π

2
λ = ψ +

π

2

So the rotation matrix that describes the anglesΘ is

R(Θ) = Bz(ξ +
π

2
)By(π − δ)Bz(λ− π

2
)

=





sin ξ cos δ sinλ+ cos ξ cos λ sin ξ cos δ cosλ− cos ξ sinλ − sin ξ sin δ
− cos ξ cos δ sinλ+ sin ξ cos λ − cos ξ cos δ cosλ− sin ξ sinλ cos ξ sin δ

− sin δ sinλ sin δ cos λ − cos δ





= [û â n̂]

(Arnold & Townend 2007). From this it can be seen thatΘ = (ξ, δ, λ), Euler anglesΦ =
(φ, θ, ψ), and the rotation matrixR(Θ) = [û â n̂] are all equivalent ways of describing a focal
mechanism.

A.1.2 Passive and Active Rotation

Given a coordinate system and a vector, a rotation matrix canbe interpreted in two ways.
Passive rotationis the case when the rotation matrix is thought of as rotatingthe coordinate
system while the vector remains fixed - this was the method described in Section A.1.1.

Let the vectorxB be the representation of the vectorx in coordinate systemB. Then

xA = RABxB

gives the representation ofx in coordinate systemA. The columns ofRAB are the unit vectors
of the axes of coordinate systemB expressed in coordinate systemA.

Active rotationis the case when the rotation matrix is thought of as rotatingthe vector while
keeping the coordinate system fixed. A rotation of a vectorx about an axis to obtainx′ can be
performed by putting

x′ = R(φ, θ, ψ)x

for Euler angles(φ, θ, ψ).
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A.1.3 Rotation Angles and Angular Difference

A rotation matrixR rotates a coordinate system or vector about an axis by an angleb given by

b = cos−1

(

tr(R) − 1

2

)

.

The matrixR has one real eigenvalue, and the eigenvector correspondingto this represents
the axis about which the rotation takes place (Arnold & Townend 2007).

If R1 andR2 are two rotation matrices, then the angular differencea between them is the
minimum rotation about any axis needed to make the two coincide. This angle is given by

a = cos−1

(

tr(RT
1R2) − 1

2

)

.

(Arnold & Townend 2007). This is a means of comparing two focal mechanism solutions
obtained by different methods. Due to the existence of four equivalent focal mechanisms for a
given solution (see Section 1.2.3), angular differences are calculated betweenR2 and the four
equivalent representations ofR1, or vice versa. By convention the minimum of these four
angles, min(a), is taken (Kagan 2007).

Whena is zero, the matrices are identical. The maximum value for min(a) varies between90◦

and120◦ depending on the axis about which the rotation occurs (Kagan2007).

A.2 Spherical Coordinates

The spherical coordinate system can be used to locate pointsin three dimensions. This coor-
dinate system is useful due to the importance of directionaldata in this project.

Under this coordinate system, a point P in space is located using two angles and one distance.
This description is based on that of Weir et al. (2005).

• p is the distance from P to the origin.

• φ is the angle clockwise from the positive x-axis to P(0 ≤ φ ≤ 2π). In this project we
take x to be positive northwards.

• θ is the angle from the positive z-axis to P(0 ≤ θ ≤ π). In this project we take z to be
positive downwards.

All points we are interested in are located on the unit sphere. A point P is therefore able to be
located using just the two anglesφ andθ. This is shown in Figure A.1.

Spherical coordinates can be converted to Cartesian coordinates by the equations:

x = sin θ cosφ

y = sin θ sinφ

z = cos θ
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P

Figure A.1: Spherical polar coordinates. A point P on the sphere can be located by two
angles:φ, the clockwise angle from the positive x-axis, andθ, the angle from the positive
z-axis.

Cartesian coordinates can be converted to Spherical coordinates by rearranging the above
equations:

φ = atan2(y, x)

=

{

tan−1
(

y
x

)

y > 0

π + tan−1
(

y
x

)

y < 0

θ = cos−1(z)

A.3 Lambert-Schmidt Projection

The stereographic projection of the focal sphere onto a circular area can be constructed us-
ing an equal-area Lambert-Schmidt projection. As mentioned in Section 1.2.1, the stereonet
represents the lower hemisphere of the focal sphere. It is plotted using the usual mapping
convention; North is upwards, East is to the right.

A point on a sphere has an azimuthφ and a take-off angleθ. This point is plotted on the
stereonet at a distancer from the origin, at an angleφ measured clockwise from north, where
r is given by:

r =
√

2 sin
θ

2

This method is known as the Lambert-Schmidt projection (seeFigure A.2), and is used to plot
stereonets in this project.
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We useR to construct the stereographic projections for each earthquake. We reverse the
points on the upper focal sphere (points withθ ≥ π

2
) and plot them on the lower focal sphere,

to enable every ray to be shown. If a point is on the upper focalsphere with azimuthφ and
take-off angleθ, we can transform it to a point on the lower focal sphere with azimuthφ′ and
take-off angleθ′ as follows:

φ′ = φ+ π

θ′ = π − θ

Compressional points are coloured blue, while dilatationsare red.

Because the azimuth and take-off angle vary for each possible hypocentre location, there are
multiple points to mark (creating a cloud) for each station,corresponding to the different pos-
sible hypocentre locations. The colour scale varies according to the value of the hypocentre
PDF at the point - varying from white for zero probability, todark blue or red for high proba-
bility.

Given a focal mechanism solutionR(Θ) = [û â n̂], the nodal planes can be identified and
plotted on a stereonet as follows. The points where the positive and negative directions of
the vectorŝn, â andû intersect the focal sphere are marked. Two great circles, one passing
through±n̂ and±â, the other passing through±û and±â, give the nodal planes. Figure A.3
shows this procedure visually.

A.4 Averaging Angles

One must take care when averaging angles that are scattered either side of2π. If we take the
average of such angle values, the result will incorrectly beclose toπ, since around half the
angles are just> 0 and half are just< 2π (Arnold & Townend 2007). In this section we give
formulae for averaging directional and axial data of various kinds.

A.4.1 Circular Data

When averagingn angles{φi}, i = 1, . . . , n, the necessary adjustment is

φ̄ = atan2

( 〈sinφ〉
〈cosφ〉

)

where〈...〉 represents an average or a weighted average. If the data is axial then the necessary
adjustment is

φ̄ =
1

2
atan2

( 〈sin 2φ〉
〈cos 2φ〉

)

(Arnold & Townend 2007).
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Figure A.2: Stereonet projection. (a) A point P on a sphere with azimuthφ and take-off
angleθ. A point P on the lower half of the sphere is transformed as shown in (b) to the
point Q which is plotted on the stereonet in (c). (d) The plotting position of the point
under the Wulff Q and Lambert-Schmidt Q‘ conventions.
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Figure A.3: Beachball diagram of a focal mechanism with an arbitrary strike, dip and rake
of (ξ,δ,λ) = (154◦, 52◦, 22◦). The direction of the fault normal and slip vectors are shown
by small circles, while the direction of the null vector is shown by the square.
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A.4.2 Spherical Data

When averagingn directions specified in spherical polar coordinates by{φi, θi}, i = 1, . . . , n,
the necessary adjustment is

φ̄ = atan2

( 〈sinφ〉
〈cosφ〉

)

and

θ̄ = cos−1

(

〈cos θ〉
√

〈sin θ cosφ〉2 + 〈sin θ sinφ〉2 + 〈cos θ〉2

)

(Arnold & Townend 2007). If the data are axial then

r = (sin θ̄ cos φ̄, sin θ̄ sin φ̄, cos θ̄)T

is the unit vector in the mean direction (Arnold & Townend 2007).

A.5 Change of Variable Technique

Here we will consider the change of variable technique involving a single variable. This
method is based on that described by Hogg & Tanis (2001).

Given that a variableY with pdf g(y) is a function of another variableX with pdf f(x), i.e.
Y = h(X), andh is monotonic, how is the pdfg(y) related tof(x)?

The functionh maps a pointx onto a pointy. Hence the support ofX, sayxmin ≤ x ≤ xmax

maps onto the support ofY , h(xmin) = ymin ≤ y ≤ ymax = h(xmax). Thus the distribution
function ofY can be written,

P (Y ≤ y) = P (h(X) ≤ y)

= P (X ≤ h−1(y))

=

∫ h−1(y)

xmin

f(x)dx

=

∫ h−1(y)

h−1(ymin)

f(x)dx. (A.1)

Now, integration by substitution tells us that:
∫ b

a

f(φ(t))φ′(t)dt =

∫ φ(b)

φ(a)

f(x)dx

So, if we putφ = h−1, b = y, a = ymin, andt = y, we can express Equation A.1 as:
∫ h−1(y)

h−1(ymin)

f(x)dx =

∫ y

ymin

f(h−1(y))
dh−1(y)

dy
dy

=

∫ y

ymin

f(x)dx (ash−1(y) = x)
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Therefore,

P (Y ≤ y) =

∫ y

ymin

f(x)dx (A.2)

=⇒
∫ y

ymin

g(y)dy =

∫ y

ymin

f(x)dx (A.3)

=⇒ g(y) = f(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

(A.4)

So we now have a relationship betweeng(y) andf(x). The reason for taking the absolute
value of dx

dy
is to ensureg(y) is non-negative when h(X) is monotonically decreasing. This

term is known as aJacobian(Sivia 1996).

A.5.1 Lighthouse Example

We can now apply this method to the lighthouse example in Section 3.2.1. Here we had a
uniform prior onc: P (c|a, b) = 1

π
, and a relationship betweenc andx specified byb tan(c) =

xk − a. We want to obtain an expression forP (xk|a, b), so we apply Equation A.4

P (xk|a, b) = P (c|a, b)
∣

∣

∣

∣

dc

dxk

∣

∣

∣

∣

If we rearrangeb tan(c) = xk − a, to makec the subject we get:

c = tan−1

(

xk − a

b

)

Deriving with respect toxk we get:

dc

dxk

=
1

b
[

1 +
(

x−a
b

)2
]

Now we can transformP (c|a, b) intoP (xk|a, b):

P (xk|a, b) = P (c|a, b) ×
∣

∣

∣

∣

dc

dxk

∣

∣

∣

∣

=
1

bπ
[

1 +
(

x−a
b

)2
]

=
b

π(b2 + (x− a)2)

Which is the Cauchy pdf.

A.6 Hypergeometric Functions of a Matrix Argument

The general form of a hypergeometric function of a positive definite symmetricm×m matrix
argumentX is given by Muirhead (1982):

pFq(a1, . . . , ap; b1, . . . , bq;X) =
∞
∑

k=0

∑

κ

(a1)κ . . . (ap)κ

(b1)κ . . . (bq)κ

Cκ(X)

k!
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whereκ is a partition ofk up to lengthm, i.e κ = (k1, . . . , km) wherek1 ≥ k2 ≥ · · · ≥ km,
theki are non-negative integers and

∑

i ki = k (Muirhead 1982). If saym = 3, some exam-
ples of such partitions are:

k = 1: There is only one partition,κ = (1) ≡ (1, 0, 0).
k = 2: There are two partitions,(2) ≡ (2, 0, 0) and(1, 1) ≡ (1, 1, 0).
k = 3: There are three partitions(3) ≡ (3, 0, 0), (2, 1) ≡ (2, 1, 0) and(1, 1, 1).
k = 4: There are four partitions(4) ≡ (4, 0, 0), (3, 1) ≡ (3, 1, 0), (2, 2) ≡ (2, 2, 0) and
(2, 1, 1), however(1, 1, 1, 1) would not be included as its length is greater thanm = 3.

Further,Cκ(X) is known as azonal polynomial, a function of the eigenvalues ofX, which can
be expressed in terms ofmonomial symmetric functionsMκ(X) = xk1

1 . . . xkm
m +(all distinct reorderings),

where thexi are the eigenvalues ofX. For example,

M(1)(X) = x1
1x

0
2x

0
3 + x0

1x
1
2x

0
3 + x0

1x
0
2x

0
3

= x1 + x2 + x3

M(2)(X) = x2
1 + x2

2 + x2
3

M(1,1)(X) = x1x2 + x1x3 + x2x3.

Now,

Cκ(X) = χ[2κ](1)
2kk!

(2k)!
Zκ(X) (A.5)

where

Zκ(X) =
∑

κ

cκMκ(X) (A.6)

and

χ[κ](1) = k!

∏m
i<j(ki − kj − i+ j)
∏m

i=1(ki +m− i)!
(A.7)

(McLaren 1976, James 1964).

Finally, (a)κ is known as thegeneralised hypergeometric coefficient, defined as

(a)κ =

m
∏

i=1

(a− 1

2
(i− 1))ki

where(a)k = a(a + 1) . . . (a + k − 1) (Muirhead 1982).

The hypergeometric function of a matrix argument can be calculated inMATLAB using an al-
gorithm by Koev & Edelman (2006). We can evaluate this function fromR using the R.matlab
package forR (Bengtsson 2007).

A.7 Numerical Integration

Numerical integration methods are used to calculate an approximate solution to a definite
integral

∫ b

a
f(x)dx. Numerical integration is particularly useful in this project for evaluating

the integral of functions for which we cannot find the antiderivative.
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A.7.1 Trapezium Rule

The trapezium rule is a means of of approximating a definite integral
∫ b

a
f(x)dx by calculat-

ing the area of a number of trapezia formed by splitting the region of integration[a, b] into n
subintervals of equal width∆x = b−a

n−1
. Figure A.4 indicates how the method works.

...

x x x x x x xxx1 2 3 4 5 6 n−2 n−1 n...

Figure A.4: Diagram illustrating the trapezium rule. The solid line is the functionf(x),
which is evaluated at a number of pointsxi. The dotted lines indicate the trapezia, the
areas of which approximate the area underf(x).

The approximation is given by
∫ b

a

f(x)dx ≃ ∆x
n−1
∑

i=1

1

2
[f(xi) + f(xi+1)]

=
b− a

n− 1

1

2

[

f(x1) + f(xn) + 2

n−1
∑

i=2

f(xi)

]

=
b− a

n− 1

[

n
∑

i=1

f(xi) −
1

2
(f(x1) + f(xn))

]

=
b− a

n− 1

n
∑

i=1

wif(xi)

where

wi =

{

1
2

i = 1 or i = n

1 otherwise

This can be generalised to higher dimensions, e.g.
∫ d

c

∫ b

a

f(x, y)dx dy ≃ d− c

m− 1

b− a

n− 1

n
∑

i=1

m
∑

j=1

wijf(xi, yj)

while the weight function becomeswij = (1/2)pij , wherepij is the number of grid edges that
point ij sits on.
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A.7.2 Monte Carlo Integration

Monte Carlo integration is a means of approximating a definite integral by evaluating the
integrand at a random sample of points, as described in Robert & Casella (1999).

Theorem A.1. [Monte Carlo integration] The integral
∫

x

h(x)f(x)dx

wheref is the pdf ofx, can be approximated by

1

m

m
∑

j=1

h(xj)

where{xj} arem points generated from the densityf .

Proof. The proof is simply:
∫

x

h(x)f(x)dx = E (h(x))

≃ 1

m

m
∑

j=1

h(xj)

So in the case of Equation 3.19, we apply Monte Carlo integration to the following integral:
∫

[

n
∏

i=1

P (Yi|A∗
i = 2(p̂i · n̂)(p̂i · û), σa, πp)

]

P (x|{ti}, ω) dx

Here,

h(x) =

[

n
∏

i=1

P (Yi|A∗
i = 2(p̂i · n̂)(p̂i · û), σa, πp)

]

f(x) = P (x|{ti}, ω)

whereh(x) is a function ofx throughp̂i. The random sample from the densityf are randomly
sampled hypocentre locations. Therefore,

h(xj) =

[

n
∏

i=1

P (Yi|A∗
ij = 2(p̂ij · n̂)(p̂ij · û), σa, πp)

]

wherep̂ij is the take-off vector for the ray traveling to stationi from hypocentre locationj.
Hence the approximation is:

∫

[

n
∏

i=1

P (Yi|A∗
i = 2(p̂i · n̂)(p̂i · û), σa, πp)

]

P (x|{ti}, ω) dx

∝
m
∑

j=1

[

n
∏

i=1

P (Yi|A∗
ij = 2(p̂ij · n̂)(p̂ij · û), σa, πp)

]

Wherem is the number of hypocentre points sampled from the pdfP (x|{ti}, ω). Here we
have dropped1

m
into the normalisation constant, which we do not need to evaluate exactly.
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A.8 Tensors

A tensorcan be thought of as a generalisation of the concept of vectors and matrices. Multi-
plying a vector by a scalar changes the magnitude but leaves the direction unchanged. If we
wish to change the direction of the vector as well we need to utilise a different type of entity
(Kolecki 2002).

Tensors can be classified by their rank - the number of array indices used to describe the object.
For example, a tensor of rank 0 is a scalar, a tensor of rank 1 isa vector, and a tensor of rank 2
is a matrix (Arfken 1985). However, the converse is not true,not all scalars are tensors of rank
0, not all vectors are tensors of rank 1, and so on – only those that arecoordinate independent
are tensors (Kolecki 2002). For example, for any two coordinate systems whose origins differ,
the position vectorsv andv∗ from the origin in the respective systems to a pointP will be
different – thus a position vector is not a tensor. However ifthere are two pointsP1 andP2,
with position vectorsv1 andv2 in the first coordinate system and position vectorsv∗

1 andv∗
2

in the second, thenv2 − v1 = v∗
2 − v∗

1, and thus the difference between two position vectors
is a tensor of rank 1 (Kolecki 2002).

A.8.1 Moment Tensor

The seismic moment tensorM is a quantity that depends on source strength and fault orienta-
tion (Aki & Richards 2002). The moment tensor is a representation of the earthquake source
by equivalent body forces, that is, the forces that would yield the observed seismic wave ra-
diation pattern. Thus equivalent body forces are a model of the real faulting process (Stein &
Wysession 2003).

These forces are described by forcecouples, which are two forces acting together. These two
forces are offset by a distanced, either in the direction of the force or normal to the direction of
the force. In 3D space and with three possible force directions there are nine possible couples,
and these make up the components of the moment tensor (Aki & Richards 2002, Stein &
Wysession 2003).

M =





Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz





The equivalent body forces that describe an earthquake are double-couples, so if the fault and
slip directions are oriented along the coordinate axes, themoment tensor will be of the form

M =





0 M0 0
M0 0 0
0 0 0



 = M0





0 1 0
1 0 0
0 0 0





whereM0 is theseismic moment, a measure of the magnitude of the earthquake. However, in
general, the fault will not be oriented along the axes, and the moment tensor is given in terms
of the fault normal and slip vector,

Mij = M0(niuj + njui)
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and thus the tensor is symmetric.

The pressure (or P-) axis, which is parallel toû−n̂

2
, and the tensional (or T-) axis, parallel to

û+n̂

2
(Arnold & Townend 2007, Aki & Richards 2002), are the eigenvectors of the moment

tensor.

A.9 Dirac Delta Function

The Dirac delta functionδ(x) is defined by the following three properties:

δ(x) = 0 x 6= 0
∫ ∞

−∞

δ(x)dx = 1

∫ ∞

−∞

f(x)δ(x)dx = f(0)

Thusδ(x) is an infinite spike atx = 0, and only makes sense as part of an integrand (Arfken
1985). An important property used in this project is

∫ ∞

−∞

f(x)δ(x− x0)dx = f(x0)

(Arfken 1985).
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Appendix B

Raukumara earthquake hypocentres

Table B.1: Raukumara earthquake hypocentres, as located byNonLinLoc

CUSPID Date Origin time Latitude Longitude Depth (km) Mag. (ML)
635146 25/07/1994 15:23:56.63 -38.22 178.12 26.66 3.5
635767 31/07/1994 05:58:40.01 -38.36 177.87 23.73 3.0
636036 03/08/1994 15:47:23.60 -38.52 177.85 33.40 2.8
636120 07/08/1994 22:28:12.33 -38.18 177.46 51.46 3.3
636149 09/08/1994 09:53:27.12 -38.30 177.68 35.84 3.7
637373 16/08/1994 20:19:24.35 -38.48 177.83 35.06 3.2
642468 19/08/1994 00:27:22.18 -38.60 177.88 21.00 2.9
640980 21/08/1994 13:36:52.95 -38.20 178.14 18.02 2.8
642506 21/08/1994 23:23:15.60 -38.95 177.70 20.80 3.2
642225 22/08/1994 03:17:20.45 -38.66 177.38 34.28 2.9
639865 22/08/1994 03:19:45.99 -38.95 177.71 20.61 4.1
658523 24/08/1994 07:54:36.18 -38.85 177.32 33.40 2.8
644710 24/08/1994 11:25:24.56 -38.26 178.22 21.97 2.8
659187 25/08/1994 01:47:20.93 -38.04 177.93 32.13 3.1
644854 25/08/1994 04:31:14.37 -37.88 178.32 18.85 3.2
646569 25/08/1994 10:14:00.77 -37.97 177.96 34.28 2.9
641198 25/08/1994 13:56:26.21 -37.90 177.79 46.29 3.0
642627 30/08/1994 18:06:26.47 -38.41 177.55 36.82 3.5
646630 01/09/1994 09:19:42.86 -38.47 178.10 25.88 2.8
646638 01/09/1994 17:05:10.03 -38.22 178.18 20.61 2.9
639642 01/09/1994 20:27:02.49 -37.94 178.05 28.42 2.9
645188 02/09/1994 07:01:22.55 -38.61 177.90 19.78 2.9
645191 03/09/1994 10:46:50.14 -38.15 178.36 18.26 3.0
645987 05/09/1994 07:05:40.39 -37.77 178.32 27.54 2.9
653977 07/09/1994 08:08:38.69 -38.62 177.79 30.66 2.8
652423 08/09/1994 01:25:23.77 -38.12 178.28 24.90 3.2
653984 09/09/1994 16:17:08.41 -38.69 177.97 27.54 2.8
652892 14/09/1994 01:14:32.50 -38.39 177.88 21.83 3.0

Continued on next page
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Continued from previous page

CUSPID Date Origin time Latitude Longitude Depth (km) Mag. (ML)
656806 15/09/1994 18:37:50.02 -38.42 177.84 29.74 4.9
653020 15/09/1994 18:42:45.48 -38.42 177.84 29.15 3.1
654104 16/09/1994 09:11:51.33 -37.96 178.02 30.96 2.8
652903 17/09/1994 15:55:53.38 -37.78 178.29 28.42 3.0
653521 18/09/1994 02:23:56.78 -38.27 178.13 24.37 3.0
653233 19/09/1994 02:17:21.79 -38.47 177.85 33.50 2.9
655865 21/09/1994 14:17:40.82 -38.52 178.11 23.93 2.9
655881 22/09/1994 13:12:22.13 -38.80 177.84 9.33 2.8
658508 23/09/1994 07:46:53.00 -37.79 178.11 32.91 2.9
660226 24/09/1994 03:52:03.05 -37.88 177.88 41.31 3.6
660234 24/09/1994 08:24:09.37 -37.90 177.87 38.38 3.0
660254 24/09/1994 18:21:08.84 -38.60 177.87 19.04 2.8
660615 25/09/1994 15:40:31.14 -38.67 178.04 22.56 3.0
660625 26/09/1994 06:57:47.16 -37.86 177.80 76.17 3.5
655486 26/09/1994 14:55:08.83 -38.04 177.98 20.95 2.8
655951 26/09/1994 14:59:41.39 -38.12 178.05 35.64 2.8
654658 28/09/1994 04:21:49.82 -38.23 178.59 28.42 3.7
667323 29/09/1994 01:18:27.86 -38.52 177.83 28.81 2.8
668273 02/10/1994 22:38:48.96 -37.87 178.08 30.96 2.9
669233 03/10/1994 20:51:10.99 -38.54 177.81 26.12 3.0
667842 04/10/1994 04:48:30.11 -38.41 177.83 31.35 2.8
675244 05/10/1994 22:03:53.16 -38.35 177.99 24.41 3.1
665887 06/10/1994 02:16:48.18 -38.69 177.89 12.55 3.2
665710 06/10/1994 10:44:18.11 -38.69 177.89 12.84 3.3
674383 06/10/1994 18:30:33.25 -38.35 178.03 25.73 3.1
668637 08/10/1994 02:42:06.54 -38.42 178.16 23.54 2.9
668882 08/10/1994 12:02:51.74 -38.43 178.18 25.68 2.8
665895 09/10/1994 11:34:02.22 -38.55 178.06 20.90 3.0
668888 09/10/1994 14:18:11.18 -38.63 177.81 32.23 2.8
671614 10/10/1994 23:33:05.53 -38.50 178.01 20.56 3.2
671618 13/10/1994 02:14:17.54 -38.42 177.84 29.59 3.0
672299 14/10/1994 08:36:42.06 -38.34 178.20 14.89 3.2
672060 16/10/1994 09:43:48.61 -37.83 178.38 10.45 2.9
673014 20/10/1994 06:44:09.59 -38.03 177.94 28.22 2.9
672690 21/10/1994 14:31:06.11 -38.16 178.29 16.75 3.2
672691 22/10/1994 03:39:16.27 -38.10 178.22 13.48 2.9
671833 22/10/1994 04:50:16.83 -38.35 177.72 48.54 3.3
675146 24/10/1994 01:18:43.58 -38.54 178.10 25.49 2.9
679082 25/10/1994 03:07:15.74 -38.52 177.92 24.71 2.8
679409 25/10/1994 07:29:49.47 -38.52 177.91 23.63 2.8
679418 26/10/1994 23:45:51.21 -38.59 177.90 18.41 2.9
689619 29/10/1994 20:51:33.63 -38.67 178.05 22.46 3.8
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CUSPID Date Origin time Latitude Longitude Depth (km) Mag. (ML)
693503 29/10/1994 20:53:11.54 -38.68 178.02 22.85 2.9
678369 29/10/1994 22:17:06.97 -38.51 177.83 29.25 3.8
680800 04/11/1994 22:40:47.84 -38.38 177.42 5.37 3.1
680829 05/11/1994 13:56:53.33 -38.50 177.87 45.02 3.4
683290 10/11/1994 06:43:55.66 -38.35 178.14 16.11 2.8
689175 11/11/1994 16:10:47.68 -38.10 177.94 4.05 2.6
683331 13/11/1994 05:59:38.99 -38.51 177.84 37.70 2.8
683333 13/11/1994 18:35:26.71 -38.54 177.85 26.22 3.6
688300 15/11/1994 10:53:47.71 -37.71 177.59 80.37 3.7
694887 21/11/1994 04:47:38.10 -38.18 178.16 16.94 2.8
695581 23/11/1994 15:11:39.25 -38.23 178.19 20.85 3.0
694945 25/11/1994 16:37:47.73 -38.33 177.97 24.27 2.8
694964 28/11/1994 17:14:45.21 -38.51 177.91 24.76 2.8
696995 30/11/1994 03:36:49.75 -38.54 177.97 25.10 3.7
697029 05/12/1994 08:37:07.84 -38.88 177.55 34.08 3.5
703722 06/12/1994 18:08:59.09 -38.23 178.19 21.14 3.3
704459 14/12/1994 03:36:37.98 -37.88 178.00 62.89 3.8
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