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1 Layman’s abstract

We investigate a new probabilistic method of estimating earthquake focal mech-
anisms — which describe how a fault is aligned and the direction it slips dur-
ing an earthquake — taking into account observational uncertainties. Robust
methods of estimating focal mechanisms are required for assessing the tectonic
characteristics of a region and as inputs to the problem of estimating tectonic
stress. We make use of Bayes’ rule, a probabilistic theorem that relates data to
hypotheses, to formulate a posterior probability distribution of the focal mech-
anism parameters, which we can use to explore the probability of any focal
mechanism given the observed data. We then attempt to summarise succinctly
this probability distribution by the use of certain known probability distribu-
tions for directional data. The advantages of our approach are that it (1) models
the data generation process and incorporates observational errors, particularly
those arising from imperfectly known earthquake locations; (2) allows explo-
ration of all focal mechanism possibilities; (3) leads to natural estimates of focal
mechanism parameters; (4) allows the inclusion of any prior information about
the focal mechanism parameters; and (5) that the resulting posterior PDF can be
well approximated by generalised statistical distributions. We demonstrate our
methods using earthquake data from New Zealand. We first consider the case
in which the seismic velocity of the region of interest (described by a veloc-
ity model) is presumed to be precisely known, with application to seismic data
from the Raukumara Peninsula, New Zealand. We then consider the case in
which the velocity model is imperfectly known, with application to data from
the Kawerau region, New Zealand. We find that our estimated focal mecha-
nism solutions are for the most part consistent with all available polarity data,
and correspond closely to solutions obtained using established methods. Addi-

tionally, the distribution of focal mechanism parameters can be accurately and



succinctly summarised by the parameters of the probability distributions we

have examined.

2 Technical abstract

We develop a new probabilistic (Bayesian) method for estimating the distribu-
tion of focal mechanism parameters based on seismic wave polarity data. We
investigate the use of generalised Matrix Fisher distributions for parameterising
focal mechanism uncertainties. The advantages of our approach are that it (1)
models the data generation process and incorporates observational errors, par-
ticularly those arising from imperfectly known earthquake locations; (2) allows
exploration of the entire parameter space; (3) leads to natural point estimates
of focal mechanism parameters; (4) allows the inclusion of a priori informa-
tion about the focal mechanism parameters; and (5) that the resulting posterior
PDF can be well approximated by generalised Matrix Fisher distributions. We
present here the results of our method in two situations. We first consider the
case in which the seismic velocity of the region of interest (described by a ve-
locity model) is presumed to be precisely known, with application to seismic
data from the Raukumara Peninsula, New Zealand. We then consider the case
in which the velocity model is imperfectly known, with application to data from
the Kawerau region, New Zealand. We find that our estimated focal mechanism
solutions are for the most part consistent with all available polarity data, and
correspond closely to solutions obtained using established methods. Further,
the generalised Matrix Fisher distributions we examine provide a good fit to
our Bayesian posterior PDF of the focal mechanism parameters. Finally, we
demonstrate how informative prior distributions on focal mechanism parame-

ters can be incorporated into our model.
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Abstract

A focal mechanism is a geometrical representation of fdidtdsiring an earthquake. Reli-
able earthquake focal mechanism solutions are used tosabsetectonic characteristics of a
region, and are required as inputs to the problem of estilgagictonic stress. We develop a
new probabilistic (Bayesian) method for estimating therdiation of focal mechanism pa-
rameters based on seismic wave polarity data. Our appraectha advantage of enabling us
to incorporate observational errors, particularly thossireg from imperfectly known earth-
quake locations, allowing exploration of the entire parenspace, and leads to natural point
estimates of focal mechanism parameters. We investigatesth of generalised Matrix Fisher
distributions for parameterising focal mechanism unaetiegss by minimising the Kullback-
Leibler divergence.

We present here the results of our method in two situatiorestit consider the case in which
the seismic velocity of the region of interest (describedabselocity model) is presumed to
be precisely known, with application to seismic data frora Baukumara Peninsula, New
Zealand. We then consider the case in which the velocity inedeperfectly known, with
application to data from the Kawerau region, New Zealand.

We find that our estimated focal mechanism solutions for thetrpart are consistent with all
available polarity data, and correspond closely to sohgtiobtained using established meth-
ods. Further, the generalised Matrix Fisher distributmaesxamine provide a good fit to our
Bayesian posterior PDF of the focal mechanism parameteablieag the posterior PDF to be
succinctly summarised by reporting the estimated parasefehe fitted distribution.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The focal mechanism of an earthquake describes the geoafélry fault on which the earth-

quake occurred using three angular parameters: the stfigeand rake (see Sectidnll.2).
Reliable earthquake focal mechanism solutions can be useasfessing the tectonic char-
acteristics of a region (see e.g. Reyners & McGinty 1999, ame required as inputs to the
problem of estimating tectonic stress (see e.g. Arnold & Aemd 2007), changes in which
have been hypothesised to occur following large earthquake volcanic eruptions (for a
recent review see Townend 2006).

Existing methods of focal mechanism estimation (see Sefii®) make use of P-wave first
motion polarities (see Sectign_1.2.1) and/or S-wave in&drom (see Section1.2.2). These
methods can be characterised as either optimisation oapiigdiic techniques.

The existing optimisation methods are, for the most parablanto accommodate all of the
relevant sources of uncertainty in the underlying seisigiold data, although some studies
have applied a forward method to this problem (Hardebeck &% 2002). Some of this
uncertainty stems from imprecise knowledge of the Earthisrsic velocity structure. The
probabilistic methods in the literature (see e.g. De Natabd. 1991, Zollo & Bernard 1991)
take into account P-wave polarity uncertainties, but tadd¢count for the uncertainty in earth-
guake hypocentre location, and do not parameterise théingsprobability distribution.

Here we propose a new, probabilistic method of focal medmamistimation, based on Bayes’
rule; a simple probabilistic theorem that can be used tosadbe degree to which certain data
support certain hypotheses (Sivia 1996). A Bayesian agpradows a complete probabilis-
tic treatment of the problem, and leads naturally to robosttgestimates of focal mechanism
parameters based on seismological data, taking into atto@imherent uncertainties. This
is an extension of initial work undertaken by Bouley (2006)aving derived a method for
calculating the posterior distribution of the focal medisamparameters, we investigate the
use of directional distributions for representing focakhmnism uncertainties. We attempt to
parameterise this uncertainty using generalised MatsRkéii distributions, fitted by minimis-
ing the Kullback-Leibler divergence.



The objectives of this project are, therefore, to:

1. Develop a probabilistic (Bayesian) model of the consteaimposed on focal mech-
anism parameters by first-motion data given imperfect hgptve parameters and an
error-free velocity model;

2. Generalise the model developed in Objective 1 to sitnatimwhich neither the hypocen-
tre nor the velocity model are known perfectly;

3. Investigate the suitability of idealised error disttibas (particularly generalised Matrix
Fisher distributions) for representing focal mechanisiwentainties.

1.2 Focal Mechanisms

A focal mechanisthdescribes the geometry of a fault during an earthquake.oAgh not
always the case, it is generally assumed that the fault iaraplsurface (known as tliault
plang across which respective sides move (Stein & Wysession)200% alternative term
fault plane solution is sometimes used (Fowler 1990).

Focal mechanisms can be described by the three astyikg dip andrake Strike and dip
describe the orientation of the fault plane, subject to ahiguity which we describe below,
while the rake describes the sense of relative motion duhegarthquake. Here we represent
a focal mechanism by the following:

e The strike direction is the direction of a horizontal linetive fault plane, while the
strike anglet is the angle measured clockwise from north to the strikectdoa (0 <
¢ < 360°).

e The dip angle is the angle that the fault slants downwards from the hot&dn the
right of the strike directiorf0 < ¢ < 90°).

e The rake angle (also known as the slip angle) specifies the direction of omotif the
upper side of the fault (the hanging wall block) with resgedhe lower side of the fault
(the foot wall block), measured in the fault plane anti-&letse from the direction of
the strike ) < A < 360°).

(Stein & Wysession 2003, Aki & Richards 2002), whée= (¢, 4, A). This description can
be visualised in FigureZ.1.

Alternatively the fault plane can equivalently be desalibg a unitnormal vectom, and unit
slip vectoru, the direction of motion of the hanging wall block with resp# the foot walll
block (Stein & Wysession 2003). These two vectors are odhalj and together with theull
vectora = n x u constitute the orthogonal rotation matfi(©) = [a a nJ, which entirely
describes the focal mechanism. These two equivalent defisifire related as described in

AppendixATIl.

litalics denote terms explained further in the Glossaly,® 13
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Figure 1.1: Visual representation of fault slip. Figuredzhsn Aki & Richards (2002).

A focal mechanism is the most simple representation of &gt Another method of repre-
senting a seismic source is by way of thement tensofsee Appendik’A8l1). The advantage
of the moment tensor is that it encompasses both fault gepraet earthquake magnitude,
and it can describe more complex seismic sources than sifaplyslip, such as opening
modes. Moment tensor inversion — estimating the momenbtemsing the seismograms
of stations that recorded an event — is only possible foraealsly large events; 3.5 M,

(J. Ristau, personal communication, April 4, 2008). Thes¢hwods are beyond the scope of
this project since we assume a double couple source, whicbe&asufficiently described by
the focal mechanism. Focal mechanisms can also be compartaechéller earthquakes than
a moment tensor can be computed for, down to araudd\/;, in the New Zealand settings
considered here.

The following sections outline the basics of focal mechamnestimation.

1.2.1 P-wave First Motions

P-wavesare the seismic waves that travel fastest from the eartleog@krce (Stein & Wysession
2003). Afirst motionindicates the direction of motion, or polarity, of the firstsve arrival

at aseismomete(Stein & Wysession 2003). By observing P-wave polaritiea aumber
of different seismic stations, the focal mechanism can herdened (Fowler 1990, Cox &
Hart 1986).

P-waves are an example of a longitudinal wave; the direatiooscillation of the wave is
in the same direction as the direction of wave propagatiosir{® Wysession 2003, Fowler
1990, Aki & Richards 2002). If the movement of the materianthe fault is toward a certain
station (away from the earthquake source), the first motfdheP-wave that arrives at that
station will be upwards (termetbmpressional If the material moves away from the station
(toward the earthquake source), the first motion of the Peveaxiving at that station will be
downwards dilatational) (Stein & Wysession 2003).

These first motions define four quadrants surrounding theceotAs shown in FigureZl.2,
the division of these quadrants occurs at the fault planeaapthne perpendicular to the
fault plane, known as thauxiliary plane which together are called tmodal plane§Cox &



Hart 1986, Fowler 1990, Stein & Wysession 2003). As explhimeSectior T.Z13, one can
generally not distinguish between these two planes.

Epicenter

Dilatation ./ Compression
>
i:_‘

Compression

Dilatation

Auxiliary
plane

Figure 1.2: First motions of P-waves provide informationatithe nodal planes (Stein &
Wysession 2003).

Thefocal spheras an imaginary sphere of negligible radius centered at anmdgnding the
earthquake source (Stein & Wysession 2003, Cox & Hart 198@léf 1990). Locations
of compressions and dilatations leaving the earthquakeceatan be represented as points
on the focal sphere. Because a sphere cannot be represenfeper without distortion
(Kagan 2005), a 2-dimensional stereographic projectich@tower hemisphere of the focal
sphere, known asstereonetis commonly used (Stein & Wysession 2003, Fowler 1990).

To determine a focal mechanism, the polarities of P-waverfigions at seismometers are
first recorded. Each station corresponds to a point on tre ghere where the P-wave left
the earthquake source en route to the seismometer. Thisipaisually defined in spherical
polar coordinates (see Appendix’A.2) by @&simuth ¢, the angle measured clockwise from
north to the point, and iteake-off angled, the angle measured from the downward vertical
to the point (Stein & Wysession 2003, Fowler 1990, Udias }198&ernatively, the take-off
vector, the unit vector from the origin to the poiiat, #) on the focal sphere, given by

p = (sin 6 cos ¢, sin 0 sin ¢, cos 0)
can be used. As P-wave polarity at a station depend3 and location on the focal sphere
(¢, 0), this relationship can be formalised as follows
F"=2(p-n)(p-0)
= cos Asin d sin? 0sin 2(¢ — &) — cos A cos § sin 26 cos(¢p — &)+ (1.1)
+ sin A sin 20(cos? @ — sin® @ sin®(¢ — €)) + sin Acos 26 sin 20sin(¢ — &) (1.2)

(Aki & Richards 2002) wheré” denotes the radiation pattern, or normalised amplitudgaeof
P-wave leaving the focal sphere at pdiat6).



To plot points(¢, ) onto a stereonet, we use a technique known as the Lambarii®ch
projection (see Sectidn"A.3). Once all points are plottedhenstereonet, the focal sphere
Is partitioned by two great circles — the nodal planes c@weasling to the focal mechanism
solution® — creating four quadrants (see Figlrd 1.3). Appehdix A.8dess howR(©) de-
fines the nodal planes. In principle (i.e. given perfectigeved data) each quadrant contains
only compressional or only dilatational first motions (AkiRichards 2002). The quadrants
where the first motions are compressional are coloured ddrite the quadrants where the
first motions are dilatational are coloured white (Stein &3&gsion 2003). This results in
a “beachball” appearance (see Figuré 1.4); these stepgugnarojections are sometimes re-
ferred to as beachball diagrams.

Figure 1.3: Stereonet showing how the nodal planes partitie focal sphere into four
guadrants, each quadrant containing only compressiohad)(br dilatational (red) first
motions.

Thrust faulting, Vanuatu Islands, July 3, 1985
Location: 17.2°S, 167.8°E. Depth: 30 km
Strike: 352°, Dip: 26°, Slip: 97°
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Figure 1.4: Example of a focal mechanism, with P wave firstomstshown, represented
on a stereonet/beachball diagram (Stein & Wysession 2003).



Beachball diagrams can indicate certain types of faulti8gike-slip faulting occurs when
the two sides of the fault move horizontally past one-anoffie- 7/2 and\ = 0 or 7) (Aki

& Richards 2002). Dip-slip faulting occurs when the movemisrvertical ¢ = = /2 and
A = /2 or3m/2). There are two types of dip-slip faults; reverse faultutng when the
hanging wall moves upwards relative to the foot wall€ (0, 7)), and normal faults, occur-
ring when the hanging wall moves downwards relative to thet feall (A € (7, 27)) (Aki

& Richards 2002, Stein & Wysession 2003). Figlrd 1.5 showsctt beachball diagrams
corresponding to these fault types.

(CY (©)

Figure 1.5: Focal mechanisms for various types of faultsf@ws strike-slip faulting, (b)
shows reverse faulting, and (c) shows normal faulting. Fedpased on Stein & Wysession
(2003).

The dilatational quadrant of the focal sphere is bisectethbypressure (or P-) axis, which
is parallel to%;ﬁ, and the compressional quadrant is bisected by the tergmm@-) axis,
parallel to2:® (Arnold & Townend 2007, Aki & Richards 2002). We denote thét wectors
in the direction of the P- and T-axé$ andv’ respectively.

1.2.2 S-wave Information

S-wavesor secondary waves, are so-called because they are thergdbwhe two types of
seismic wave to arrive at seismometers (Udias 1999). Thasesnare transverse, meaning
that the direction of oscillation of the wave is perpendicub the direction of the wave’s
propagation. S-waves are commonly used in two ways to sopgieP-wave information in
determining focal mechanisms; S-wave polarisation.gnhél amplitude ratios.

Determination of S-wave polarisation involves analysing bscillation geometry of the S-
wave. A plane defined by two lines — the vertical and the patinecting an earthquake
hypocentre to a seismometer — is identified. The S-wave isisf two perpendicular com-

ponents, SV and SH, based on its oscillation in relationi®glane. The SV displacement is
vertical, in the plane, while the SH displacement is hortagmormal to the plane (Stein &
Wysession 2003). As with P-waves, the radiation pattére$ SV and SH are directly related



to fault geometry® and position on the focal sphefe, ) (Aki & Richards 2002).

FSV =sin A cos 20 cos 20 sin(¢ — &) — cos A cos § cos 26 cos(¢ — &)
1 1
+ 5 cos Asin g sin 26 sin2(¢ — &) — 5 sin Asin 20 sin 20(1 +sin*(¢ — €))  (1.3)
FSH = cos A cos d cos @ sin(¢ — &) + cos Asin § sin 0 cos 2(¢ — &)

1
+ sin A cos 29 cos 0 cos(¢ — &) — 3 sin Asin 2§ sin @ sin 2(¢ — ) (1.4)

Thus S-wave polarisation can be used to help constrain & meeaehanism, particularly by
comparing theoretical and observed valueg'6f” and ¥, However, S-wave information
can be sparse, since three-component seismometers amedagudentify SV and SH com-
ponents (Zollo & Bernard 1991), and since the S-wave arafes the P-wave, the S-wave
polarisation may be hard to measure.

Because P-wave amplitudes are small near nodal planessag®rwave amplitudes are large,
S/ P amplitude ratios can be useful in constraining focal meidmarsolutions. LargeS/ P
amplitude ratios indicate a point near a nodal plane and wesa (Hardebeck & Shearer
2003). Observed/P amplitude ratios can be compared to theoretical ratios hadgolu-
tion with the minimum misfit selected. Alternatively)’/ P and/orS H/ P ratios can be used
(see, e.g. Rau et al. 1996, Snoke 2003). Log amplitude ratesften used when comparing
observed and theoretical values (see Se¢fidn 1.3). To sgecahisider that ifA > B, then
A/B € (1, 0], however ifA < BthenA/B € (0,1). This lack of symmetry makes compar-
ing ratios difficult. Taking the log ratio restores the syntipd.e. log(A/B) = —log(B/A).

The advantage of using amplitude data is the increased nushb®servations over P-wave
data alone. One disadvantage is that, along with the focelhamesm, event magnitude, atten-
uation (the loss of energy, and thus amplitude, from the $eves it propagates), geometric
spreading (energy dispersion due to the expansion of thefvaat as it propagates), and site
effects can all influence the observed amplitude (Harde&egkearer 2003, Rau et al. 1996).
Using amplitude ratios eliminates geometric spreadingraagnitude effects, however. An-
other disadvantage is that S-wave arrivals and amplituale$e difficult to pick due to noise
caused by seismic wave scatter (Hardebeck & Shearer 20GanNaa 2002).

Due to the existence of these uncertainties, and the faicbthaave data are not as commonly
available as P-wave data, we restrict our analysis to thRtwéve first motions.

1.2.3 Focal Mechanism Ambiguities

There are two ambiguities associated with focal mechanodatisns that must be considered.
The first is the fact that a fault plane can be representedligguell by its fault normal in
either direction, thugi a ] is equivalenttg—a + a — n] = [0 a nJA,, where

-1 0
0
—1

Ay,=10
0



Adopting the convention that the dip lies in the rarigec § < 90° dictates which of the
two equivalent directions will be referred to agor a given focal mechanism. Thus the fault
normal is an example of axial data, the treatment of whichssu$sed further in Chaptiar 2.

The second ambiguity arises because first motion and otimertesobservations alone are not
sufficient to infer which of the two nodal planes is the fadéine and which is the auxiliary
plane (Udias 1999, Stein & Wysession 2003, Aki & Richards2@owler 1990). This is
because the first motions, for example, produced by slip thieeof the two planes would be
the same (Stein & Wysession 2003). This is equivalent togoeirable to distinguish between
the slip vectori and the fault normah, so[t a n] is equivalenttd+n —a +a] = [ an]C,,
where

0 0 1
C,=10 -1 0
1 0 0

Lastly, if both ambiguities are combined we have a fourthivaant representation of the
focal mechanism. Hend& a n] is equivalent td—n — a — u] = [a a n]JC,A, (Arnold

& Townend 2007). Additional information can sometimes iffathe second ambiguity, such
as when the earthquake breaks the surface of the earth aogidrg seismicity (aftershocks)
delineates a planar structure and identifies the fault plamethis information is usually not
available, especially for small earthquakes (Fowler 186in & Wysession 2003).

1.2.4 Solution Quality and Sources of Error
The quality of a focal mechanism solutiéhis affected by a number of factors:

1. The number of seismometer stations with polarity reaglitighere are a small number
of such stations, the solution is more sensitive to indigidtation polarities (Rabinowitz
& Hofstetter 1992, Zollo & Bernard 1991).

2. Station distribution. If observations are distributeskwenly over azimutkp and take-
off angle #, then the focal sphere will not be well covered. This can leathrge
uncertainties in the focal mechanism soluttdrfUdias 1999, Rabinowitz & Hofstetter
1992, Zollo & Bernard 1991).

3. P-wave polarity readings. Measured polarities are daicedue tor), the probability
of an incorrectly wired seismometer, ang the standard deviation of the amplitude
of the first motion at station If the ratio of A; to o, is low, incorrect polarity readings
can occur, due to instrumental or human effects (HardebeSk&arer 2002).

4. Hypocentrdocationx. Focal mechanism estimation depends on the take-off parame
ters¢ andd corresponding to the paths to each seismometer, whichnrdepend ox.
The hypocentre location is uncertain duestasmic noisewhich is here parameterised
by o:,, the P-wave arrival time error at statiarSeismic noise is created by fluctuations
in temperature and pressure, storms, ocean waves, sdidtiel®s, and human activity
(Aki & Richards 2002, Stein & Wysession 2003). The hypocemdcation is also un-
certain if the seismic velocity structure — as represented \elocity model— of the
region of interest is unknown.



Given a large enough dataset, one can select events withradlesnimum number of po-
larity readings and good focal sphere coverage, thus niitiggighe effects of Factors 1 and 2
above. Factors 3 and 4, however, are sources of error intiarany earthquake observations.
Figure[1.6 shows the effect of uncertainty in hypocentration — the locations of P-waves
leaving the source are uncertain, creating a cloud of cporeding positions on the focal
sphere. In this project we address this by constructing a&8&awy probability distribution for
the focal mechanism parameters that directly accounthéset errors.

Station

Earthquake hypocentre: PDF
of different locations

toa2

@
Cloud of points
on the focal sphere
Different take—off angles

Figure 1.6: Diagram illustrating the problem. Uncertastin P-wave arrival times at
stations lead to different possible earthquake locatieash with its own take-off an-
gle. Hence, when considering take-off angles — an impogarttof estimating the focal
mechanism of an earthquake — we must take into account aifgeshypocentre loca-
tions.

1.3 Previous Methods

In this section we discuss published methods of focal mashaastimation, which can be
divided into two categories. The first category containgmojgtation methods, in which the
number of discrepancies between the observed and thednetil@rities (given a certain fo-
cal mechanism solutio®) is minimised in some way. The second category containsethos
methods in which a probability distribution is used for thetad given the parameters, and
a maximum likelihood or Bayesian approach is applied torestie ©. We briefly review
each method, the data used, and how uncertainties in theosare dealt with. Table1.1
summarises the methods.



1.3.1 Optimisation Methods
Reasenberg and Oppenheimer (1985) — FPFIT

FPFIT is a Fortran routine developed by Reasenberg & Oppeng1985) that finds the
focal mechanisn® that best fits P-wave first motion polarities. This involvesva stage
(coarse then fine) grid search to find the valuedothat minimisesF’, a weighted sum of
polarity discrepancies. There are two weights involved:

e The square root of the normalised theoretical amplitddeat the:'* station, which
down weights observations near the nodal planes.

e A weight based on assessed quality codes for polaritieschwaire supplied by the
seismic analyst.

Uncertainties are parameterised by a one-sided 90% conédeterval forF’, and the values
of ©@ = (£,4, A) that result in a value fof" inside this confidence interval. Also returned is
a value indicating the degree to which the observationsldéisecto the nodal planes of the
solution.

Rabinowitz and Hofstetter (1992)

Rabinowitz & Hofstetter (1992) used P-wave polarities antpitudes to minimiseFr' in a
similar manner to that used by Reasenberg & Oppenheimebj19&e algorithm imposes
the constraint that the theoretical P-wave amplitdgat station resulting from the solution,
should be close to the observed amplitudeThis method uses an algorithm called the Flex-
ible Tolerance Method (FTM).

The FTM does not provide information on the uncertainty @ $lolution. The algorithm is
robust to changes in polarity, and the addition of amplitnf@mation provides more reliable
solutions than those found with FPFIT (Rabinowitz & Hofstetl992).

Snoke (2003) — FOCMEC

FOCMEC is another Fortran routine, published by Snoke (200@t uses P- and S-wave
polarities and/or amplitude ratios to determine focal naet¢ms. FOCMEC reports the set
of solutions satisfying a specified number of polarity an@mplitude ratio misfits.

When using amplitude ratios, FOCMEC selects a best sollsed on the minimum root
mean square (RMS) error (the square root of the sum of difte® squared between the
calculated and observed log amplitude ratios).

Rau et al. (1996)

Rau et al. (1996) used P-wave polarities &/ P amplitude ratios to calculate the focal
mechanisms of small to moderate events K M; < 5.7) recorded by the Taiwan Seismic
Network. The authors used an early version of FOCMEC (Snok&Pand compared 1D and
3D velocity models using only P-wave polarity data, and tbheimg both P-wave polarities
and SH/P amplitude ratios. They found the quality of the solutiond®improved using
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the 3D model, and that incorporating amplitude ratios aldwthem to select the solution
that was most consistent with the P-wave polarities, basgti@minimum RMS error (Rau
et al. 1996).

Hardebeck and Shearer (2002) — HASH

Hardebeck & Shearer (2002) introduced a method (the HASHr#lhgn) that accounts for
uncertainties in velocity model, event location and P-wawkarities. Using P-wave polarity
data from Northridge, California, take-off parameters eveomputed for a suite of 50 ran-
domly selected combinations of hypocentre locations (maryandomly in depth) and 1D
velocity models.

The set of focal mechanism solutions from each of the 50 roasHhad less than 10% mis-
fit polarities were identified. This set of acceptable solui was averaged, and solutions
that were greater thas0° from the average were iteratively removed. When all sohgio
lay within this tolerance, a final average was taken, terntled most preferred solution’
(Hardebeck & Shearer 2002). The quality of the solution iole in this manner is based
on how closely the set of acceptable solutions is clusteraahal the preferred solution.

The authors elected to deal non-parametrically with uagaies in solutions, by reporting
the set of acceptable solutions that were witiifi of the most preferred solution.

Hardebeck & Shearer (2002) tested their method using thétfatevents occurring in spatial
clusters should have similar focal mechanisms, as theyikaly ko originate from the same

source. It was found that the method produced similar simstfor tightly spaced events, and
performed better in this regard than the FPFIT algorithroulsed above.

Hardebeck and Shearer (2003)

Hardebeck & Shearer (2003) investigated whether usihg wave amplitude ratios could
improve their focal mechanism solutions for the Northriggents, using two methods. Their
first method was to select the set of acceptable solutioma fPewave data using HASH
(Hardebeck & Shearer 2002), and from this choose the mesimathiat minimised the misfit
of thelog(S/P) observations. For clusters of similar events, they fourad tie inclusion of
S/ P ratio data reduced the similarity of the solutions; in otlwerds theS/ P ratios actually
downgraded the solution quality.

The authors observed a lot of noise in &P amplitude data. Thus their preferred approach
is said to account for the uncertainty $# P observations, although how this is achieved is
omitted in their description. In this case th¢ P data helped constrain solutions that were
of poor quality when estimated with P-wave data alone. Théas conclude that/P
amplitude ratio data can be useful when constraining poalityisolutions ifS/ P amplitude
ratio noise is accounted for in the estimation proceduredelzeck & Shearer 2003).

Nakamura (2002)
Nakamura (2002) developed a method of using both P and Spaagties. The motivation
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behind this was to use the extra information provided by S8esawhile eliminating the S-
wave amplitude noise that scattering creates. S-waveifyakmeasured in the North—South
and East—West directions of a three component seismometer.

The method compares the observed and theoretical potaritieoretical polarities for S-
waves are taken to bgn(F°) andsgn(F*V), whereF*? and F are as defined in Equa-
tions[1.4 and1]3. A grid search overis performed by calculating a weighted sdpof the
difference between observed and theoretical polaritieaeth value 06.

Uncertainties in the solution are reported by finding theo$elutions that satisfy), .., <

Q < Qumin + €, Wheree is said to account for the possibility of incorrect polanigadings.
The set of solutions is better constrained when S-wave ifekare included, but the author
notes that S-wave polarities can be difficult to measure garads can occur in cases in which
seismic anisotropy (when wave speed varies with directianjses the splitting of the wave
(Nakamura 2002).

Reyners et al. (1997)

The method used by Reyners et al. (1997) and Reyners & McG1®99) places primary
importance on P-wave polarities and employs theoreticdlaserved log amplitude ratios
to improve the solution. The mechanism with the lowest nunabgolarity inconsistencies
and the lowest RMS error between the observed and thedratigalitude ratios is termed
the “best” solution. This method uses the computer prograRAT and MECHTOCL by
Robinson & Webb (1996).

1.3.2 Probabilistic Methods
Brillinger et al. (1980)

Brillinger et al. (1980) adopted a maximum likelihood estion (MLE) approach. They as-
sumed that P-wave first motion polarities observed at staiwe Bernoulli random variables

) +1 ifthe first motion is recorded as positive (a compression)
" ]-1 ifthe first motion is recorded as negative (a dilatation)

with Bernoulli probability distribution

(1-y;)

N

P(Y; =y,) =21 - 7y (g = —1,1)

where

A*
i =PY,=1)=m 1—27)® | =% ).
T ( ) T, + ( 7Tp) (Ua)
Heren, denotes the probability of an incorrectly wired seismometg denotes the theoret-
ical amplitude at stationando,, denotes the amplitude noise. This formulation is discussed
in more depth in Section-3.3A4; is a function of© (see Equatiof112), which is how the
focal mechanism parameters enter the formulation. Theegatii© that maximise the log
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likelihood are found numerically.

The uncertainties in the estimates®fare parameterised by 95% confidence intervals ob-
tained from the asymptotic properties of MLEs — the estimatd© are asymptotically nor-
mal with covariance matrix equal to the inverse of the Fishiarmation matrix (Brillinger

et al. 1980).

Zollo and Bernard (1991)

Zollo & Bernard (1991) used P-wave polarities and S-waveapoation angles in a Bayesian
approach (see Chapfér 3) to estimateThe posterior PDF o® is given by

P(©ld) oc P(d”]©)P(0)u(©)

where the prioP(0) is taken to be the PDF of Brillinger et al. (1980), i2(©) = P(d”|0)
andP(d”|0) is a conditional probability function for the observed Svevaolarisations. Also,
to(©) = constsin § is the non-informative PDF representing the state of tggabrance on
O. In this state, the normal vectarhas equal probability in all directions on the focal sphere.
The area of any infinitesimal patch on the unit sphere crelayetthe differential anglege,

dd is equal tasin dddd<. Thesin § term scales the area of the patchhagnds towards either
pole, where the spacing betwegbecomes very small.

Rather than giving point estimates and uncertaintiefocomputing the posterior PDF al-
lows the authors to locate regions of high probability in plaegameter space 6&f, which are
displayed graphically. Including S-wave data better a@nss the areas of high probability,
however one must carefully analyse the stability of the Sendata before proceeding (Zollo
& Bernard 1991).

De Natale et al. (1991)

De Natale et al. (1991) used P-wave polarities, S-wave igaléons ands/ P amplitude ratios
in another Bayesian approach. The posterior PDB of

P(6]d) o< P(di|©)P(d2[©)P(d3[©)P(©)10(O)
where
e P(d,|O©) is Brillinger et al. (1980)’s PDF;

e P(d,|©)is a PDF for the observed S-wave polarisations similar tetteeused by Zollo
& Bernard (1991);

e P(d;|©) is a PDF forS/P amplitude ratios;

e the prior P(©) modifies the posterior PDF in favour of parts of the paramsperce
that are likely to produce observable S-waves with stablar{gations, or measurable
amplitude ratios, at the stations where the data is availabl

e 1(0) is the non-informative PDF as in Zollo & Bernard (1991).

Again, regions of high probability in the parameter spacelmadisplayed.
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Table 1.1:

Summary of focal mechanism estimation methods

Optimisation M

ethods

Author

Data

Data errors

Method

Uncertainties ir®

Reasenberg &

Oppenheimer
(1985)

P-wave polarities

Allows for uncertainty in
polarity via quality codes

MinimisesF’, a weighted sum of polarity discrej
ancies

-ReportsO that fit

for F

inside a 90% CI

Rabinowitz &
Hofstetter (1992)

P-wave polarities and am
plitudes

-Allows for polarity errors

Minimises F' while trying to match theoretica
and observed amplitudes

INone

Snoke (2003)

P-and S-wave polarities ar
amplitude ratios

dAllows for polarity and/or
amplitude ratio errors

Minimises RMS error of log amplitude ratios

Reports set of ac
ceptable solutions

Rau et al. (1996)

P-wave polarities
S H/P amplitude ratios

and

j Allows for polarity and/or
amplitude ratio errors

FOCMEC

None

Hardebeck &| P-wave polarities Allows for uncertainty inx, | Find set of acceptable solutions averaged aveeports set of ac

Shearer (2002) velocity model, and polarity suite of 50 random combinations of hypocentreeptable solutions
locations and 1D velocity models

Nakamura (2002) P and S-wave polarities Allows for polarity errors | Minimises(, a weighted sum of polarity discrep-Reports© that fit
ancies within Q. <

Reyners et al| P-wave polarities and®/S | Allows for polarity and/or| Calculates best value @ - that consistent with Reports set of ac

(1997) and Reyn
ers & McGinty
(1999)

amplitude ratios

amplitude ratio errors

the lowest number of polarity errors and lowg
amplitude ratio error

2gteptable solutions

Probabilistic M

ethods

Author

Data

Data errors

Method

Uncertainties ir®

Brillinger et al.
(1980)

P-wave polarities

Accounts for uncertainty
in polarity, and amplitude
noise

MLE approach, assuming P-wave polarities
> Bernoulli random variables

a85% Cls for® us-

MLEs

ing properties of

Zollo & Bernard
(1991)

P-wave polarities and S
wave polarisations

-Accounts for uncertainty

noise

in polarity, and amplitude

Bayesian approach

\Y

over®©

A posterior PDF

De Natale et al
(1991)

P-wave polarities, S-wav
polarisations and amplitud
ratios

eAccounts for uncertainty
ein polarity, and amplitude
noise

Bayesian approach

N

over®©

A posterior PDF




1.4 Contribution of this Thesis

While probabilistic methods of focal mechanism estimatiame a clear advantage over opti-
misation methods, in that the entire parameter space carpbered, the methods in the lit-
erature do not account for uncertainty in hypocentre locedr velocity model. Additionally,
the resulting probability distributions (see e.g. Zollo &Maard 1991, De Natale et al. 1991)
are not parameterised in any way.

In this project we develop a new probabilistic Bayesian rodtbf focal mechanism estima-
tion that directly accounts for the sources of error mergébim Sectioh 1.214. We present the
resulting probability distributions visually so one casess areas of high and low probability
in the parameter space. Point estimate® oésult naturally from the distributions.

Little research has been carried out into the nature of imehanism error distributions. We
explore directional distributions, in particular genesaetl Matrix Fisher distributions, that can
be used to parameterise the resulting probability disiobuof ©. We investigate whether
these directional distributions provide an appropriatéofithe distribution of®, in the hope

of succinctly summarising the distribution ©fby reporting the estimated parameter(s) of the
fitted distribution.

1.5 OQutline

The structure of this thesis is as follows. Directional istatal methods are introduced in
Chaptef 2, which explains why and how directional methoésused, and introduces vari-
ous directional probability distributions, from simpledomplex cases. Chapfér 3 introduces
Bayes’ rule, the probabilistic theorem behind the modeé&lus this thesis, with some ex-
amples of its use. We then describe the formulation of oureBayn probability distribution
for the focal mechanism parameters in two specific casesnwieeseismic velocity model
is precisely known, and when it is imperfectly known. Cha@eescribes the various com-
putational techniques used in this project, and how theyuaesl to compute the distribu-
tions introduced in the Chapter 2. In Chaikr 5 we apply tlodaibilistic methods outlined
in ChaptelB, and estimation techniques described in Chpt® seismic data from New
Zealand. We first consider the velocity model known casd) eiiplication to data from the
Raukumara Peninsula. This is followed by the velocity mastdgdnown case, applied to data
from the Kawerau region. Chapfdr 6 contains some conclustetgments. AppendixIA con-
tains some useful techniques, definitions and mathema#salts that are used throughout
this project, while AppendikB contains hypocentre sumniafgrmation for the earthquakes
examined in Chaptéi 5.
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Chapter 2

Directional Statistics

In this project, we are interested in variodisectional data(directions, or unit vectors, in
space) anaxial data(directions in which the positive and negative directions equiva-
lent). These observations are directions or axes in spaaehich the sample space is often
a circle or sphere, and hence special directional meth@dssad to analyse them (Mardia &
Jupp 2000). To see why such methods are needed, considash@icaveraging angles, as
described in AppendiXAl4. This chapter examines such tiineal methods, and introduces
probability distributions used to describe the data.

2.1 Circular Data

We start with the most simple directional case — that of dacdata; directional data in 2D
space. An example of a circular datum is a compass bearingcaWeepresent such data
as points on the unit circle, or equivalently, unit vectars the plane. Alternativelyx can
be represented by an angleotated from a reference direction on the unit circle (Maréli
Jupp 2000), in which case = (cos ¢, sin ¢).

2.1.1 von Mises Distribution

The von Mises distributions a probability distribution used to describe the disttiido of
directions on circles. It is analogous to the Normal disitiin used on lines (Mardia &
Jupp 2000).

The von Mises distributioi/ (¢, <) has PDF

f (1o, k)

= 2 To() exp [k cos(¢ — ¢o)] (2.1)

where ¢, is the mean directiorny is the concentration parameter afdx) is the modified
Bessel function of the first kind
1 2m
= —/ exp (K cos @) do (2.2)
2m J,

(Mardia & Jupp 2000). The largeris, the more concentrated the distribution is around the
mean direction. Whenr = 0 the distribution is uniform (Mardia & Jupp 2000).

Io(l*{)
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We can simulate from a von Mises distribution using the tepi described by Best &
Fisher (1979), which uses a wrapped Cauchy distributioanQ@auchy distribution on the line
‘wrapped’ onto the unit circle) as an envelope for an acaeggaejection sampling method.
Firstly, we set

— V2 1+
a:1+\/1+4f€2, bz%’ r = ;b
K

then repeat the following steps until the necessary sangegassobtained.

1. Draw a samplé/;, U, Us from a Uniform(0,1) distribution;
2. Putz = cos(nly), f = (1+7rz2)/(r+2),c = k(r — f);

3. Ife(2—¢) — Uy, > 0goto step 5, else go to step 4;

IN

. IfIn(c¢/U;) +1 — ¢ > 0 go to step 5, else return to step 1;

5. ¢ = ¢ + sgn(Us — 0.5) cos™L(f).

Figure[2Z.1 shows a sample of points, drawn in the above wangubke computer software,
marked on the unit circle. The bell-curved shape of the dgilkistrates the analogy of the
von Mises distribution to the Normal distribution.

Figure 2.1: A random sample of size 15 drawn from a von Misssitution with¢, = 0
andx = 10. The density is also shown.

2.2 Spherical Data

Spherical data arise when the observations are directoBB ispace. Again, the data can be
directional or axial. In the directional case, these datalmarepresented as points on the unit
sphere, or as unit vectoxs In the axial case, these data can be represented as ahppota

on the unit sphere (Mardia & Jupp 2000). The unit vest@an alternatively be represented
in spherical polar coordinates &s= (sin 6 cos ¢, sin f sin ¢, cos ) (see AppendikK/Al2).
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2.2.1 von Mises-Fisher Distribution

A von Mises-Fisher distributio' (1, <) describes the distribution of a random unit vector
x on the surface of a sphere (Mardia & Jupp 2000). As in the l@ratase, the parameter
1 is the mean direction, while is the concentration parameter (Mardia & Jupp 2000). The
probability density is given by:

_ R T
F (X[, 1) = ——— exp (k")

Alternatively, if x andy are written in spherical coordinates

X = (sin @ cos ¢, sin @ sin ¢, cos )"

1 = (sin 6y cos ¢y, sin b sin ¢y, cos Oy )"

thendx = ﬁ sin 0df d¢ and the probability density can be rewritten using the ckaoigy
variable technique (see Appendix’A.5):

dx
do db

exp (k[cos 0 cos Oy + sin O sin Oy cos(¢p — ¢)]) sin 6

F(6,011, 1) = Flxlpu ) }

- 47 sinh Kk
(0<¢p<2m,0<0<m)

The largerx is, the more concentrated the distribution is around thenng@&ction. When
x = 0 the distribution is again uniform (Mardia & Jupp 2000).

We can simulate from the von Mises-Fisher distribution gdime algorithm described by
Wood (1994). It uses the fact that the unit 3D vectohas von Mises-Fisher distribution
with 1 = (0,0, )T if xI' = (vy/1 — W2, W) wherev is a unit 2D vector which is uniformly
distributed, andV is a random variable op-1, 1] with density

exp(kw)
T (k)

Here Ié(/@) is the modified Bessel function of the first kind and degré2 (Wood 1994).
Firstly, we set

flw) =

b=—k+ VK2 +1
then repeat the following steps until the desired sampkeisinpbtained:
1. Putzy = (1 —0)/(1+ b) andc = kzo + 2log(1 — x3);
2. Generaté/; andU, from a Uniform(0,1) distribution and calculate

1—(1+b)U;

w=_——“-"17"1
1-(1-b)U,

3. If kW + 2log(1 — W) — ¢ < log(Us) then go to Step 1, else go to Step 4;
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4. Generate the uniform 2D vectbrand set” = (vy/1 — W2, W).

Thenx has aF((0,0,1)7, k) distribution. We can convert this to a draw from a general
F(u, v) by using a rotation matrix (see Appen@ix’A.1). In generat; i€ a draw fromF(p, k)
thenx’ = Rx is a draw fromF (i, k), wherey’ = Ry. So in this case, where = (0,0, 1)7,
any rotation matrix in which the third column is equal to tresidedy will convert x from
F((0,0,1)T, k) to F(u,x). This can be done by taking Euler angles, 6y, 0) and setting

R = R(¢o, 6y, 0), where ¢y, 6y) are the spherical coordinates;af

Figure[Z2 shows a sample of points from the von Mises-Figlgribution, drawn in the
above way usindgr, marked on the unit sphere, and shown in stereographicqgtiange

Figure 2.2: A random sample of size 50 drawn from a von Misekéf distribution with
p = (¢o,00) = (5, 7) andx = 20. The contours of the density are shown.

2.2.2 Bingham Distribution

TheBingham distributions used to describe axial data on the sphere. In the caseabtiata,
angles opposite each other are equivalent. Hence, vectams —x cannot be distinguished.
The 3-dimensional Bingham distribution has density

13

xia) =i (5

~1
55 A) exp (XTAX)

whereA is a symmetric, tracelegs<3 matrix and, F; (3, 3, A) is the hypergeometric function
given by

13 N (3 Ou(A)
1F1(§’§’A):Zz(g) k!



Here the integral is obtained over the surface of the spiaedia & Jupp 2000). For more
details on hypergeometric functions refer to ApperdiX ATGe distribution can be obtained
by conditioning the trivariate normal distribution di|| = 1. Hence ifx ~ N3(0,X) then
x| (|lx|| = 1) has Bingham distribution with = —1%~! (Mardia & Jupp 2000). When the
Bingham distribution has rotational symmetry about somis,akis known as the Watson
distribution (Mardia & Jupp 2000).

The behaviour of the distribution can be assessed by usirggemvalue decomposition of

the parameter matriA.

Theorem 2.1. [Eigenvalue Decomposition] A symmetric matdxcan be decomposed as
A =UDU”

whereD is a diagonal matrix of eigenvalues &f and the columns AU are the eigenvectors
of A, with UTU = I. This is also known as diagonalisation.

For a proof of this theorem see Anton (2000).

TheorenZ11 implieA can be decomposed inth = UKU?. Varying the values ifK re-
sults in various different shapes of the distribution (Mar® Jupp 2000).

Wood (1987) describes a method with which we can simulate fie density

f(x|k, B,7) = [2mc] ' exp [/-mg +y2i + B(2? — x%)}

which, if we setk = 0, is a Bingham distribution of the form

B 0 0 T
f(Ex|A) ocexp | [21 22 23] |0 =B 0O |29
0 0 ~v| |3

wheres > 0 andy € (—oo, 00) (Wood 1987). (This algorithm is very lengthy; refer to Wood
(1987) for a description). After implementing the algonithn R, we can simulate from a
Bingham distribution with mean directidw,, 6y) = (0, 0), from which a simulation from a
distribution with arbitrary mean can be straightforwardhytained by applying a rotation (as
was the case for simulating from the von-Mises Fisher dhigtion).

We can assess the behaviour of the density under variouesvafy and (see Figur€2]3).

It can be seen that whep = 3 = 0, the distribution is uniform. Meanwhiley acts as a
concentration parameter — the higherthe more concentration of points at the mean, while
with v negative, the points tend to be situated near the equatorobaferve a girdle shape
wheny ~ 3 # 0. Meanwhile, as3 increases, points are drawn away from the mean, to two
antipodal groupings on the equator.

2.3 Oirientation Data

The spatial orientation of an object jndimensions can be defined bydistinguishable di-
rections (Downs 1972). An example is Arshaped object in three dimensions, the orienta-
tion of which is defined by two orthogonal unit vectors givitng directions of its two arms
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B=10 B =50

Figure 2.3: Random samples of size 100 drawn from a Binghainlalition with mean
(¢,0) = (0,0) (the center of the stereonet) and various values of parastretand (.
Values on the upper sphere have been projected onto the $plere.

(Downs 1972). Ifx; andx, are the two orthogonal vectors that describe these direstio
then the3 x 2 matrix X, with columnsx; andx,, describes the orientation completely, and
XTX =1, (Downs 1972, Khatri & Mardia 1977).

In this section we will discuss the Matrix Fisher distrilmstj which is an extension of the von
Mises distribution, and is used to deal with data of this kiB&fore discussing the Matrix
Fisher distribution, however, we introduce the concept fiafel Manifold.

2.3.1 Stiefel Manifolds

An orthonormal n-frame ifR? is a set ofn vectors(xy, ..., x,,) in R? that are orthonormal, i.e.
x;x; = 0,1 # j and each vector has length 1 (Mardia & Jupp 2000).

The set of all orthonormal n-frames R is known as theStiefel ManifoldV, (R?) (Mardia
& Jupp 2000). For our purposes we can think of the Stiefel Ktdahias the set of alb x n
matrices that describe the orientation of an objegi-simensions, defined by directions,
and for whichX”X = 1,,, i.e.

V,(RP) ={X: X"X =1,} (2.3)
(Khatri & Mardia 1977, Mardia & Jupp 2000).

A useful tool for considering distributions dr, (R?) is the polar decomposition of matrices.
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Theorem 2.2.[Polar Decomposition] Any x n matrix X can be decomposed as
X =MK

whereM is thepolar partin V,,(R?), andK is theelliptical part ann x n symmetric positive
semi-definite matrix. We can obtavi and K uniquely wherX is invertible.K is given by

K = (X"X)?
and

M =XK!
(Mardia & Jupp 2000).

To prove the unigueness of the decomposition it sufficesdwshat a positive definite matrix
A has a unique positive definite square rBot A:z. If this is the case theK is unique. For
a proof of this see Abadir & Magnus (2005, p 220).

2.3.2 Matrix Fisher distribution

TheMatrix Fisher distributiondescribes the distribution of matric¥son the Stiefel Manifold
V,.(RP). It has PDF

FX;F) = {OFl (g; %FTF)} B exp [tr(F7X)] (2.4)

whereF is ap x n parameter matrix, ang; (g;
by

FTF) is the hypergeometric function given

OF( FTF) Zzg FTF)

k=0 K

= / exp (tr(F"X)) dX
Vi (RP)
(Muirhead 1982, Mardia & Jupp 2000). Hefg and(a), are as defined in AppendixA.6.

SinceF has polar decompositidi = MK andK, being symmetric, can be diagonalised as
K = UDUT for orthogonalU and diagonaD, then

F'F = K'"M"MK = KK = KK = UDUTUDU? = UD?*U”.

Now, since the zonal polynomiél,; is a function of the eigenvalues of its argument, and since
for any two matrices\ andB, AB andBA have the same eigenvalues, we find

C.(UD?*U") = C(D?*UUY)
= C,%(DQ)
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and hencgF; (£; 1FTF) = (F; (2;1D?) = ¢(D). In other words, the hypergeometric func-
tion depends only o, the eigenvalues &K (Khatri & Mardia 1977).

The focal mechanism of an earthquake is an example of a 3nrdilm@al object whose ori-
entation can be described by three directions (the faulhabh, the slip vectori and null
vectora, which together form the matriR(©) = [a a n]). Since focal mechanism estimation
is the central focus of this project, we will consider fronrénen only the case wheye= 3
andn = 3, i.e. a 3-dimensional object whose orientation can be de=tby three directions.
The relevant Stiefel Manifold i85 (IR?).

A Stiefel Manifold wheren = p, as in this case, is equivalent to tbehogonal groupof

p X p orthogonal matrices, denotétl p) (Downs 1972, Khatri & Mardia 1977). If we add the
further restriction thatlet R = +1 then this becomes thepecial orthogonal grougO(p).
Special orthogonal grouffO(3) contains the x 3 matricesR(©) = [a a ] that describe alll
possible orientations of the fault plane in 3 dimensions.

The shape of the distribution is controlled by, U andD, whereK = UDU?. The density
has a mode at the value &f where t{F?X) is maximised. This occurs whéx = M, the
polar part ofF (Downs 1972). The larger the entries of the diagonal mdixhe greater the
concentration of the distribution about the vectors defimgthe columns oM. Meanwhile,

U twists the shape of the distribution at the modEsis a rotation matrix, and can hence be
defined by three Euler anglés, 0, vy) whereU = B,(¢)B,(6)B.(¢). The angleg and di-
rectly twist the distribution at the third of the modes (tleemal vectom), while the twisting

of the other two modes is more compleXl is also a rotation matrix; overall therefore each
of the three matricedl, U andD is defined by 3 parameters, which together constitute the 9
parameters of the parameter maffix=- MUDU? .

Due to their aforementioned propertiéd,, D andU are called thenodal matrix concen-

tration matrix (Downs 1972) andpin matrixrespectively. WherD is the zero matrix the
distribution is uniform. Figuré&2l4 shows the shape of theritiution for various values of
these parameters.

A special case of the distribution, considered by Arnold &ihend (2007), occurs when
D = xI. In this caseF = MUDU” = xMUU? = kM, and so the distribution can
be described as the Matrix Fisher distribution with scalamoentration parameter. The
concentrations around each of the three modes are equalldA&iTownend (2007) assumed
that the distribution of focal mechanism parametergould be fitted by this distribution.
Later we explore the validity of this assumption.

Error estimation

While D determines the concentration of the distribution§®) around each of the three
modes, these values can be difficult to interpret. A moretimtuand interpretable measure
of spread is the standard deviation of the an@es (¢, 9, \) for a given Matrix Fisher dis-
tribution. Here we establish an approximate relationskeigvieen the concentration matiix
and the standard deviations of the strike angl&.
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Figure 2.4: Contour plots of the Matrix Fisher density wifi = R(«,[,7v) =
R(%”, = 3%) (marked as filled circles) antl and D as specified. The three modes
[a a n] are coloured green, red and blue respectively. Plot (a)lhas diag(1,1,1)
and no spin, (b) ha® = diag(10,5,2) and no spin, (c) ha® = diag(10,5,2) and
U = R(w, 8,7) = R(%,%,0), while (d) hasD = diag(0.01, 0.01, 50) and no spin.

Firstly, we apply a change of variable to represent the M&tisher PDFf (X; F) in terms of
O, whereX = R(O):

B dR(O)
o) = rren |55
x f(R(©))sind

o ¢(D) "' exp [tr(FT R(©))] sind

Now,

w/2 2w
f(é“)z/0 /Of(§,5,A)sin5dAd5
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and substitutingin 6dé = d(cos ) gives

= /1 /27r f(&,cosd, A)dAd(cosd)
o Jo

Here we integrate ovens d since we tabulat¢(R) on a grid in, cos d, A.

As described in Appendix’/Al4, the mean&is
5 _y [ (siné)
= (505)

27
@m@:E@mazéé sin €£(€)de

where in this case

n

1 2
"D wf(e)sing

cn—1

fo0s€) = Bleos) = [ cose (e

12
~ T Zwl (&) cosé&;.

cn—l

In the above we approximate the integrals using the trapenile (see AppendixA.7.1), with

wy = w, = ; . = 1 otherwise, withc = [ f(£)d¢ a normalisation constant. The variance

of £ is given by
=E[(£-¢)7]
1 21
-+ fexa

n

1 27
—Cn_1§jm (&)X

whereX = min (|§ — &P (1€ -€+ 27r)2 (1€ =€ - 27r)2> and again we approximate the
integral using the trapezium rule.

We can now evaluate; for different values oD and establish the relationship between these
two parameters. We firstly sl = R(w, 7/2, ), so that we are evaluating the standard de-
viation far from the polar singularities of the coordinaystem, and also s&f = R(0,0,0),

i.e. no spin. We then s& = diag(d,, d, k), allow only & to vary, and evaluate; for a range

of k values. Tabl&Z]1 shows values®f(in degrees) for four different combinations @f
andds.

Figure[Zb shows there is a roughly linear relationship ketwog (o) and k for various
values ofD = diag(d;, ds, k). The linear relationship is stronger for higher concerarat
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Table 2.1: Table of the standard deviation of the strike @ngl(in degrees) for various

values ofD.

k o¢|D = (0.01,0.01, k) | o¢|D = (0.01,50, k) | o¢|D = (50,0.01, k) | o¢|D = (50, 50, k)
0.0625 57.52 65.49 57.11 3.89
0.125 56.64 64.12 55.99 3.88

0.25 54.87 61.32 53.73 3.87
0.5 51.30 55.63 49.23 3.85

1 44.34 44.52 40.74 3.81

2 32.62 26.75 28.19 3.73

4 19.80 10.06 17.62 3.58

8 12.27 4.03 11.81 3.28

16 8.30 2.98 8.19 2.75

32 5.64 1.99 5.60 1.90

64 2.89 0.91 2.88 0.88

128 0.63 0.19 0.63 0.18
256 0.03 0.01 0.03 0.01
512 0.00 0.00 0.00 0.00

values

. The overall relationship can be approximated byessinglog(c,) on k across all
chosen values dD, and found to be:

¢ = exp (2.73738 — 0.02645k)

Thus standard deviations ef = 1°, 5°,10° and15° correspond t& values of approximately
100, 43, 16 and 1.1.

This relationship does not hold in certain cases, howeuggsnax(os) = exp(2.73738) =
15.45°. Clearlyo, can exceed this value, as shown in Tdhblé 2.1, most obvionstgses in
which two of the concentration parameters are sifxall). Thus we regreseg(o,) onk for

k < 1landD # (50,50, k), and obtain the following approximate relationship

o¢ = exp (4.1196 — 0.3509k)

in the case when two or more of the componentBadre< 1.

In the case of the Matrix Fisher distribution with scalar centration parameter, Arnold &
Townend (2007) established the following approximateti@teship betweemn and the stan-
dard deviatiorrg of the focal mechanism parameters (in degrees):

oo = exp (3.9155 — 0.5659 log k)

(2.5)

and thusyg values of1°, 5°, 10°, 15°, 20° and30°, correspond te: values of approximately
1000, 60, 17, 8,5 and 2.5.

Simulation

To simulate from the Matrix Fisher distribution ®3(R?) with parameter matri¥', we use the
method given by Chikuse (2003). The simulation procedwdsstvith generating a pseudo-

random uniform matriXX using the following method:
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g —eo— D =diag(0.01,0.01,k)
N —e— D =diag(0.01,50,k)
B —e— D =diag(50,0.01,k)
D = diag(50,50,k)
_ - - Overall relationship
~
0 g :
©
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Figure 2.5: Plot of (log scale) versuk for various values oD = diag(d;, ds, k). Lines
of best fit given by regressirigg (o, ) onk for eachD are shown. The overall relationship
is indicated by the dotted line.

1. Generate 9 independent realisations from the standandahd/ (0, 1) distribution;
2. Arrange these into&ax 3 matrixL;
3. X = L(L”L)"2 is a pseudo-random uniform matrix dH(IR?).

We then generate a random uniform realisatiam (0,1). Ifu < exp [tr(FTX — D)], where
D is the diagonal matrix of eigenvalueskf, then we accepX as a random matrix from the
Matrix Fisher distribution with parameter matrbx  Otherwise we rejecKX and repeat the
procedure starting from Step 1 above.

Since the modal matri®d1 is orthogonal and the columns define the modal directionbef t
distribution, we can always s& as the identity, simulate, and then rotate the sample to a
desired mean direction specified by three Euler angles. r&igi$ shows some simulations
with various parameter values.

Parameter Estimation — Kullback-Leibler Divergence

We use here a Matrix Fisher distributigif R(©)|F) to approximate a Bayesian posterior
P(R(©)|d) based on datd. We now briefly describe the estimation of the valuerothat
yields the best approximation 1&(R(©)|d). We use th&ullback-Leibler divergenceH (9),
as a measure of the discrepancy between the true distribB{ip|d) of some parametey,
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Figure 2.6: Random samples of size 100 drawn from a Matrikdtiglistribution with
modeM = R(a,3,7) = R(},7, %) (marked as filled circles) with no spin arid as
specified. Each observation is marked (1,2,3) for (they, z) directions respectively.
Values on the upper sphere have been reversed onto the Ipthenes Plot (a) haB =
diag(0, 0, 0) (the uniform case), (b) ha® = diag5, 5, 5), (c) hasD = diag20, 10, 5)
and (d) had = diag(1000, 0.01,0.01).

based on datd, and a model distributiorf(y|¢) that is defined by a parametér(see e.g.
Gelman et al. 1995). The Kullback-Leibler divergence foneeg value off is

o)== (i )

- fue (2

_ const.— / Plyld) log f(y|0)dy (2.6)

The aim is to find that minimises this divergence. To fiddve minimise EquatioR 216

0 = argminH (0) = argmax/ P(y|d)log f(y|0)dy
0 [%
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Consider the case in which the model dengity|0) is the Matrix Fisher density (X; F).
The density given by Equatidn 2.4 can be rewritten as

f(X;F) = c(D) " exp [tr(F"X)]
so that
F = argmax / P(X|d)log [¢(D) " exp (tr(FTX))] dX
= argmax [/ P(X|d)tr (F'X) dX — /P(X|d) log ¢(D) dX}
= argmax {tr (FT/P(X|d)XdX) — logc(D)/P(X\d) dX]

If the densityP(X|d) is unnormalised we divide through HyP(X|d)dX

- tr (F7 [ P(X|d) X dX) fP
F=agmax ) ——pxigax P px ]
B +J P(X|d) X dX
= arg;nax {tr <F TP(X]d)dX ) — logc(D)]
= argmax [tr (F"X,,) — log ¢(D)] (2.7)

whereX,, is the mean weighted by the true density. In this projecX|d) is available on a
grid {X;},=1,.x. In that case the weighted mean can be approximated by
% o~ 2 wiP(Xi|d)X

>oim wiP(X;]d)
using the trapezium rule (see AppendixAl7.1). Equdiichefuivalent to the log-likelihood
of the Matrix Fisher distribution. The maximisation in Eqoal[Z.1 is thus exactly analogous
to Maximum Likelihood Estimation oF in the case when a random sample of matrices has
been drawn from the true density, rather than a tabulateldogrnatrix value{X; }
in our case.

.....

We now demonstrate how to solve Equafion 2.7, in which tHeiohg theorem will be useful.

Theorem 2.3.1f a matrix A commutes with an arbitrary diagonal matriy,
AD =DA
then A must also be diagonal.

Proof.

D);; = ZAikaj = ZAikak(skj =Dj;A;;
k k
=) DuAy; = Y DuduAy; = DAy
k k

Dj;Ai; = DiAy;
(Dj; —Dii)Ai; =0
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where

1 i
by=4 7
0 @77

SinceD;; = Dj; only if i = j, thenA;; = 0if i # j, SOA is diagonal.

Given thatF can be decomposed into
F = MK = MUDU”

we can use Lagrange multipliers to maximise Equdiioh 2.jestto the constraint81” M =
I andUTU = 1.

Firstly, note that

(MTM), Z My My

and similarly

(UTU); Z UnUy;

and that the identity matrix can be expressed/as = 4,;. Hence the constrainfel’ M = 1
andU”U = [ are equivalent to_, M,;M,; = é;; and)_, U, Uy = 6;; for the entry in the

i row and;" column. So in the case ofdax 3 matrix, this means there are nine constraint
equations for each of the two constraitvi€ M = I andU” U = I. Each constraint equation
adds a separate term given by

Y4

and

Hij <5z‘j - Z UZiUZj)
¢

onto the objective function, wherg; andy;; are Lagrange multipliers. Hence the objective
function to be maximised is

G(M, U, D)

= tr(F'X) + Z Aij (5@ - Z Mgngj) + Z i (5@* - Z UZiUZj) —log ¢(D)
¢ ij ¢

ij

= tr(MTA) + Z >\ij (521 — Z MéiMZj> + Z Mij <5@] - Z UZ@'UZ]’) - log C(D)
4 ij V4

ij
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whereA = X,,UDU”. Now we differentiate G with respect t;:

G = Z M;; Aij + Z Aij <5z‘j — Z MZiMZj> + Z Fij (%’ - Z Uzz'Uz]) —log ¢(D)
ij ij ¢ ij ¢

oG
T~ Aw - Z Aoy Maj — Z Ais Mo

J

= Ay — (MAT) g — (MA)y =0
Hence
A =M 4+ N),
AT + X\ is symmetric and hendel is the polar part ofA. Thus
M=A(ATA) 2 = X, K(KXTX,K) 2.
Now if we putB = M”X,, then
tr(F'X,) = tr(UDU"M’X,,) = tr(UDU’B).

Differentiating G with respect t&/,, gives

G = Z Uij DU By + Z Aij <5ij - Z MZZ‘MZ]‘> + Z iy <5ij - Z UéiUéj> —log c¢(D)
¢ i 7

ijke ij

oG

aU . = E DkaZkBZa —+ E UZJD]me — % ,ubjUaj — § :uibUai
a et ij j ¢

set

= (BTUD)ab + (BUD)ab - (UMT)ab - (U:u)ab =0

and hence

(BT + B)UD = U(i” + p)
(B" + B)UDU” = U(p” + p)UT
(XIM + M?TX,)K = U(p? + p)UT
X"MK +M*X, K = UHU”

whereH = (u? + p). Now recall that
M = XTK(KX"X,K) 2
which means that
M”X,K = (KXTX,K) :KX’X, K = (KX’X,K)2

and so



Now the second and third matrices in this expression are stnon The first matrix must
therefore also be symmetric, i.e.

XIMK = KM”X,,
XTX K(KXTX,K) 2K = K(KX’X,K) :KX'X,,
KX"X,K(KX’X,K) KK = KK(KX"X,K) :KX’X,K
(KX'X,K):KK = KK(KX”TX,K)?
(KX’X,K)KK = (KX'X,K):KK(KX’X,K)?

Overall, therefore, the right hand side of this expresss@ymmetric, and hence so is the left
hand side, i.e.

(KXTX,K)KK = [(KX?X,K)KK]" = KK(KX7X,K). (2.8)
Now X,, has polar decomposition
X, = RS
whereR is the polar part an8 is the elliptical part. Furthe§ has eigenvalue decomposition
S = VEV’
meaning that
X’X, = VEVIR'RVEV” = VE?V*
and Equatiof.Z]8 can be written
(KVE?*VTK)KK = KK(KVE?V'K)
SinceK is invertible we can cancd twice from both sides of this expression

VE’V'KK = KKVE*V”
VE?’VTUD?U” = UD*U?"VE*V”
(UTVE*VTU)D?*UTU = UTUD*(U'VE?*V'U)
(U'VE*VTU)D? = D*(UTVE*VTU)
Now D? is a diagonal matrix that commutes with! VE?VZU and hence by Theorem 2.3

UTVE?V'U is also diagonal. Sinck” is diagonal, it follows thav”U = I and hence
U = V. This means that the eigenvectordofare the same as the eigenvector$ of
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Now if we collect all these results together we find that

X, =RS =RVEV” (polar decomposition)
K = VDV’
U=V
D must be obtained numerically (see below)
M = X, K(KX'X,K) 2
= RVEV'VDV”(VDV'VEV'R’RVEV’VDV”) 2
— RVEDV”(VDE?DV7) "2
= RVEDV’(VDEV')™!
= RVEDV’VE'D'V7T
=R
F =MK =RVDV"

-----

we first computeX,,, decompose it int@® andS, and then decomposginto S = VEVT,
We next find the valu® for which EquatioiZl7 is maximised based on these valueR for
S andV, and finally form

F=RvDV?

We can carry out the maximisation ovBrusing theopt i m() function inR. This function
allows us to specify a lower bound of di@g0, 0) for D, to ensure that the eigenvalueskof
and thus the concentrations of the Matrix Fisher distrdnutare non-negative.

In the case of the Matrix Fisher distribution with scalar cemtration parameter, we simply
setD = kI intheopt i m() procedure to obtain the estimate of the scalar concentrpae
rameters. The estimate oM remains as above.

To demonstrate this method we run the procedure using sietutiata. Note that here we
do not use a grid of matricegX;},—; ., but a random sample, making this example one
of Maximum Likelihood estimation rather than minimisatiohthe Kullback-Leibler diver-
gence. The two are equivalent, as mentioned above.

We take a sample of size 100 of matriées, ..., X0 from the Matrix Fisher distribution with
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arbitrary parameter matrik = MUDU? where

o 0.500  0.000 —0.866
U=R(a,3,7) =R <7r, o o) = | 0.000 —1.000 0.000
—0.866 0.000 —0.500

8 00

D=1{0 4 0

00 2
S 0.191 0.733 —0.653
M:R(a,ﬁ,y)zR(E,Z,z): —0.845 0.462 0.271

0.500 0.500 0.707

implying that,

2.367  2.930 —4.743
F = MUDU” = [ -3.659 1.848 3.953
—0.087 2.000 3.297

We then calculat®' given the sample meaX. As the data are sampled from a Matrix Fisher
distribution, one would expe® andF to be similar:

[ 0.405  0.453 —0.794
U= 0453 -0.854 —0.256
| —0.794 —0.256 —0.551

- [8081 0 0
D=| 0 283 0
0 0 2.342

R 0.182 0.728 —0.661
M= |-0.855 0.449 0.259
0.485 0.518 0.704

and,

R o 2498 4282 —5.731
F = MUDU” = [-3.012 0.518 2.308
0.744 1.061 2.286

The actual and estimated modM} matrices are very similar, while the actual and estimated
parameterk’), concentrationI)) and spin U) matrices are reasonably similar. In the case of

the spin matrixU, it is important to remember that the eigenvectors are defamdy up to a
constant.

We can compar& andF visually by plotting the distributions using each matris,seen in

Figure[2Z¥. The similarity of the two contour plots indicathe validity of the estimation
method.
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Figure 2.7: Marginal PDF plots of the Matrix Fisher distrilom givenF (left) and theF
(right) using simulated data.

2.3.3 8-Mode Matrix Fisher distribution

The Matrix Fisher distribution can be generalised to situetin which there are ambiguities
regarding the directions defined by the columns of the madrike. to axial data.

Of particular interest in this project, given the two ambigas surrounding focal mechanisms
mentioned in Section 1.2.3, and one further ambiguity dised in Section3.3.1, will be the
case in which there are eight equivalent representatiokXs &, X A,, XC,, XT,, XA,C,,
XA,T,, XC,T, andXA,C,T,, where

-1 0 0 0 0 1 1 0 0
Ay, =0 1 O C,=1(0 -1 0 To=10 -1 0
0 0 -1 1 0 0 0 0 1

These ambiguities can be interpreted as follows:

e A, reverses the first and third columnsXf This is due to the axial nature of the fault
normal vectom.

e C, swaps the first and third columns &. This is due to the inability to distinguish
between the slip vectar and normal vecton.

e T, reverses the second columnXf and reverses the sign of the determinanXof
This is due to the lack of dependence of our Bayesian postamithe orientation of the
null vectora (see Section-3.3.1).
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To fit a probability distribution to data of this nature we rhgeneralise the Matrix Fisher
distribution to account for the ambiguities. Here we introe the8-mode Matrix Fisher
distribution, which has PDF

f(X;F) = [oFl (g iFTF)} _
X %{exp [tr(FTX)] + exp [tr(F"XA,)] + exp [tr(F"XCy)] +
+ exp [tr(F"XT5)] + exp [tr(F"XA,Cy)] + exp [tr(FTXA,T5)] +

+ exp [tr(FTXCQTQ)} + exp [tr(FTX.AQCQTQ)} } (2.9)

wherey F; (g; iFTF) is the hypergeometric function of matrix argument. Thisegiequal
weight to each of the eight equivalent representations.of

Figure[Z.8 shows the shape of the 8-mode distribution unaléows values of the concentra-
tion and spin matrices. The ambiguities cause each of thieneda a n] to have multiple
modes. It can be seen that if there is no spin, the @ixaadn have identical probability
contours (e.g. the blue contours coincide exactly with, g overplot, the green contours
in plots (a) and (b)), while if spin is present and the conitdns vary (plots (c) and (d))
then the probability contours of the two axes are distinct.

Simulation

To simulate from the 8-mode Matrix Fisher distribution wighrameter matri¥ we adjust
slightly the method of Chikuse (2003) described in SediighZ?

We first generat&, a random matrix from the Matrix Fisher distribution withrpmeter ma-
trix F. Then, with uniform probabilityg, we select randomly one of the 8 transformatidis (
A,, Gy, Ty, AyCsy, ATy, Cy Ty, AyC5T,), and apply the selected transformatiorXo

Figure[Z.9 shows some samples from the 8-mode Matrix Fisis&itdition for a variety of
parameter matrices. The ambiguities are most evident i@I¢high concentration).

Parameter Estimation — Kullback-Leibler Divergence

The procedure described in Sectlon 2.3.2 must also be adjuktere we will adopt an iter-
ative procedure. To find the estimatedfthat minimises the Kullback-Leibler divergence,
given a grid of matrice$X,},—; ., calculate the true PDF dt(X;|d) at eachX; and then
perform the following steps:

.....

1. FindX; : f(X;;F) > f(X;;F)Vj # 4, and seM = X,. This is the first estimate of
M, the modal part oF;

2. For everyX; in the grid, find which of the eight possible representatiohthe matrix
X; has maximum {iM” X) — call that representatioK*;
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Figure 2.8: Contour plots of the 8-Mode Matrix Fisher dgnsitth M = R(«, 3,7) =
R(Z, z,3%) andU andD as specified. The three axX#sa n] are coloured green, red and
blue respectively. Plot (a) hd3 = diag(1, 1, 1) and no spin, (b) ha® = diag(10, 5, 2)
and no spin, (c) hab = diag(10,5,2) andU = R(a, §,7) = R(3F, &, 0), while (d) has

2 2w

D = diag(0.01, 0.01,50) andU = R(a, 8,7) = R(Z, Z,0).

3. Calculate the weighted mean using the trapezium rule

X - SV w P(X|d) X
Ty wP(Xld);

4. Use the mean to calculate a new estimat®¥of the polar part 0iX,,;

5. Now using these values implement the procedure as desattthe end of Sectign 2.8.2
to getF, an estimate oF'.

From then on, repeat the process from Step 2, except thaemZtlassify each grid point
according to which representation gives maximu(itrX). The process continues unkbl

converges.
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Figure 2.9: Random samples of size 100 drawn from the 8-ModgikFisher distribu-
tion with modeM = R(«, 3,7) = R(}, 7, ) (marked as filled circles)) as specified
and no spin. The observations are marked (1,2,3) for(the, ) axes. Values on the
upper sphere have been reversed onto the lower sphere.aPlwagD = diag(0, 0, 0)
(the uniform case), (b) had = diag(5,5,5), (c) hasD = diag(10, 10, 10) and (d) has
D = diag(1000, 0.01,0.01).

The justification for this procedure is that due to the amibigs, we cannot just use the mean
of the matrices. Instead we take a first guess at the modaikoéthe distribution: the max-
imum of the posterior PDF (or any maximum, if more than onsxivhich we callVl. We
then look at all eight matrix representations at each sasmdént and choose the one which
is closest to the mod®1. This representatiorX*, is used to form the mean. Using this mean
we get a better estimate d, following which we again check which of the eight matrices i
closest to the mode, and then recalculate the average. fiduegs will eventually converge
to a single estimate d¥1, and hence oF.

To demonstrate this method we ran the procedure using the samlated data as was used in
Sectior 232, with one of the eight transformations rangapplied to each. The calculated
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estimates are

[ 0.473  —0.723 0.503
U= 058 068 0434
| —0.659  0.089 0.747

[7.169 0 0
0 3391 O
0 0  2.648

) 0.219 0.736 —0.641
M= |-0.846 0.471 0.251
0.486 0.487 0.725

U)
Il

hence,

R o 2470 4.625 —4.524
F = MUDU” = [ -3.374 0.965 1.593
1.343 1413 1.812

All four matrices are similar to the matrices used to gerecifad data specified in Section213.2.
We again compar€ andF visually by plotting the marginal 8-mode Matrix Fisher diisti-
tions (see FigurE210). The similarity of the two plots skd@vapproximate& well, and
reinforces the validity of the iteration procedure.

2.3.4 Goodness of Fit Testing

Ideally, we would like to perform a test of the goodness otfitta generalised Matrix Fisher
distribution f(R(©)|F) provides to a Bayesian posterior distributi®2(©)|d) based on
datad. Unfortunately, as will be shown in subsequent chaptemspzdation of the empirical
distributionP( R|d) is sufficiently computationally intensive that resamplingthods such as
the bootstrap (in which the earthquake data generatiorepsowould be repeated using re-
sampledd’s from the empirical distribution) are not feasible fortsttical testing of the fitted
parameter values.

There is no statistical test for goodness of fit in the case@ber empirical PDF is evaluated
on a grid of pointg X, } ,—1 ..., across the sample space, as in the case of the Kullbackekiebl
divergence. However, if our parameter estimate had beennsat from a random sample of
matrices from the true probability density, the goodnesBtdésts on the Stiefel Manifold
V3(R?) described by Jupp (2005) could be applied. There are twostatistics that can
be used to test the null hypothesis that the probability ithefignction that generated the
observed data is i, whereF' is a family of probability density function8 = { f(-;0) : 6 €

©}. The weighted Rayleigh test statistic is

Twr = 3ntr(X2X,)

whereX,, is a weighted mean

X, =

e

k
X,

£(X:0)
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Figure 2.10: Marginal PDF plots of the 8-Mode Matrix Fishestdbution givenF (left)
and theF" (right) using simulated data.

and the weighted Giné test statistic (based on Giné (19#5ts of uniformity) is

k(3 - BV -XTX))

Tuo=1 3

i=1 j=1 .f(Xz)7 é)f(va é)

Significance is evaluated by resampling from the fitted ihigtron.
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Chapter 3

Bayesian Methods

3.1 Bayes’ Theorem

Bayes’ Theorenms a simple rule in probability theory that forms the basigh# estimation
technigues used in this project.

Theorem 3.1.[Bayes’ Theorem] For two random variables andY':

_ PY[X)P(X)
P(X|Y) = W (3.1)
Proof. The theorem is proved by noting tha&{X,Y) = P(Y, X), and
P(X,Y) = P(X|Y)P(Y)
P(Y,X) = P(Y|X)P(X)
by the product rule. Therefore,
P(X|Y)P(Y)=P(Y|X)P(X)
_ PYVIX)P(X)
— P(X|Y) = PY) .
U

Sivia (1996) explains the importance of the theorem for datysis. Often we observe the
result of some event (our data), and we want to establishritierlying cause or causes of this
outcome. This is not always an easy task. The reverse, wpddnthe probability that some
event occurs given we know the cause, is much easier. Formeasuppose we flip a coin
10 times and obtain 6 heads. We then determine the prolyatbidit this is a fair coin, given
the observations. Intuitively this is not simple, but if wens to determine the probability of
a fair coin producing 6 heads in 10 flips, this probabilityiregly determined by the binomial
distribution.

If we replace X and Y in Equatidn 3.1 by hypothesis and datxth

P(hypothesiglatg « P(datdhypothesisP (hypothesis
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Here, the probability that the hypothesis is true, givendat, is related to the probability
that the data occurred given the hypothesis, the latter aflwive are more likely to be
able to calculate (Sivia 1996)?(hypothesisis known as therior probability — our prior
knowledge of the hypothesis. This prior knowledge is infeexhby thelikelihood function
P(datahypothesis. The likelihood is a function of the hypothesis; the the detaain fixed.
This outputs theposterior probability P(hypothesiglata, our knowledge of the hypothesis
given the data (Sivia 1996). Note that the denominator inaiqgn[3.1 has been dropped,
because it does not depend on the hypothesis, and is simggnaahsation constant. Note
that this does require an enumeration of the hypothesigespad the specification of a set of
prior probabilities for all possible hypotheses.

3.2 Examples

In this section we will consider two examples of situatiomsvhich a Bayesian approach can
be applied. The first example, the lighthouse problem, isnami@al problem that provides a
relatively straightforward introduction to a real-worlidustion in which Bayesian techniques
can be used. The second example, the earthquake hypoaaattieh problem, is particularly
relevant to this project, as it underpins the algorithm wi wge to locate earthquakes. These
locations are necessary inputs to the main problem solvéidsiproject; the determination of
focal mechanism parametegs

3.2.1 Lighthouse Problem

We now consider an example of a situation in which a Bayegi@naach can be applied. The
problem is defined as follows: “A lighthouse is somewhereagfiece of straight coastline at
a positiona along the shore and a distariceut at sea. It emits a series of short highly colli-
mated flashes at random intervals and hence at random azinTiitese pulses are intercepted
on the coast by photo-detectors that record only the fatttiflash has occurred, but not the
angle from which it cameN flashes have so far been recorded at positiang. Where is
the lighthouse?” (Sivia 1996). Hereafter we let curly betskdenote a set.

Lighthouse

Figure 3.1: Visual representation of the lighthouse pnoble
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Given that we know nothing about the lighthouse locatiois,iéasonable to assume a uniform
prior on the azimuth: of the k' observation:

P(cla,b) =

>1|H

(3.2)
as(—3 < ¢ < 7). Trigonometry tells us thdttan(c) = x; — a. We can use the change of
variable technique (see SectionA.5) to rewrite the PDF alamv

b
7[b? + (z — a)?
So the probability of thé:'" flash being recorded at,, given that we know where the light-

house is, follows a Cauchy distribution. We will now assuméhis example that is known,
and we wish to find the posterior probability @f

P(al{zx},b) o< P({x}|a,b)P(alb)

We know nothing about, so we will give it a uniform prior, which reflects our igno@(i.e.
every possible distance along the shore is equally propable

A (a'min S a S a'max)
0 otherwise

P<xk‘a7 b) =

P(alb) = P(a) = (3.3)

where A is equal to- p—— Now the recording of each signal is independent, so the

likelihood function is glven by

P({zy}|a,b) HP xk|a, b) (3.4)

Now we know the prior (Equatidn-3.3) and the likelihood fuant(Equatiori-3.4), which we
can put into Bayes’ Theorem to obtain an expression for tiséepior PDF:

N b
Ploltarh.0) o Ax T e

Table[3.1 illustrates how the various PDFs relate to thofieetdin Sectiof 3]1.

Table 3.1: How PDFs in the lighthouse example relate to thePD Sectiol 3]1.

Prior Likelihood Posterior
In general P(hypothesis P(datahypothesis P(hypothesigiatg
Lighthouse example P(a) P({xk}|a,b) P(a|xg,b)

To get the best estimate af we need to maximise the posterior PDF. It becomes easier to
deal with the log of the posterior PDF — the maximum will remtie same.

log[P(al|{zi},b)] =log A+ _ [log(b) — logm — log(b* + (z, — a)*)]

N
— constant— Z log(b* + (x1, — a)?)
k=1

43



To maximise this, we differentiate with respectitand set it equal to zero:

dlog[P(a|xy,b)] T —a set
da =2 Z b?

This equation cannot be easily rearranged to exptaasterms ofz;, andb, so we look at
the problem numerically. We calculate the posterior PDFRviany different values ai; the
largest PDF value will correspond to the best estimate. dfVe can perform this procedure
easily usingR, generating random azimuths using Equalioh 3.2, and ctingehese into po-
sitions{z }. We also use fixed values bf= 1, anda = 2, to generate the data. We can then
plot the posterior PDF against the lighthouse positigrip find the best estimate aof (see
Figure[3.2).
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Figure 3.2: Posterior PDF of the positian,of the lighthouse giveh = 1. The number
of flashes observed is given by

The plots of the posterior PDF begin to narrow as the numb#asiies increases, centering
ona = 2. This is the value of the estimate @fand, as mentioned, was the valueiafsed to
generate the data.

3.2.2 Earthquake Hypocentre Location

A second example of a situation in which a Bayesian approaohbe adopted is the prob-
lem of locating an earthquake’s hypocentre. This locatigor&hm is based on Tarantola &
Valette (1982)’'s approach. Locating an earthquake is ampleof a Bayesian problem in
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that we wish to use data (seismometer arrival times) to tatleyarameter values that de-
scribe the system (the coordinates of the hypocentre) fi@ea2005).

Tarantola & Valette (1982) apply the inversion approacthmhypocentre location problem.
The unknown parameters are the hypocentre coordinates(z, y, z), and the origin time,
T, while the known data are the seismic wave (P-, or both P- andrBval times,{t?*}, at
stations. We assume we also know the locations ofite&tions,s;, and the velocity model,
v. P-wave arrival times are the main wave type used in hypoedotation, while S-wave
arrival times can be used to supplement the P-wave data dtedt benstrain the hypocentre.
In that case two velocity models are used, but the formuldiglow is unaffected.

We seek an expression for the posterior PDF of the hypockdation P(x|{t;}). This ex-
ample is slightly more complicated than the lighthouse gamas we have two unknown
parametersx andT.

Tarantola & Valette (1982) consider two sources of error -estherrors caused by the as-
sumed velocity model, and those caused by uncertainty kingahe exact arrival times at
stations. Le{t¢} = {t¢!(x,T)} be the theoretical (calculated) arrival time at statiérom

a hypocentre locatior given a velocity model. We assume tH#* } is normally distributed
with mean{t¢*} and covariance matri€, where{t"} represents the theoretical arrival time
at station; from a hypocentre locatior given a perfectly implemented velocity model. We
also assume the dafa?s} are normally distributed with meaft*} and covariance matrix
C; (Tarantola & Valette 1982).

From the above it follows that the likelihood of the daf#*}, given the parameters, is:
P({t}|x, T) = exp {—%[t”bs — t)7(Cy + Cp) Mt — twﬂ} (3.5)

This encompasses both the errors caused by the velocitylrmodehe observational errors.
So, the posterior PDF of the unknown parameteandT is given by:

P(x, TI{t"}) o< P(x, T)P({t" }|x, T) (3.6)
1
x P(x,T)exp {—é[t"bs — tlT(C, + Cp) Mt — tcal]} (3.7)
where P(x, T) describes our prior information about the parameters. rfala & Valette

(1982) then assume a uniform prior ®nsince we generally have no prior information about
the origin time. Hence,

P(x,T) = P(x).P(T) (due to independence)
x P(x) (due to uniformity of P(T)) (3.8)

We now define the theoretical travel tild@s*(x)} between a hypocentre locationand
stationi, which is simply the difference in time between the caledaarrival time and the
origin timeT:

heel (x) =t — T (3.9)
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Since we are more interested in the location of the earthethan the origin time, we wish to
obtain the posterior PDF of the hypocentre coordinatesealve do this by integrating over

the range of the origin tim& in Equatior3.J7:
PO() = [ PO T paT
= P(x,T) / exp {—%[t“bs — tT(Cy + Cp) [t — tcal]}dT (byB7)
o P(x) / exp { ;[tobs — tlT(C, 4 Cp) Mt — tm’]}dT (by[38)
x [ exp { — [t —h* —T)" . P [t — h* — T }dT (by[39)

whereP = (C,+Cy) ",

1 obs cal obs cal
x exp{ §Zt — B¢ =T Py - [t97 — RS — T pdT
ij
1 2 obs cal
OC/exp{ 5 PT—QTZPZ-j(tj — R +
1]
+ Z tobs hcal (tobs h;:al) } dT

tj

Now let
a=2_ Py
ij
b= Py (= 1)
ij
= Z(t?bs _ h;al) . Pij . (t;?bs _ hzqal>.

ij
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Substituting these into the above gives:
P(x|{t?}) oc/exp {—% (aT? = 2Tb+ ) }dT
m/exp{— (T —2Tb+ — +C——>}d
2
oc/exp{—lla(T—é) c—— ]}dT
a
1 b? a
ocexp{—é (C_E)}/GXP{_ﬁ (T ) }dT
Now using/exp(—st)dx = \/E gives
s
S1CHNE
x expy —= | c— — —
2 a a

We now substitute, b andc back in:

2
obs cal
2 1 (ZU Py(t5% — h§ ))
P<X‘{t?bs}> Xyl=7p5 &XPy 5 (t?bs — hgal) P (t‘?bs _ hqal) B
ZZ’]’ Pz'j 2 J J J ZZ’]’ Pz'j

27 1 |: obs cal Ekl Pkl<t?bs B hlcal):|
x exp§ —= t7" — hi™ —
Zz’j Pl'j { 2 Z Zkl Py

ij
P.. . |:t0b8 - hcal . Ekl Pkl(t?bs — hf“l):| }
ij J y
Ekl Pkl

x Z27TP exp {_% Z ([Eobs _ ﬁcal(x)]T P. [Eobs _ ﬁcal <X)]> } (3.10)

i i

DN —
—

\V)
@I@

where t° is the observed arrival time minus the weighted mean of eleskarrival times

P, obs
fobs _ gobs _ 2 P17
08 = (¢

> P

andh< (x) is the computed travel time betwegrand station, minus the weighted mean of

computed travel times

peal — peal _ Zkl D - hfbs
' ' 2 ki B
(Tarantola & Valette 1982).

To summarise, Equatidn 3110 gives the posterior PDF forghéda location of an earthquake
hypocentre, given the arrival time ddta}. Note that this requires estimation®find a valid
velocity model for the region of interest.
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3.3 Application to Focal Mechanisms

We now turn our attention to the main aim of this thesis: theredion of focal mechanism
parameters from a set of P-wave first motion data measured byray of seismometers.

3.3.1 \Velocity Model Known

In this section develop a probabilistic relationship betwéhe focal mechanism parameters
O = (&, 4, A) and the available data using Bayesian methods, taking auiouat the relevant
uncertainties (see Sectibn112.4). First we assume thaetbeity model is perfectly known.

Seismological Model

Given a focal mechanism representedby- (£, 4, \), we can compute the theoretical P-wave
amplitudeA; at the;?" station using Equation 4.89 of Aki & Richards (2002):

A; =2(p; - 0)(pi - 1) (3.11)

where is the slip vector is the fault normal, and they are both defined in terms of thalfo
mechanism parameters (Aki & Richards 2002):

u(0) = (sin€cosdsin A + cos€ cos A, — cos € cos d sin A + sin € cos A, —sin d sin \) (3.12)
n(0) = (—sinésin d, cos  sin §, — cos ) (3.13)

Herep; is the unit vector from the hypocentre, to the point on the focal sphere correspond-
ing to stationi. The vectomp; has azimuthy; and take-off anglé;:

pi(¢i, 0;) = (sin b; cos ¢;, sin 6; sin ¢;, cos 6;) (3.14)

In estimating a focal mechanism, we are more interestedarnptiarity of a P-wave first
motion than its amplitude. The approach of Brillinger et(aB80) is adopted here. Lé&t
define P-wave first motions as follows:

+1 if the first motion is recorded as positive (a compression)
—1 if the first motion is recorded as negative (a dilatation)

Then we can treat observed polarities ati#hestation as Bernoulli random variables:

or alternatively

114y,
PY;=y;) = W?(Hyl)(l - Wi)%(l_yi) (y; =—1,1)

2

To computer;, we assume that the observed amplitudés normally distributed:

Ai|Af e~ N(AL, o)

Az"Afa —Cc~ N(_A;‘ka ‘72)
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wherec indicates a correctly wired station, and indicates cross-wiring (meaning that one
can expect to observe the negative of the true amplitude)e Nt we assume, to be
constant across stations, in the absence of previous ealstudies. The conditional proba-
bilities of observing a positive amplitude, giverand—c respectively, are:

A
P(A, >0\A;,c):1—q><0 )

where® is the Normal cumulative distribution function. Now lef be the probability of a
a correctly wired station. Then, to work owuf, the probability of a positive observed first
motion, we note that; is equal to the probability of a positive observed amplitdde

= P(A; > 0|A%, ¢)P(c) + P(A; > 0| A%, —¢)P(—c)

o) (-o(£)) -
A

=1-m+ (2m—1)® (é)
Oq
/ / A;k

wherer;, = 1—m, is the probability of an incorrectly wired station. Subtiiig Equatiofi3. 11
into the above gives:

m =, + (1 —2m,)® (2@1 ) (B ﬁ)) (3.16)

Oq

With precise datag, is large (, small) ando, small. This model has the property that the
larger the magnitude of}, the greater the probability of the P-wave first motion hg\ueen
observed correctly (Brillinger et al. 1980). To summaribes conditional probability of an
observed polarity given the true amplitude and the relegenots, is:

P(YJAL, 00, m,) = 2P (1 = ) 3090 (yi = —1,1) (3.17)

(2

wherer; is defined in Equation3.16.
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Probabilistic Constraints

From here on, let curly bracke{g denote a set of values over the seismometer griray
1,...,n). We are interested in attaining a probabilistic relatiopsietween the following:

e The data: arrival times{t;} and observed P-wave polariti€¥; }. Let
d = ({t:}, {Vi})
denote the data as a whole.
e The unknown parameters of interest focal mechanism parametegs= (&, 9, A).

e The nuisance parameters (unknown parameters that enter thanalysis but are not
of interest): the earthquake hypocentxe the probability of a correctly wired station
7, the amplitude noise,, and the theoretical amplitud€. Let

Y= (1/}17 X) = (7Tp7 Oa, A;kv X)
denote the nuisance parameters, whare- (7, o,, A}).

e The known parameters station locationgs;}, the P-wave arrival time errofsr, },

2

the velocity modeb and the covariance matr@; = 2. exp {—% Zg‘ } describing the
theoretical errors in the hypocentre location model (seti@es[3.2.P2 and4.2.1). Let

w = ({Si}7 {Uti}u v, CT)

denote the known parameters.

Our goal is to attain an expression for the posterior prditgbliensity of the focal mechanism
parameters, in terms of the data and the known parameters:

P(O|d,w)
We splitd into its components and apply Bayes Rule as follows:

where P(©) is the focal mechanism prior of our choice, aR¢{Y;}|{t:}, ©,w) is the like-
lihood function of the data. Note that the prior could be dedd(O|w), wherew is all the
background information that we use to formulate the priopractice, however, we will later
adopt a non-informative parameterless prior, and so dehetprior P(0). In the following
let MR denote the use of the marginalisation rule and PR tbdyumt rule. We will now work
with the likelihood function to obtain a solution for the p@sor probability.

@/Pmﬁwm&@wmw

% [ P(YiH0 (1}, 0.0) P11}, ©.0) du

:/"

H P(}/l|w7 ti) @7 UJ)

i=1

P{t:}, 0,w) di
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now splity into x and«; and apply the product rule

*J/

nowY; L (x,t;,0,w)|yy andx L ¢y, 0

-/

now splity; into its components and apply the product rule

n

HP<1/2|X7 wlatzﬁ@aw) P<X‘w17{ti}7@7w)P<w1‘{ti}7@7w> dwl dx
=1

P(Yilvn) | P(x|{t:}, w)P(¢[{ti}, O, w) diy dx

//// [T POAAL )| POIEY. ) PA 7,0 8,01

-// / / [T POIA 00 m) | Pl )42 — 205, )b, - )

x P(o,)P(m,) dxdA} do, dﬂ'p

-/

wherea; = 2(p; - n)(p; - 1)

-J/3

wherea;; = 2(p;; - n)(p;; - 1), andm is the number of hypocentre Iocations sampled. In
Equation 310 we have used Monte Carlo integration; theyiatel f(x)P(x|{t;},w)dx is
approximated by evaluating the integrand at a random sanfph\gpocentre locations (see
AppendiX(A.Z2 for details).

Px|{t:}, w)P(04) P(mp) dx do dm,

ﬁ P(Y;|A; = a;,04,m))

P(Yi|A}; = aij, 04,7p) | P(oa)P(mp) dog dm, (3.19)

=1

Note that for seismometéyp, become9p,;, as it is now evaluated at a sample of hypocentre
locationsx;, j = 1...m. Thus,

f)l-j(@j, 91]) = (Sin Ogij COS (bij’ sin Ogij sin ¢ij7 COS 91]) (320)

and hence the amplitudé’, a function ofp, is evaluated at each hypocentre location and is
now denotedd;;.

Substituting Equation3.17 into Equation 3.19 and thenligoatior3.118 we have an expres-
sion for the posterior PDF of the focal mechanism that we vatuate, given by:

P(Old,w) < P(© // Z[ w2 (1 = )30 | P(o,) P(my)dog dr,  (3.21)
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wherer;; is given by

2(p;i - ) (Py; - 0

Tij = 7T; + (1 — 27T1;)® ( (Byg - 0)(Bg u)) (3.22)
Oq

P(0,) andP(m,) are priors of our choice for the error termsandr,, andP(©) is the focal

mechanism prior. From hereon we shall refer to Equdiion 82the velocity model known

posterior PDF, oMK posterior PDF

We useRto evaluate the VMK posterior PDF of the focal mechanism ip&tars, by numer-
ical evaluation of Equation-3.P1. For each earthquake wercthe entire parameter space
of © = (&, 4, \) by calculating the VMK posterior PDF at every point on a gile use 21
evenly spaced values over eachtpfos § and ), resulting in 9261 points. We uses § rather
thano to correct for the fact that if we took an even spacing avewe would have higher
node density near = 0° than neap = 90°.

We can then obtain an optimal solution fér based on the VMK posterior PDF. We find
argmaxP(0|d, w), the© value on our grid for whichP(0|d, w) is a maximum, and then con-
©

duct a local numerical optimisation of Equation 3.21 to abtafinal © for which P(6|d, w)
is maximised. We refer to this value as theximum a posteriori estimafer MAP estimate)
of ©.

A Further Ambiguity
The posterior PDF given by Equatibn3.21 is dependent onrtiditude equation

Af = 2(py; - 0)(pi; - 1)
and hence the only dependence on the focal mechanism parafen the posterior PDF is
through the vectora andu. There is no dependence on the orientation of the null vegtor
which is used in the construction of the rotation maXix= R(©) = [a a n], the distribution

of which we are interested in. Thus as far as the posterior BOfencerned[u a n] is
equivalent to

1 0 0
[+a —a +n]=[aan|T, whereTy; = [0 —1 0
0 0 1

This, combined with the two ambiguities discussed in Sedli&.3, means that there are 8
equivalentrepresentationsBfO): R(0), R(O)A,, R(0)Cy, R(©)T,, R(O)A,Cs, R(O)A,T,,
R(©)C,T, and R(0)A,C,T,. Each will have the same posterior PDF value. Note that the
transformation byl's allowsdet X = +1.

3.3.2 Velocity Model Unknown

In this section we adapt the probabilistic relationshipestn the focal mechanism parameters
O = (¢,6, M) and the available data established in the previous sedtiere we assume that
the velocity model is imperfectly known. Hardebeck & She&2®02) found that a change in
velocity model had more impact on focal mechanism estimahan a change in hypocentre
location.
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Probabilistic Constraints

The difference from Section~3.3.1 is that here the velocitydelv is unknown, and thus
becomes a nuisance parameter. The nuisance parametecsvare n

U= (1,0, %) = (M, 00, A7, v, %)

wherey;, = (m,, 0., AY). Again we apply Bayes Rule

POI{ti}, {Yi}, w) o< P(O)P({Yi}[{t:}, O,w)

and now work with the likelihood function to obtain a solutifor the posterior probability.
P{Yi}[{t:}, ©,w)
[ P elin)0.0) v

% [ PYHo, (1. 0.0) Pt} ©.0) dv
now splity into x, v and«; and apply the product rule

PR/// HP Yilx, v, 91, 1,0, w)

x P( v\{t} O,w) diyy dx dv

Py{ti}, 0,w)dy

H P(Kh/}u tia @7 w)
i=1

P(x[¢1, v, {t:}, ©,w) P(¢1|v, {t;}, O,w)

nowY; L (v,x,t;,0,w)|, v L ({t;},0,w)andx L ¢, ©

-

now splity); into its components and apply the product rule

P(Y;|i1) | P(x|{t:},w)P(¢1|v, {t;}, ©,w)P(v) dipy dx dv

:///// _ﬁp(mA;,o—a,wp) P(x|v, {t;},w)P(A} |04, T, v, {t;}, O,w)

Li=1

x P(o,)P(mp)P(v) dx dA} do,, dm, dv

/ / / / / H P(Yi|A7, aamp)_ P(x[v, {t;}, w)d(A; = 2(p; - 1) (pi - 1))

Li=1

x P(o,)P(m,)P(v) dx dA; do, dm, dv

I

n

HP Yi|Af = a;,04,m,) | P(x|v, {t:},w)P(0c,)P(m,)P(v) dx do, dr, dv
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wherea; = 2(p; - n)(p; - u.

/ / / Z P(Yil A% = a, 00 ) | POclon, {2}, w) P(0w) P(r,) dx do, d,
- (3.23)
//ZZ P(Yir| Afjx = aiji, 00, ) | Pl0oa)P(my,) dog dr, (3.24)
k=1 j=1 Li=1

wherea;;;, = 2(p;;i - ) (Piji - @), m is the number of hypocentre locations sampled, jaisd
the number of velocity models sampled.

In Equation’3.23 Monte Carlo integration is applied to apprate the integral of°(v) by
evaluating the integrand at a random sample of velocity nso@éen from the prio(v).
Thusp, become;;, andP(x|v, {t;},w) becomes (x;|vy, {t;},w) as for each sampled ve-
locity model the hypocentre location PDF varies.

In Equation.3.2¥ Monte Carlo integration is once again &gpto approximate the integral
of P(xx|ug, {t;},w) by evaluating the integrand at a random sample of hypocéstdagions.
Herep,, become,;;i, as it is now evaluated fgr different samples ofn hypocentre loca-
tionsx,,, 7 =1...m, k= 1...p, wherep andm are as described above.

Substituting Equation=3:17 into Equatibn-3.24 leaves amesgion for the posterior PDF of
the focal mechanism that we can evaluate, given by:

P(O|d,w) x P(© //ZZ [ Z]k1+y1 1-— ﬂijk)%(l_yi)
=1

k=1 j=1

P(o,)P(m,)do, dm,

(3.25)

Herer;;;, is given by

(i - 1) By - T
Wijk:W;,a*(l—Qﬂ{,)CI)( (Piji - 1) (Piji U))

Oq

and again”(o,) and P(m,) are priors of our choice for the error termg andr,, andP(©)
is the focal mechanism prior.

To distinguish this case from the previously establishedkvjpbsterior PDF, we shall from
hereon refer to Equatidn3125 as the velocity model unknoestgrior PDF, oMU poste-
rior PDF. Note that the VMK (Equatioh3.21) and VMU (Equation 3.25¢fesior PDFs are
similar. In the VMU case we effectively sum ovedifferent VMK posterior PDFs, weighted
by their prior probabilities?(v).

3.3.3 Probability Density of P- and T-axes

We can convert a PDF over focal mechanism paramédrsone over the P- or T-axes (see
Appendix[A81)v"” andv”. For a given T-axisy” || (u + n). The values ofi andn that
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correspond tar” are not unique, ad +n = (0 + A) + (h — A). In fact, for givenv”, & and
n can swing around by up ®60°, as shown in Figure-3.3.

We now define a coordinate syst@imexpressed in geographic coordinates. The vectds

in the z-direction. Letm be an arbitrary vector not parallel 3. Thenb, a unit vector in the
direction ofm x v7, defines ther-direction, andt = v7 x b defines they-direction of the
coordinate system. Thus the coordinate sysiemxpressed in geographical coordinates, has
coordinate axis unit vectolgr = [b ¢ v7).

Let ¢ be the angle from thb axis to the projection ofi onto thexy plane. Note thafi andn
are at45° to thexy plane. Then

cos ( —cos(
u=— |sin n=—|—sin a=nxu
va | va | e

andR(¢)r = [0 an]. We calculate”(v?) as follows
PET) = P(Rg)dR
( ) /Rg:VT(ﬁJrfl) ( G) ¢
- | PR
:/OWP(RGTR(g)T)dg
- | Pletrercm)

n

N wiP [O(RerR(G)o)

T n—1 —

~

where we approximate the integral oveusing the trapezium rule over a grid of¢ values
evenly spaced from O tr. Also, ©( RgrR((;)r) denotes the anglé3 that correspond to the
matrix Rgr R((;)r (See Appendik’ATl1). We obtaid[©( RgrR((;))] by linear interpolation
from the grid-tabulated posterior PDFO|d, w).

The PDF over the P-axis is calculated similarly. We remaiodardinate systerii, and now
think of the T-£-axis as the P-axis. Sinc€” || (i — n), thenR(¢)r = [-n a 1], and the
calculation remains otherwise the same.

We can calculate the MAP estimate of the P- and T-axes dyr&ctn our MAP estimate of
©, using the equationg” = i(a — n) andv’ = (a + n). In general the MAP P- and T-
axes will sit close to the maxima of the 2-dimensional (oy@resical coordinate&, ¢) PDFs
P(¥") and P(vT) respectively. However, since the MAP estimates are obdairem the
3-dimensional PDRP(0|d, w), there may be slight differences.

Having now developed the theoretical and numerical apesato the evaluation of the pos-

terior PDFs and appropriate summaries, we now turn to soawipal matters of their imple-
mentation.
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o

Figure 3.3: Figure showing how vectoiisandn correspond to the T-axis. For a given
T-axis,u andn must stay locked at right angles, but can swing around asettbg an
angle¢ from the b-axis in thél' coordinate system.
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Chapter 4
Computing

This is a computationally intensive project in which seVelifferent software packages are
utilised. This chapter outlines this software and deserlomv each package is used.

4.1 R

We have chosen to implement the models in this project usiagcomputer package (R
Development Core Team 2006RR is easy to use, and flexible due to its extensive range of
user-submitted packages and powerful graphical capabilit

4.2 NonLinLoc

Evaluation of Equations—3.P1 afd 3.25 requires a sample pddsntre locations with their
corresponding take-off angles for each station. Non-Liheaation, or NonLinLoc, is a soft-
ware package used “for velocity model construction, trdéivee calculation and probabilistic,
non-linear, global-search earthquake location in 3D stines, and for visualisation of 3D
volume data and location results” (Lomax 2007). NonLinLatt ae used in this project to
give estimates of the take-off parameters for a sample dfiples{x; } hypocentre positions
in a Cartesian coordinate system, and their posterior pibties P({x;}|{t;}) defined by

Equatior-3.70.

4.2.1 Running NonLinLoc
Input data

NonLinLoc requires input phase data in one of a number ofiBpdarmats. In this project,
we use phase data obtained from http://www.geonet.orgnd, convert it to NonLinLoc
Phase file format. GeoNet uses quality codes to describenttertainty of each arrival time
pick — from O for the clearest picks, to 4 for the noisiest gi¢€larke 2007). As the NonLin-
Loc Phase file format requires arrival time errors, we canrerse quality codes into values
for 0, as shown in TableZ4.1. The noisiest picks are given an errd®89, which gives zero
weight to that particular phase. Station location dataiobthfrom GeoNet is also formatted
to fit the format required by NonLinLoc.
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Table 4.1: GeoNet qualities and arrival time errers
GeoNet quality| o;, (sec)
0.1
0.5

1

2
9999

A WNPEFO

Control File

NonLinLoc includes a highly customisable control file, wéthiariety of user-specified options
for running the earthquake location program. Below is adfstoteworthy commands. The
syntax involves a keyword followed by one or more parameters

e TRANS — Set toSI MPLE, NonLinLoc will transform geographic coordinates to Carte
sian coordinates. Th8l MPLE mode also means NonLinLoc will assume a flat earth,
rectangular, left-handedy, y, ) coordinate system (positive = East, positivey =
North, positivez = down). The parameters define the geographic coordinaae¢svith
be taken to be the origin of the Cartesian grid (Lomax 2007).

e VGCGRI D— Specifies the dimensions of the velocity model grid.

e GIFI LES — Specifies input (velocity model) and output (time and taKeangle data)
files’ names and locations for use with the progr@am d2Ti nme (see Sectioh 4.2.2).
Also specifies wave type (P or S).

e GTMODE — Specifies whether the velocity model is 2D or 3D, and whethke-off
angles are to be stored.

o GI'SRCE — Specifies station names and locations.

e LOCFI LES— Specifies the input (earthquake phase data, and time dat&fri d2Ti nme)
and output (location data) files’ names and locations foitiethe program NLLoc.

¢ LOCSEARCH— Defines the search method - either a Grid-Search, a stacNetropolis-
Gibbs sampling approach, or the oct-tree importance sagglgorithm.

e LOCGRI D— Defines the size, origin and distance between nodes of itie gr

e LOCMETH— Specifies the location method - we set it to the inversiorhogbf Taran-
tola & Valette (1982) described in Sectibn-312.2, whetheuse an S-wave velocity
model in the hypocentre location routine, and allows vegidata quality controls to be
implemented.

e LOCDELAY — Specifies station corrections. Only used in the velocitgled@nknown
case (Sectiond.2).

2
e LOCGAU— Specifies the theoretical covariance ma@ix of the formC, = o7 exp (— 12DA”>

whereD;; is the distance between statiorsndj, o the theoretical arrival time error,
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andA is the correlation length that controls covariance betwstations. Here we use
NonLinLoc default values ofr = 0.2 andA = 1.

For a more in depth overview of all the commands in the coffilimirefer to the NonLinLoc
website (Lomax 2007).

4.2.2 Programs

The NonLinLoc package includes a range of different prograifhe three programs we are
interested in ar®el 2Gri d, Gi d2Ti me andNLLoc.

Vel 2Gr i d converts velocity model specifications into a 3D grid file indry format, for use
with Gri d2Ti nme andNLLoc.

Gri d2Ti ne calculates the travel-times between a station and all notlas z, i, =z spatial
grid — the velocity model grid — using the Eikonal finite-aéifeEnce scheme of Podvin &
Lecomte (1991)G i d2Ti ne can also calculate the take-off angleés{) for each point in
the grid for each station (i.e. for each nodey, z, on the grid, the take-off angles for a ray
leaving a theoretical earthquake at that point to a statigrare calculated). This is done by
analysing the gradients of the travel-times along each(axig andz) at the point, to create
a vector gradient of travel-times. The direction oppositthts vector determines the azimuth
and take-off angle (Lomax 2007).

A quality factor is also determined for each set of take-offlas. Essentially, the quality of
the take-off angle determination will be low if there may bwtrays that arrive at the station
almost simultaneously, making it difficult to determine walinray’s take-off angles to report
(Lomax 2007).

G i d2Ti ne is run with the relevant velocity model as the input file. Toigputs two files
for each station: the travel-time grid file, and the angled file. P-wave {/,) or both P- and
S-wave {/;) velocity models can be used as inputs.

Following this, theNLLoc program is runNLLoc uses Tarantola & Valette (1982)’s Bayesian
method of calculating the posterior PDF of the hypocentcation outlined in Section3.2.2.
We then specify one of three techniques availablBlihoc to search the posterior PDF for
the maximum likelihood hypocentre location: a systematicl<earch, a Metropolis-Gibbs
algorithm, or an Oct-tree importance sampling algorithme Wge the Oct-tree search in this
project. The advantages of this method are that it is mudbrféisan the grid search method,
more global and complete than the Metropolis sampling &lgor, and only requires us to
specify the initial grid size and the number of samples tcazen (Lomax 2007).

The Oct-tree sampling method is started by defining a coardeng which to search. The
probability at the centre of each grid cell is determinedfithe posterior PDF, Equatién3]10,
and is multiplied by the volume of the cell to give the proli&pthat the hypocentre is any-
where inside that cell. The probabilities are ordered irslj. The algorithm then runs as
follows:
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e Identify the cell with the largest probability from,. It is then divided into 8 new
smaller cells;

e The probability is calculated for these 8 cells;
e The listL, is updated by inserting these new probabilities.

These steps are then repeated until either the maximunfigglecumber of nodes to process
has been reached, or the smallest specified node size isteflaimax 2007). Samples are
then drawn from the Oct-tree structure to give a sample fRqx|{¢;}, w).

The NonLinLoc input files are the travel-time grid files geated byGri d2Ti ne, and the
earthquake phase data provided by GeoNet. This outputsigaatber results, estimates of the
PDF for a sampléx;} of possible(z, y, z) hypocentre locations in an output file known as a
scatter file. Unfortunately, the scatter file does not ineltake-off angle data for each of these
hypocentre locations. In the following section, we show howvnterpolate this information
from the angles grid file that was output by ®Bei d2Ti e program.

4.2.3 Obtaining Take-off Parameters from NonLinLoc Output

The azimuth, take-off angle and a quality number for eadiostéor a theoretical earthquake
occurring at each node on the velocity model grid are geeétay the progran® i d2Ti ne,
and are stored in a binary file, i.e. for each point on a spatidlthe azimuth and take-off an-
gle are tabulated. The sample of hypocentre locat{en$ output byNLLoc do not coincide
in general with the points of this grid, so we must interpelatobtain an azimuth and take-off
angle for each sampled hypocentre, in order to define theaikector (Equatiol_3.20).

Only some stations in the data have P-wave polarifies<(+1, see Section-3.3.1) recorded.
While we use all stations for the earthquake location mettarded out by NonLinLoc, we
only interpolate the take-off parameters for stations kizae polarity data. As P-wave polar-
ity dataY; is required in the formulation of our posterior PDF, we neetlaalculate take-off
parameters for stations without polarities. Additionaitythis project, S-wave information is
only used for hypocentre location purposes, and therefereeed not obtain S-wave take-off
parameters.

Azimuth is stored as a 16 bit integer, 0 to 3600, in tenths greles, measured clockwise
from north. Take-off angle is stored as a 12 bit integer, @gato 1800 (up), also in tenths
of degrees. Quality number is a 4 bit integer, indicatingodv(fjuality) to 10 (high quality).
We wish to interpolate linearly the azimuth, take-off anghel quality number from the nodes
of the velocity model grid to the sampled hypocentre locatix; } given in the scatter file.

Initially, to make the binary files for each station easierdad intoR, they are converted to
text files using a C program written by Richard Arnold, rbuf2dWe then uséR to carry out
the linear interpolation, weighting each azimuth and digtbyguality number, as described
below.

The azimuth and take-off angle at a hypocentre location@miated by a weighted average
of the azimuth and take-off angle values at the 8 nodes ofdlueity model grid that surround
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that location. To calculate the weight that each of the 8 {sdmas, three values, v andw,

are calculated:

T — X Y—"%Yo Z— 20
v = w =
T1 — X Y1 — Yo 21— 20

u =

Where(z, y, z) are the coordinates of the hypocentre locatiag, yo, 29) are the coordinates
of the node of the velocity grid closest to the origin of theirengrid, and(z,y1, z1) are
the coordinates of the node of the velocity grid furthestrfrihe origin. Essentially, gives
the proportion of the distance traveled between adjacerddes of the velocity model grid
when the hypocentre location is encountered, and simifarly andw. This is displayed in

figure[4.1.

(%:¥0:%) \

w

X
(x.y.2)

Figure 4.1: Three-dimensional linear interpolatiof:, y, z) marks the hypocentre lo-
cation we wish to interpolate to, while, v andw give the proportion of the distance
traveled between adjacent nodes of the velocity model gniekresthe hypocentre location
IS encountered.

Since interpolation is a form of weighted average, and wedae¢ing with angles, we adopt
the averaging approach outlined in AppendixlA.4. Thus,

1 [ (sing)y;
(bi‘ = tan ! (
’ (cos ¢)i;
gives the relevant interpolated azimuth value for stati@t hypocentre location, where
(sin ¢);; and(cos ¢),; are given by

] . .
(sin @); — D het tgezght%k sin(¢ggr)
> iy weighty,
] .
(cos B)y; = D k1 Zfﬂghti»k cos(pix)
> heq weightiy,
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where¢;;, is the azimuth for statiom at thek!” of the surrounding 8 nodes of the velocity
model grid surrounding locatiar;, andweight is given by:

8
Zweightik =(1—u)(1—v)(1 —w)qual; + (1 —u)(1 —v)w - qual
k=1

+ (1 —wv(l —w)qualz + u(l —v)(1 — w)qualy
+ (1 —u)v-w-qual;s + u(l —v)w - qualsg
+u-v(l —w)qualy; +u-v-w - quals (4.1)

Further,

(cos 8);;

t;; = cos™ !
\/<sin 0 cos ¢)7; + (sin Osin ¢)?; + (cos 0)7;

gives the interpolated take-off angle for staticat hypocentre locatiopn, where

(cos);; = 22:1 weight;, cos(0y,)
N 22:1 weight;y,
8 : .
(sinf cos ¢);; = 2=t wezgghtlk‘ Slé(elk) cos(ix)
Y g wetghty,
8 . . )
(sinfsin ¢);; = 2=t wmgghtlk sin(0ir,) sin(¢ik)
> ko weighty

whereg;;, andd;;, are the azimuth and take-off angle respectively for statiatrthek!” of the
surrounding 8 nodes of the velocity model grid, andght is given in Equatiofi4]1.

Once the interpolation is carried out we have the poldyijtyor station:, azimuth¢;; and
take-off anglg);; for station: and sampled hypocentre locatign along with the hypocentre
location PDFP(x;|{t;}). This leaves us with all the information needed to constthet
Bayesian posterior PDFs (Equatigns 3.21 [andl3.25), as simovable[4.2.

Table 4.2: Sources of each element of Equdfionl3.21andl 3.25

Parameter/Value Description Source
{Y:} Polarities at stations Data
{si} Location of stations Data
{x,} Sample of hypocentres| NonLinLoc
P(x;|{t;},w) Hypocentre PDF NonLinLoc
Pij | Dijk Ray take-off vector NonLinLoc
Oq Amplitude noise User defined
T Probability of cross wiring User defined
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4.3 \Velest

Velest is a program that usesaupled hypocentre-velocity modeéthod to determinmini-
mum 1-dimensional velocity modeklelest is used in this project to obtain a random sample
of velocity models from a given priaP(v), as is required in Equatidn-3125.

The coupled hypocentre-velocity model method is similafaoantola & Valette (1982)’'s
Bayesian method of hypocentre location described in Se&ii&.2 and implemented in Non-
LinLoc. The difference is that here it is assumed the vejogibdel is unknown to begin
with, and a solution for the velocity model is solved simao#iausly with hypocentre loca-
tions (Kissling 1988).

An indication of the quality of a velocity model can be giventhe difference[** between
the observed and theoretical arrival times at station

e = g9 — gl (4.2)

where the theoretical arrival timeg! = (%, T, 0, y;), depend on an estimated hypocentre
locationx, estimated origin tim&, the implemented velocity modéland station locations
y;. The observed arrival timeg* = t°%(x,, To, vo, v;) depend on the true hypocentre loca-
tion xg, true origin timeT , the true velocity model, and station locationg (Kissling 1988).

Velest takes an initial input velocity model and hypocefdoations and uses this to calculate
arrival timest¢. The program then adjusts hypocentral and velocity modelpaters. To

do this, a relationship betweejf* and the required adjustments is established. A first order
Taylor series expansion ¢ about the estimated parametéxs = x, T = T,09=0,y; =

yi) gives

- ot; . ot; - ot;
t;ﬁ)bs(X07T07 Vo, yl) = tObs( T ) + a_X(XO - X) + 8_T(TO N T) a9 ov (UO B U)
(’3tz~( _ )
ayz yl yl
. ot; ot; ot;
__ qobs/g ~ -t _ - — - —
=t (x, T, 0, y)+6x( 0 X>+8T(TO T)+6v(v0 0)

Substituting this into Equatidn 4.2 gives

N ot; ot; ot; calfn =~
e =t (%, T, 0 y)+8_x( O—X)+8—T(T0—T)+6U(Uo—v)—tz "%, T,0,y)
6tz 8t at obs(s5 T o~ cal (& T 4
= 6_X(X X) + 6_T(TO T) + %(Uo —0) (sincet?™ (x,T,0,y;) =t (%, T, 0, y;))
ot; ot; ot;
= R Ax G AT + 5 A @3

whereAx is the required adjustment in estimated hypocentre loeafid is the adjustmentin
estimated origin time, anflv is the adjustment in the velocity model (Kissling 1988, Kiss,
Ellsworth, Eberhart-Phillips & Kradolfer 1994).
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The minimum 1D velocity model is the velocity model with nmmim root mean square
(RMS) misfit of {¢/*°}, where RMS is defined as

RMS(1;) = [ 13 (17

This minimum 1D velocity model is given by solving Equatioif4 This equation is non-
linear, and hence is solved numerically by Velest (Kisslifg8).

The iterative procedure of Velest is as follows:

1. Solve the coupled hypocentre-velocity model problemth@r estimated hypocentres
and velocity model. This gives adjusted hypocentres andiprsted velocity model,

2. Recalculates” based on these adjustments;
3. Check the RMS of the new velocity model — if it is lower, fietd. Return to 1.

Due to the non-linearity of the coupled hypocentre-velogiethod, multiple local RMS min-
ima may occur over the velocity model solution space. Déifieinput models may find differ-
ent local minima. A priori it is unknown where these minim&wocso a number of Velest runs
are conducted using a variety of different input velocitydals, resulting in a set of minimum
1D velocity models (Kissling 1995, Clarke 2007). Furtheedfic details on how Velest was
run in this project are given in Sectibn 52.2.

4.4 Grid Computing

As mentioned in Section_3.3.2, the VMU posterior PDF (EcureB.25) is calculated using
Monte Carlo integration; summing ovedifferent VMK posterior PDFs. Calculation of this
is particularly computationally intensive given the lasgenple of velocity models used in this
project (p ~ 1000). Running the required programs and models on one machin&wake
several days. To reduce this computation time we make udeedbthool of Mathematics,
Statistics and Computer Science’s computational gridclvisiomprises approximately 170
NetBSD (Unix) workstations.

The grid is particularly useful for multiple runs of the sapregram with differing parameter
values, as is the case here. We break the job down into seG\aldcity models, and have
each computer on the grid evaluate the VMK posterior PDFtfoset of 10 models. We then
retrieve each VMK posterior PDF from the grid and sum overall000 to obtain the VMU
posterior PDF. This reduces the computation time from daystrs.
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Chapter 5

Applications

In this chapter we discuss the application of our Bayesiahaus of focal mechanism estima-
tion to earthquake phase data from New Zealand. We consigdetcdses; the velocity model
known case, with data from the Raukumara Peninsula, andslbeity model unknown case,
with data from Kawerau.

5.1 Velocity model known — Raukumara Peninsula

We will use data from the Raukumara Peninsula, New Zealantystrate the case in which
we presume that the uncertainties in the hypocentre latatie caused solely by P-wave
arrival timing errors, and that the velocity model is erficge and known. The Raukumara
Peninsula is particularly suitable to study this objectiae the 3-dimensional, (P-wave
velocity) andV; (S-wave velocity) structures of the area have been detedriny Reyners
et al. (1999).

5.1.1 Tectonic Setting

New Zealand lies at the boundary of the Pacific and Austraéatonic plates. To the east of
the North Island, the Pacific plate subducts beneath thdyavgrAustralian plate. The two
plates converge at approximately 45 mm/yr in the regiontefrest; the Raukumara Peninsula,
on the East Cape of the North Island of New Zealand. The piéteface occurs at a depth of
approximately 15 km beneath the east of the Raukumara Reaifi®eyners et al. 1999).

The Raukumara Peninsula (see Figuré 5.1) lies 300 km sosthofiehe Tonga-Kermadec
and Hikurangi subduction zone junction. At this junctioryst to the north experiences sub-
duction along the Kermadec Trench, while to the south thelsctiion is influenced by the
Hikurangi Plateau (Reyners & McGinty 1999).

5.1.2 Velocity Model

The velocity model we use here is based on a 3D velocity mdotelimed by Reyners et al.
(1999). In a previous study by Reyners & McGinty (1999), 3Bm@graphs were deployed
over the Raukumara Peninsula between July and December t#9data from which en-
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Figure 5.1: Map of the Raukumara Peninsula. Symbols sholdbedary of the Reyners
et al. (1999) velocity model (dark red line), temporary seseters deployed by Reyners
& McGinty (1999) (white triangles), and permanent seismtarewithin the velocity
model bounds as at time of the Reyners & McGinty (1999) stuely §quares).

66



abled Reyners et al. (1999) to determine thendV; structure of the region.

The velocity model spans an irregular grid rotaséd east relative to north (see Figurels.1).
It has 13z-nodes over a distance of 130 km, §dodes over 200 km, and 8nodes to a
depth of 100 km. These nodes are at non-constant distanbds, the format for use with
NonLinLoc requires constant grid spacing. Hence, we cantyadinear interpolation of the
velocities in Reyners et al. (1999)’s model, to obtain vtles at a constant 1km grid spacing
over the entire volume. We use both thigandV; velocity models for the earthquake location
routine carried out by NonLinLoc. Although we do not use SAwdata in the formulation of
our posterior PDFs, the, velocity model is used to better constrain the hypocentation.

TheV, velocity structure is shown in Figufeh.2. Velocity genbrahcreases with depth. It
can be seen that at shallow deptksZ0 km) V,, is lower in the southeast, and higher in the
northwest of the model. The subducted plate dips towardsdngwest, meaning the plate
interface is shallower in the southeast, resulting in highein the southeast at depths 20
km (i.e in the mantle just below the interface) (Reyners e1899). Théel/; velocity structure

is shown in Figur&Xl3.

epth (km

20 - ,

Y - Distance (km)

X - Distance (km)

Figure 5.2: Cross section of thé velocity model for the Raukumara Peninsula by Reyn-
ers et al. (1999). The model is rotaté6P clockwise of north — this perspective is from
the south. The-axis is positive to the southeast, th@xis positive to the southwest. The
colours denote velocity in kn's according to the colour bar.

5.1.3 Data

We use GeoNet phase data in the region for the period from dadpari990 to 30 Septem-
ber 2005. Polarity data were provided by Reyners & McGin§98) who had re-analysed
earthquakes that occurred during the July to December 1&9ddy and read many more first
motions than were obtained by routine processing of the @edita. These first motions
were matched to the equivalent earthquakes in the GeoNseeplaa catalogue. Station lo-
cation data were provided by Martin Reyners (for the locegiof the portable seismographs
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Figure 5.3: Cross section of thé velocity model for the Raukumara Peninsula by Reyn-
ers et al. (1999). The model is rotatééP clockwise of north — this perspective is from
the south. The-axis is positive to the southeast, th@xis positive to the southwest. The
colours denote velocity in knTs according to the colour bar.

used in the Reyners & McGinty (1999) study) and GeoNet (ferltications of the permanent
stations in the area).

It was decided, on the basis of discussion with Victoria @mity of Wellington and GNS
Science staff, that for an event to be worth analysing, ammni of 10 stations with P-wave
polarity observations were required. Any fewer than 10 pidés would mean that the focal
mechanism of the event would be poorly constrained. There @3 earthquakes with 10
polarities.

Reyners & McGinty (1999) calculated 117 focal mechanisnutsmhs for Raukumara earth-
quakes. Those solutions provide an opportunity to compard/AP estimates to an estab-
lished method of focal mechanism estimation. Thus we onlgcsdere events for which a
solution was obtained by Reyners & McGinty (1999).

Using these criteria, 87 earthquakes were selected foysisalAll 87 events occurred be-
tween July and December 1994, the period for which Reynersc&ivity (1999) re-analysed
polarity readings. AppendiXIB summarises the 87 Raukumanthguakes. Hypocentre lo-
cation and origin time are as calculated by NonLinLoc, whilagnitudes are taken from the
GeoNet catalogue.
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Events with a solutior] Our selected events  Events with
in Reyners & >= 10 polarities

McGinty (1999)
117

193

Figure 5.4: Diagram showing our event selection criteriar & event to be selected, it
must have> 10 polarity readings, and must have a corresponding solutydRdyners &
McGinty (1999).

5.1.4 Posterior PDF Particulars

Recall that the posterior probability for the velocity mb#aown case is given by Equa-
tion[3.21:

P(6]d,w) o P(6) //Z [H 200 (1 - )0
i=1 Li=1

We calculate this posterior PDF for all 87 events, under ¢iewing conditions:

e a uniform prior on®: P(O) x sinf < P(R(O)) x 1

P(o,)P(m,)do, dm,

e P(0,) = 6(0,—04,), andP(r,) = §(m, —m,,) Wwheres denotes the Dirac delta function
ando,, andr,, are values for, andr,, assumed to be known. Due to the properties
of the delta function (see Appendix’A.9), the posterior PREdmes

P(Old.w) o P(©) Y [H w3 (1 = )0

i=1

j=1

wherer;; is given by

T = 7T]/30 -+ (1 - 27‘(']/30)@ (

This approach is equivalent to taking fixed valuesdpandr,. For this to be valid we
require appropriate values for these parameters.

2(pij - 0)(Pi; - ﬁ))

Oag

While the rate of polarity errors varies between datasetdake the value used by Hardebeck
& Shearer (2002), who found that around 20% of ambiguoustgrdened polarities were
inconsistent. Thus we take a (conservative) valug,of= 0.2.

For the amplitude noise, we take a value of,, = % based on values in Zollo & Bernard
(1991) and Brillinger et al. (1980).
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5.1.5 Results

Here we present results for nine of the Raukumara eventsctedl to show three poorly

constrained solutions, three intermediately constragwdtions and three well constrained
solutions. The determinant of the concentration maf¥iis used as a measure of constraint.
For each event, identified by its unique CUSP id, we present:

e Hypocentre summary information according to NonLinLoc.

Stereonet showing P-wave first motion polarities, alondpwie beachball correspond-
ing to the MAP estimate fo® based on our Bayesian posterior PDF, and the beachball
corresponding to the solution found by Reyners & McGinty9@p

Posterior PDF of P- and T-axes.

The estimates of the parameters of both the full and scaftaresdration 8-Mode Matrix
Fisher distributions that provide the best fit to our posteAiDF.

Marginal plots of the posterior PDP(©|d, w), and both the full and scalar concentra-
tion 8-Mode Matrix Fisher distributions.

Table[51 contains a summary of this information for all nevents. A common method
of comparing two focal mechanism solutions is #regular differencea, between the two
rotation matrices that define the solutions (see e.g. HaaeB Shearer 2002, Arnold &
Townend 2007, Kagan 2007). Section Al1.3 describes thailegion of the angular differ-
ence. In Tabléhl%g is given by Equatioh215.

Table 5.1: Summary table of results for the selected Raukaiezents.

MAP ©

A

Reyners & McGinty®

CUSPID K o) a
1.| 646630 | (22.62°,71.94°,250.96°) | 2.66 | 28.86° | (353.43°,82.50°,202.32°) | 51.40°
2. | 672060 | (229.32°,68.49°,296.00°) | 2.55 | 29.55° | (209.60°,67.27°,277.35°) | 21.40°
3.| 668273 | (343.51°,74.54°,233.53°) | 2.75 | 28.29° | (23.23°,60.28°,232.59°) | 42.45°
4.| 640980 | (24.46°,80.72°,72.64°) | 3.52 | 24.60° | (191.71°,103.94°,305.19°) | 20.23°
5.] 636036 | (124.13°,72.01°,12.88°) | 3.63 | 24.17° | (308.00°,90.00°,337.20°) | 20.59°
6. | 635767 | (253.18°,29.80°,141.65°) | 3.85 | 23.39° | (38.04°,127.58°,254.31°) | 32.77°
7.| 669233 | (128.39°,59.81°,19.72°) | 6.13 | 17.98° | (202.83°,105.35°,217.61°) | 6.95°
8. | 665895 | (165.52°,81.30°,240.41°) | 6.55 | 17.32° | (178.24°,82.20°,240.75°) | 12.71°
9.| 675146 | (154.11°,72.14°,134.26°) | 6.50 | 17.40° | (348.02°,96.42°,218.02°) | 18.38°
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1. EVENT 646630

Date Time Latitude | Longitude | Depth | Magnitude
01/09/1994| 09:19:42.86| -38.467 | 178.098 | 25.879 2.8

Figure 5.5: Stereonet for event 646630 (left). The solikdere indicates the MAP
focal mechanism solutiof® = (22.62°,71.94°, 250.96°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =51.403°. Blue points are compressions, red points are dilatatiémscontour
plot for event 646630 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—7.748 4199 —1.669] —0.787 0.614  0.058
F=| 2443 —0.853 4232 |, M= 0.061 —0.016 0.998 |,
| 1.352 —0.603 0.629 0.613  0.789 —0.025
[ 0.837 —0.241 —0.241] 9.78 0 0
U= |-0433 0257 —0.864|, D=| 0 3445 0
| 0.334 0936 0.111 | 0 0 0.074

8-mode Matrix Fisher Distribution with scalar concenmati

) —-0.974 0.208  0.089
M= | 0075 —=0.074 0.994 |,k =2.657
0.213 0975 —0.025
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Figure 5.6: Marginal PDF plots for Bayesian posterior PPfO|d, w) (left), fitted 8-
mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher distri-
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bution with scalar concentration paramefé(|®|M, k) (right) for event 646630.
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2. EVENT 672060

Date

Time

Latitude

Longitude

Depth

Magnitude

16/10/1994

09:43:48.61

-37.834

178.378

10.449

2.9

Figure 5.7: Stereonet for event 672060 (left). The solidkdere indicates the MAP
focal mechanism solutiof® = (229.32°,68.49°,296.00°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =21.403°. Blue points are compressions, red points are dilatatiémscontour
plot for event 672060 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

A [—2.902 —2.207 0.858 | ) —0.149 —0.780 0.607
F=1-9267 —5909 —6.192|, M = |—-0.677 —0.367 —0.638],
| 1.499  0.807 —0.870 0.721 —0.506 —0.474
A [—0.754 —0.339 —0.339] A 12.971 0 0
U= |-048 —-0.290 —-0.825|, D= 0 2916 0
| —0.443  0.895 —0.054 0 0 0.266
8-mode Matrix Fisher Distribution with scalar concenmati
) —0.359 —0.760 0.542
M= |-0.754 —0.106 —0.649]| , r = 2.548
0.550 —0.641 —-0.474
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2. EVENT 672060
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Figure 5.8: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted 8-

mode Matrix Fisher distributio® (©|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 672060.
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3. EVENT 668273

Date Time Latitude | Longitude | Depth | Magnitude
02/10/1994| 22:38:48.96| -37.866 | 178.084 | 30.957 2.9

Figure 5.9: Stereonet for event 668273 (left). The solikdere indicates the MAP
focal mechanism solutiof® = (343.51°,74.54°, 233.53°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =42.45°. Blue points are compressions, red points are dilatatiBiiscontour
plot for event 668273 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—1.809 —0.436  0.370 ] —0.646 0.761 —0.056
F=| 1483 1419 3373 |, M=]0.180 0224 0.958 |,
| 7223 3.799  —1.185 0.741 0.609 —0.282
[ 0.882 —0.025 —0.025] 8.600 0 0
U= | 0467 0173 —0.867|, D=| 0 3612 0

|—0.060 0.985  0.164 0 0 0.422

8-mode Matrix Fisher Distribution with scalar concentati

) —0.432 0.902 0.017
M= 0.220 0.087 0972 |,R=2.752
0.875 0.424 —0.282
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3. EVENT 668273
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Figure 5.10: Marginal PDF plots for Bayesian posterior PB©|d, w) (left), fitted 8-

mode Matrix Fisher distributio® (©|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 668273.
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4. EVENT 640980

Date Time

Latitude

Longitude

Depth

Magnitude

21/08/1994| 13:36:52.95

-38.198

178.14

18.018

2.8

Figure 5.11: Stereonet for event 640980 (left). The solikdiae indicates the MAP
focal mechanism solutiof® = (24.46°,80.72°,72.64°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =20.229°. Blue points are compressions, red points are dilatatiémscontour
plot for event 640980 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &

McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[ 8.762 —5.091 —8.509
F=[-4196 1625 5.049 |,
|—6.893  0.833  1.831
[—0.725 0.689 0.689
U=1|0322 0351 0879 |, D
| 0.609 0.634 —0.476

8-mode Matrix Fisher Distribution with scalar concenmati

0.389
—0.112
—0.914

M =

—0.737
—0.633
—0.235
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M

0.379 —=0.794 —0.475
= |—0.122 —0.552 0.825
—0.917 —-0.254 —0.306
16.072 0 0
= 0 3.599 0
0 0 1.067
—0.553
0.766 |,k =3.524
—0.306



cos(dip) (cos(3))

o
o

I
IS

o
[N}

150 200
strike (&)

150 200

strike (&)

250

250

300

300

350

350

1.0

0.0

4. EVENT 640980

="
o
N
[%2])
O 06 0.6
& r
=
o
5 04 04
k73
3
0.2 0.2

1.0

0.0

150 200 250 300 350

strike (&)

o o
o ©
|

cos(dip) (cos(3))

0.2

100 150 200 250 300 350
strike (§)

150 200 250 300

strike (&)

Figure 5.12: Marginal PDF plots for Bayesian posterior PB©|d,w) (left), fitted 8-

mode Matrix Fisher distributio®(0|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 640980.
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5. EVENT 636036

Date

Time

Latitude

Longitude

Depth

Magnitude

03/08/1994

15:47:23.60

-38.518

177.848

33.398

2.8

Figure 5.13: Stereonet for event 636036 (left). The solikdiae indicates the MAP
focal mechanism solutiof® = (124.13°,72.01°, 12.88°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =20.591°. Blue points are compressions, red points are dilatatiémscontour
plot for event 636036 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—4.127 2514 —1.483] —0.543  0.495 —0.679
F= 110471 —2.68 —6.978|, M= 0.796 0.045 —0.604],
| 1732 —1.610 —1.888) —0.268 —0.868 —0.419
[ 0.833  0.353  0.353 ] 13.553 0 0
U= |-0258 —0432 —0.864|, D=1| 0 3896 0

|—0.489  0.830 —0.269 0 0 1.190

8-mode Matrix Fisher Distribution with scalar concenmati

) —0.574 0449 —0.685
M= {0791 0.087 -0.606|,k = 3.635
—-0.213 —0.889 —0.419
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5. EVENT 636036
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Figure 5.14: Marginal PDF plots for Bayesian posterior PB©|d,w) (left), fitted 8-

mode Matrix Fisher distributio®(0|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 636036.
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6. EVENT 635767

Date

Time

Latitude

Longitude

Depth

Magnitude

31/07/1994

05:58:40.01

-38.361

177.872

23.73

3.0

Figure 5.15: Stereonet for event 635767 (left). The solikdiae indicates the MAP
focal mechanism solutiof® = (253.18°,29.80°, 141.65°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =32.772°. Blue points are compressions, red points are dilatatiémscontour
plot for event 635767 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—0.765 0.470 2.140 —0.231 0.843 0.486
F=| 7809 4612 —6.472|, M= | 0877 0.397 —0.271]|,
| 0.995  2.659 —6.776 —0.421 0.364 —0.831
[—0.565 —0.762 —0.762 12.848 0 0
U= |-0.405 —0.078 —0.911|, D= 0 4100 0

| 0.719  —0.643 —0.265 0 0 1276

8-mode Matrix Fisher Distribution with scalar concenmati

—0.183 0.876 0.446
0.897 0.335 —0.289
—0.403 0.347 —0.831

M = k= 3.852
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Figure 5.16: Marginal PDF plots for Bayesian posterior PB©|d, w) (left), fitted 8-

mode Matrix Fisher distributio®(0|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 635767.
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7. EVENT 669233

Date Time Latitude | Longitude | Depth | Magnitude
03/10/1994| 20:51:10.99 -38.544 | 177.814 | 26.123 3.0

Figure 5.17: Stereonet for event 669233 (left). The solikdiae indicates the MAP
focal mechanism solutiof® = (128.39°,59.81°,19.72°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =6.946°. Blue points are compressions, red points are dilatatiBiiscontour
plot for event 669233 (right). Orange denotes the P-axisemyithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—6.597 5.783 —13.371 —0.466  0.655 —0.595
F=|8347 3209 —-7.075|, M=]0.829 0.087 —0.553],
| —4.443 0.706 —4.984 —0.310 —0.751 —0.583
[ 0.284  0.958 0.958 17.661 0 0
U= [-0.359 0.154 0.920|, D= 0 10842 0

| 0.889 —0.243 0.388 0 0 1177

8-mode Matrix Fisher Distribution with scalar concentati

) —-0.461 0.615 —0.640
M= 0829 0.042 —0.5357|,k=6.130
—-0.316 —0.787 —0.583
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7. EVENT 669233
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Figure 5.18: Marginal PDF plots for Bayesian posterior PB©|d, w) (left), fitted 8-
mode Matrix Fisher distributio®(0|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 669233.
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8. EVENT 665895

Date Time Latitude | Longitude | Depth | Magnitude
09/10/1994| 11:34:02.22| -38.549 | 178.062 | 20.898 3.0

Figure 5.19: Stereonet for event 665895 (left). The solik diae indicates the MAP
focal mechanism solutiof® = (165.52°,81.30°, 240.41°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =12.709°. Blue points are compressions, red points are dilatatiémscontour
plot for event 665895 (right). Orange denotes the P-axisemyithe T-axis. The circle

denotes the MAP estimate, while the triangle denotes theisal given by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[11.004 —6.181 —6.035 0.486 —0.835 —0.258
F=|-3.193 —0.898 —9.477|, M= |—-0306 0.114 —0.945],
| 9127  —2.334 —1.959 0.819  0.538 —0.200
[ 0.822  0.474 0.474 16.815 0 0
U= [-0.387 0.056 —0921|, D= 0 10206 0

| —0.418 0.879  0.229 0 0  1.485

8-mode Matrix Fisher Distribution with scalar concenmati

) 0.512 —-0.814 —0.275
M= |-0.310 0.123 —-0.943|,k =6.551
0.801  0.568 —0.200
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8. EVENT 665895
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Figure 5.20: Marginal PDF plots for Bayesian posterior PB©|d,w) (left), fitted 8-
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mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher distri-

bution with scalar concentration parameft-:(l@|1\7[, k) (right) for event 665895.
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9. EVENT 675146

Date Time Latitude | Longitude | Depth | Magnitude
24/10/1994| 01:18:43.58 -38.539 | 178.098 | 25.488 2.9

Figure 5.21: Stereonet for event 675146 (left). The solikdiae indicates the MAP
focal mechanism solutiof® = (154.11°,72.14°, 134.26°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular ditnce between the two
solutions =18.377°. Blue points are compressions, red points are dilatatiémscontour
plot for event 675146 (right). Orange denotes the P-axisemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes theisal given by Reyners &

McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[15.673  5.546  —1.024 0.741  0.554 —0.381
F=|-6887 —5436 —11.816|, M = [—0.137 —0.430 —0.892],
|—7.719 —1.964 —1.827 —0.658 0.713 —0.243
[0.873 —0.372 —0.372 20.998 0 0
U= (0375 0.099 —0922|, D= 0 10892 0

0312 0.923  0.226 0 0 1.124

8-mode Matrix Fisher Distribution with scalar concenmati

) 0.775  0.521 —0.357
M= |-0.162 —0.382 —-0.910|,k = 6.500
—-0.610 0.763 —0.243
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Figure 5.22: Marginal PDF plots for Bayesian posterior PB©|d,w) (left), fitted 8-
mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher distri-
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The first event (CUSPID 646630, our first poorly constraineeh¢) shows a large disparity
between the MAP solution g® and that of Reyners & McGinty (1999, RM99), indicated
by the angular difference df1.403° and the fairly large disparity between the sets of nodal
planes on the stereonet (Figlrel5.6,1p71). The nodal pldrmddsseparate completely the
compressions (blue) and dilatations (red), as the MAP wwiudoes. The probability con-
tours of the P-axis appear bimodal, with a mode near both tAe Ektimate and the RM99
estimate ofr”’. The 8-mode Matrix Fisher distribution approximates fawell the Bayesian
posterior PDF (FigureH.6[pl72), while the Matrix Fishertaligition with scalar concentra-
tion parameter is a slightly poorer approximation of the giogl distribution, e.g. it cannot
reproduce the bimodal maxima in the distribution of the rake

The second event (CUSPID 672060) shows reasonable agrebetereen the MAP and

RM99 solutions. The MAP estimate completely separates dngpcessions and dilatations
(see Figuré5l7,[pY3) whereas the RM99 solution does not.8Thede Matrix Fisher ap-

proximation is again close to the empirical distributiong{ife (5.8, p7¥). The third event
(CUSPID 668273) again has a large disparity between the Maimhate and that of RM99,

and a misfit polarity is evident on the stereonet, ngar) = (r/2,7/2) (see Figuré 519,

d73). The location of this dilatational point (red) amongsgroup of compressions (blue)
indicates it may have been an incorrectly read polarity.

In general for these three poorly constrained events, we @&n large disparity between the
MAP estimates and the RM99 estimatesfFurther, the P- and T-axis contours are poorly
constrained and can cross the nodal planes. The 8-modex\fadher distribution provides
a reasonable approximation to the empirical distributeomg the Matrix Fisher distribution
with scalar concentration parameter provides a slighttyreoapproximation. The low values
of & (2.66, 2.55, and 2.75, for Events 1, 2 and 3 respectivelyg gn overall indication of the
poor constraint on the posterior PDFs.

The first intermediately constrained event (CUSPID 64098®ws reasonable agreement
between the MAP and RM99 solutions 6f There is one polarity reading that crosses a
nodal plane boundary (see Figlire 3.1L1p77). The P- andsTeaxitour plots appear better
constrained than the previous three events, as demomksbwtihe narrower spread around
the modes. The 8-mode PDF provides a good fit to the empirisaitltion (Figure 5112,
dZ8). The second (CUSPID 636036) intermediately constchigvent exhibits a similarly
constrained posterior PDF, and here the scalar concemtrBIDF appears to be almost as
good an approximation as the full Matrix Fisher (Figlre H.80). The third (CUSPID
635767) intermediately constrained event shows less agetebetween the MAP solution of
© and that of RM99 (see Figute 5]11%, p81), but again the P- amxisTplots are fairly well
constrained, and the Matrix Fisher approximations showdgagreement with the Bayesian
posterior PDF (Figure5.16[_piB2).

The first well constrained solution (CUSPID 669233) showg g@od agreement between the
MAP and RM99 solutions 08, with an angular difference of jut946° (see Figuré 517,
d83). Both Matrix Fisher approximations are very close ® Bayesian posterior PDF (Fig-
ure[5.18, p5.118). The same is true of both the second (CUSBHBI) and third (CUSPID
675146) well constrained events. In the third of these evtdre appears to be one misfit
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polarity (see the upper left quadrant of Figlre 5.41] p8Me Well constrained events are
characterised by high (6.13, 6.55 and 6.50) compared to the poorer constrainadsvEhe
P- and T-axis contours of all three events are tightly canséd. In general the well con-
strained events have a higher number of polarity readingsbatter focal sphere coverage
than the poorly and intermediately constrained events.

The better constrained events agree closely the estathlisital mechanism solutions of
RM99. The Matrix Fisher approximation tends to match wed Bayesian posterior PDF,
with the match appearing better for well constrained eventee full 8-mode Matrix Fisher
distribution with parameter matrik generally provides a better fit than the scalar concentra-
tion version, at the cost of longer computation time andeased complexity, although the
difference in quality of fit is small for the better constrathevents.

Figure[5.2B shows a map of all 87 MAP focal mechanism estisnaltained in this study.
The map corresponds closely to Figlire’.24, the solutiotasrdd in the RM99 study, except
for some small discrepancies which we discuss below.

Figure[5.Z2b shows a histogram of angular differences betvees solutions and those of
RM99. For 75% of events, the solutions are witRin3° of each other, indicating that solu-
tions obtained by our method are generally similar to thdgained by RM99. The angular
differences between the two sets may be partly explainedhdéylifferent focal mechanism
estimation methodology used and the hypocentral uncéeaiconsidered here, but may also
be partly explained by differences in hypocentre locatesutting from our interpolation of
the Reyners et al. (1999) velocity model to a constant gratisyy. Figuré 5.26 shows a plot
of angular difference between solutions versus the disthetwveen the epicentres as located
by RM99 and NonLinLoc in this study. There is no obvious rielaship evident.
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our method. Hypocentre locations are as calculated by Ndrdd. Beachballs are scaled
relative to their magnitudes. The dark red line indicates ltbundary of the velocity

model.
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Figure 5.25: Histogram of = 87 angular differences between our MAP focal mechanism
estimates and the focal mechanisms of Reyners & McGintyq)L99

5.2 Velocity model unknown — Kawerau

In this Section the Bayesian model is applied in the situatiowhich neither the hypocentre
location of the earthquake nor the velocity model is knowithy @pplications to data from the
Kawerau region of New Zealand.

5.2.1 Tectonic Setting

The Kawerau geothermal field is situated in the eastern T&bfmanic Zone (TVZ), in the
North Island of New Zealand. The field, a roughly circularaaoé 19-35 knd, is in the most
seismically active part of the TVZ, where many shallow eguikes occur. The age of the
field has been estimated at around 200,000 years, and itgyemaiput estimated at 100 MW
(Bibby et al. 1995). The Kawerau geothermal field lies to th&t @f the Taupo fault belt, and
to the west of the North Island dextral fault belt (Clarke 2ZPDAs with the Raukumara Penin-
sula, seismicity here is caused by the Pacific plate subdyanderneath the Australian plate
beneath the region. Previous focal mechanism studies if\f2ehave found mechanisms
that are predominantly normal or normal with a strike-stypnponent, with large variation in
strike (Hurst et al. 2002).
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Figure 5.26: Plot of angular difference versus distance/éen epicentres for our MAP
focal mechanism estimates and the focal mechanisms of RegdcGinty (1999).

5.2.2 \Velocity Models

The velocity models used in this section were obtained byk€l€2007) using Velest (Kissling
1995) (see Sectidn4.3) and phase data from GeoNet (seerSBLB).

We drew a random sample of velocity models using a methodrithescby Clarke (2007),

which we take as our prid?(v) for the velocity model. Twelve layer boundaries were sel@ct
at-3,0, 2, 4, 6, 8, 10, 15, 20, 25, 30 and 40 km depth. Veles doeadjust the position of
the boundaries in its procedure. The procedure for asgignitial velocities was:

e Picku; ~ Uniform(1,6) - the velocity in km/s for the top (-3km) layer.
e Pickuy ~ Uniform(6, 10) - the velocity in km/s for the bottom (40km) layer.
e Pickug ~ Uniform(u, uz) - an intermediate velocity in km/s for the 10km layer.

e Pick a sample of size 5 from Uniforfma,, u3), order from lowest to highest, and assign
as velocities in km/s to the 0, 2, 4, 6 and 8km layers respagtiv

e Pick a sample of size 4 from Uniforfus, u,), order from lowest to highest, and assign
as velocities in km/s to the 15, 20, 25 and 30km layers resabet
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176° 177°

Figure 5.27: Map of the Kawerau area. Lines show the boundblarke (2007)’s
selected earthquakes (yellow line) and the boundary inthbosethe velocity models in
this study (dark red line). Symbols show the national segnayoh network (red squares),
strong motion network (yellow squares), Rotorua networmedg triangles), temporary
stations (white triangles), and other networks (blue tlas).
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Selection of the intermediate velocity third means the nwddl have different gradients in
the upper and lower parts. This ensures a wide range of inpdeta are selected (Clarke
2007).

Clarke (2007) generated approximately 1000 P-wave vgiouoitdels in this manner, and
used these as a basis for joint P- and S-wave velocity modetdsions using Velest. Ini-
tial P-wave velocities for this joint procedure were randpselected within 1 standard de-
viation of the mean in each layer from the P-wave only modéhstial S-wave velocities
were chosen randomly, in a similar manner as the initial cam&-wave models, except that
uy ~ Uniform(0, 3), uy ~ Uniform(3,9), andV,, > V; in every layer. For our hypocentre
location routine we use the models output from the joint B+ &swave inversion. These 1000
models are shown in Figuie5128.
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Figure 5.28: Plot of 1000 P- (black) and S-wave (blue) veéjoeiodels for Kawerau, as
obtained by (Clarke 2007) using Velest. The solid red linek®idhe mean velocity in
each layer, while the dashed lines mark one standard davitom the mean.

Velest also outputs station corrections for each modelclvare values of * for a given ve-
locity model and station averaged over all events (Kissling 1995). These statiorectons
adjust for the true 3D variation in velocity that a 1D modefrat account for.

We convert the 1D velocity models to 3D for use with NonLinlLasing thevel 2G i d pro-
gram. This requires us to select the bounds for the model 1&s\aelocity model inherently
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has none. As stations must be inside the model bound&fod2Ti ne to calculate their
take-off angles, we use the tightest constraints on laitutt longitude such that all stations
for which polarities are recorded are encompassed by themohis gives us latitude bounds
of —37.73° to —38.92°, and longitude bounds af76.26° to 177.12°, while we take a depth of
50 km as a lower boundary.

5.2.3 Data

Since the velocity models we will use are based on the relsedrClarke (2007), we use
here the same phase data that was used in that study to ank&welocity models. Using
GeoNet phase data, Clarke (2007) selected earthquakeskatherau region, with hypocen-
tre latitudes between 38° and—38.2°, longitudes between75.55° and176.85°, and depths
shallower than 20 km. From this set of 1875 earthquakes, tist reliable events were se-
lected. The selection criteria were:

e The event must have a minimum of 8 P-wave phases and 3 S-wage$lo ensure it
is able to be located reliably.

e Seismic stations receiving waves from the event must havexansnum azimuthal gap
of less than80° to guard against epicentral bias.

e The nearest station to the event must be maximum of 10km aseay the epicentre
(as determined by the GeoNet hypocentre location) to ertgpth is determined accu-
rately.

Meanwhile, we apply a further criterion that an event musehseven or more polarity read-
ings to ensure adequate coverage of the focal sphere. Timiserus slightly relaxed from the
value of 10 used in Sectidn®.1, as the GeoNet data contdats/edy few polarity readings.
This selection criterion narrows our set of earthquakegvels.

5.2.4 Posterior PDF Particulars

We assign equal prior weight to each of the 1000 velocity models, and these together
constitute our prior for the velocity modét(v). Further work can and should be put into
establishing a better motivated prior for the velocity motewever for the purposes of this
project we have simply used the results of Clarke (2007) ¢oige P(v). Thus our posterior
PDF becomes

P(O|d,w) x P(© ZZ [H ijlﬂh — ﬂijk)%(l—yi)]

k=1 j=1 Li:=1

where

2(Piir - 1) (Piir - O
WiijW;,0+(1—27TI’)O)@< (Dijr - 1) (Diji u))

Oayg

and we adopt here the same set valuestfoand o, that were used for the velocity model

_— —1
known caser, = 0.2ando,, = ;.
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5.2.5 Results

We present here results in the same format as in Sdcfion) foddl seven events that meet our
selection criteria. For each event we present first the itglotodel known results, followed
by the results in the velocity model unknown case. In theaigtanodel known case, we use
here the mean velocity model (see Tabld 5.2) given by the melaity in each layer over
the set of 1000 models. The results of this will be used as & basvhich we can compare
the effect of adding uncertainty over the velocity struetimto our probability model.

Table 5.2: Mean P- and S-wave velocity models with corredpanstandard deviations
for Kawerau.

Depth P-wave velocity| Standard deviation S-wave velocity| Standard deviation
(km) V, (km/s) (km/s) V, (km/s) (km/s)
-3 4.254 0.275 2.481 0.297
0 4.485 0.372 2.620 0.247
2 4.973 0.153 2.756 0.232
4 5.335 0.147 3.124 0.131
6 5.808 0.074 3.396 0.126
8 5.918 0.068 3.530 0.111
10 6.073 0.040 3.627 0.074
15 6.113 0.055 3.744 0.107
20 6.228 0.123 3.828 0.121
25 6.649 0.253 3.956 0.151
30 7.389 0.228 4.097 0.176
40 7.980 0.422 4.477 0.350

We do not have previously published focal mechanism salatfor our selected events, al-
though there have been previous focal mechanism studid®eii¥Z (see e.g. Hurst et al.
2002), to which we may compare the fault types of our solgtidn addition we use HASH
by Hardebeck & Shearer (2002) as a means of comparing safutiom an established focal
mechanism estimation method to our MAP solutions for thectet events. Table™.3 con-
tains a summary of the results for our seven selected evlrgtgstimates o for the VMK
and VMU cases, the HASH estimate ©f and the angular differences between the VMU
MAP estimates (our maximal model) and the VMK and HASH estesa

In the velocity model unknown case we slightly alter the exbeets, as we have sampled
hypocentre locations from 1000 runs of NonLinLoc. This means that duplicate hypocentre
locations, and therefore points on the focal sphere, canrobitstead of simply overplotting,
we take a grid of points over spherical coordingies’), and count the number of points in
each cell. This gives a probability of a first motion for eaell,drom which we can plot the
contours of the first motions.
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Table 5.3: Summary table of results for the selected Kawevauts.

Velocity Model Unknown | Velocity Model Known | HASH | Angular difference « |
CUSPID MAP © K oo MAP © K oo S HASH —~ VMU | VMK < VMU
1.731019 | (127.20°,46.83°,357.70°) | 2.54| 29.62° | (130.88°,46.28°,1.28°) | 2.54| 29.57° | (205°,57°, —161°) 39.16° 2.92°
2.745516 | (219.13°,70.46°,213.00°) | 2.58 | 29.35° | (219.60°,71.43°,214.61°) | 2.71| 28.52° | (212°,83°, —172°) 27.34° 1.81°
3.788921 | (250.38°,95.81°,170.73°) | 2.30| 31.34° | (71.99°,77.54°,200.30°) | 2.69 | 28.65° | (78°,67°, —167°) 18.78° 12.75°
4.802105 | (225.16°,62.10°,154.55°) | 2.30| 31.32° | (327.83°,67.96°,31.52°) | 3.14| 26.25° | (48°,82°, —155°) 36.01° 1.12°
5.802106 | (224.40°,65.06°,181.43°) | 2.32| 31.18° | (132.93°,87.61°,334.19°) | 2.59 | 29.28° (39°,78°,172°) 37.98° 1.63°
6.1697233| (233.93°,29.02°,264.41°) | 2.10| 32.95° | (60.65°,62.05°,273.25°) | 2.75]| 28.29° | (62°,20°, —106°) 45.75° 0.96°
7.1728730] (273.08°,32.38°,312.36°) | 2.00| 33.86° | (278.70°,35.65°,317.51°) | 2.36| 30.89° (31°,84°,145°) 99.01° 4.55°




1. EVENT 731019 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

06/02/1995

11:50:25.69

-38.101

176.689

-3.000

2.9

Figure 5.29: Stereonet for event 731019 (left). The solik dime indicates the MAP
focal mechanism solutiof® = (130.88°,46.28°,1.28°)] while the dotted line indicates
the solution given by HASH. Angular difference between the solutions =41.852°.
Blue points are compressions, red points are dilatatiofisdAtour plot for event 731019
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

A [—2.458 4.127 —6.982] ) —0.542  0.557 —0.630
F=1 2044 2162 -3.319{, M= | 0.840 0.390 -—-0.378],
_—0.235 0.632 —1.818_ 0.035 —-0.734 —-0.679
) [ 0.158 0.986 0.986] ) 9.326 0 0
U= |-0.501 0.126 0.856] , D= 0 2.886 0
_0.851 —0.109 0.514_ 0 0 0.390
8-mode Matrix Fisher Distribution with scalar concentati
) —0.552 0.340 -—-0.761
M= 0.832 0.285 —0476]| ,~ = 2.545
0.055 —0.896 —0.679
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1. EVENT 731019 — Velocity model known
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Figure 5.30: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributioriP(@|ﬁ‘) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 731019.
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1. EVENT 731019 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

06/02/1995

11:50:25.69

-38.101

176.689

0.000

2.9
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Figure 5.31: Stereonet for event 731019 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (127.20°,46.83°,357.70°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuons =39.156°. Blue
points are compressions, red points are dilatations. PTooomlot for event 731019
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

- [-2.363 4.081 —6.857] - [-0.543 0557  —0.629
F={2075 2188 —-3334|, M=|0839 0.399 -0.371]|,
| —0.186 0.646 —1.820 0.045 —-0.729 —0.683
) [ 0.145  0.988 0.988] ) 9.205 0 0
U= [-0.505 0.119 0.855|, D= 0 2.889 0
| 0.851  —0.098 0.516 0 0 0.387
8-mode Matrix Fisher Distribution with scalar concentwati
) —0.552 0.340 —0.761
M= 0831 0295 —-0471]|,k~k=2.538
0.064 —0.893 —0.683
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1. EVENT 731019 — Velocity model unknown
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Figure 5.32: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-
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mode Matrix Fisher distributioW(@lﬁ‘) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 731019.
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2. EVENT 745516 — Velocity model known

Date Time Latitude | Longitude | Depth | Magnitude
18/02/1995) 03:48:27.91 -38.102 | 176.707 | 2.000 2.5

Figure 5.33: Stereonet for event 745516 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (219.60°,71.43°,214.61°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuions =28.398°. Blue
points are compressions, red points are dilatations. PTooomlot for event 745516
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[7.350 —3.352  2.966 | 0.748 —0.298 0.593
F= 14250 —3.585 —3.211|, M = [0.346 —0.588 —0.731],
10.954 —0.405 —0.309 ] 0.567 0.752 —0.336
[ 0.871 0.068 0.068 ] 9.806 0 0
U= |-048 0276 —0.829|, D=| 0 4500 0

| 0.078  0.959 0.273 | 0 0 0215

8-mode Matrix Fisher Distribution with scalar concentati

) 0.824 —0.117 0.555
M= [0.507 —0.284 —0.814|,~k=2.713
0.253 0.952 —0.336
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2. EVENT 745516 — Velocity model known
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Figure 5.34: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted 8-

mode Matrix Fisher distributioriP(@|ﬁ‘) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 745516.
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2. EVENT 745516 — Velocity model unknown

Date Time Latitude | Longitude | Depth | Magnitude
18/02/1995) 03:48:27.91 -38.102 | 176.707 | 4.000 2.5

Figure 5.35: Stereonet for event 745516 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (219.13°,70.46°,213.00°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuons =27.341°. Blue
points are compressions, red points are dilatations. PTooomlot for event 745516
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[6.162 —3.302 1.840 | 0.686 —0.425 0.590
F= (4067 —3.188 —2859|, M = [0.365 —0.501 —0.785],
[ 1.299 —0.392 —0.033 0.629 0.754 —0.189
[ 0.853 0.133 0.133 ] 8.766 0 0
U= |-0.521 0.164 —0.838|, D= 0 3468 O
| —0.029 0.978 0.209 | 0 0 0.337

8-mode Matrix Fisher Distribution with scalar concentati

) 0.792 —0.254 0.555
M= 10486 —0.290 —0.825|, K = 2.580
0.371 0923 —0.189
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Figure 5.36: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributio?(O|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 745516.
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3. EVENT 788921 — Velocity model known

Date Time Latitude | Longitude | Depth | Magnitude
01/04/1995| 11:28:04.73 -38.178 | 176.599 | 6.000 2.4

Figure 5.37: Stereonet for event 788921 (left). The solik dime indicates the MAP
focal mechanism solutiof® = (71.99°, 77.54°,200.30°)] while the dotted line indicates
the solution given by HASH. Angular difference between te solutions =15.068°.
Blue points are compressions, red points are dilatatiofisdAtour plot for event 788921
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—3.783 —5.117 —10.223 —0.276 —0.532 —0.800
F=1]-3307 0314 —0500|, M= [-0.825 0558 —0.086],
| 0996 —0.716 —1.052 0.492  0.637 —0.594
[—0.334 0.931 0.931 12.150 0 0
U= [-0419 —0289 —0861|, D=| 0 3358 0

|—0.845 —0.225  0.486 0 0  0.047

8-mode Matrix Fisher Distribution with scalar concentati

) —0.237 —-0.144 —-0.961
M= [-0.893 0421 0.157 |,k = 2.691
0.382  0.896 —0.594
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Figure 5.38: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted 8-
mode Matrix Fisher distributioriP(@|ﬁ‘) (centre) and fitted 8-mode Matrix Fisher distri-
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bution with scalar concentration paramefé(|®|1\71, k) (right) for event 788921.
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3. EVENT 788921 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

01/04/1995

11:28:04.73

-38.178

176.599

8.000

2.4

Figure 5.39: Stereonet for event 788921 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (250.38°,95.81°,170.73°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuions =18.778°. Blue
points are compressions, red points are dilatations. PTooomlot for event 788921
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

A [2.008 —2.388 4.271 A 0.673 —0.211 0.709
F=11.091 1.425 —-2277], M= 10.693 —0.156 —0.704] ,
_0.604 2.279 —-2.130 0.259 0.965 0.041
) [ 0.154 0.960 0.960 ) 6.410 0 0
U= |-0.546 0.280 0.789{ , D= 0 2.320 0
i 0.823 0.006 0.568 0 0 0.619
8-mode Matrix Fisher Distribution with scalar concentati
) 0.678 —0.118 0.726
M= (0715 —0.124 —-0.688]| , k= 2.297
0.171 0.985 0.041

110



cos(dip) (cos(3))

3. EVENT 788921 — Velocity model unknown
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Figure 5.40: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributioriP(®|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, <) (right) for event 788921.
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4. EVENT 802105 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

03/05/1995

16:10:22.26

-38.174

176.645

10.000

2.5

Figure 5.41: Stereonet for event 802105 (left). The solik dime indicates the MAP
focal mechanism solutiof® = (327.83°,67.96°, 31.52°)] while the dotted line indicates
the solution given by HASH. Angular difference between te solutions =37.105°.
Blue points are compressions, red points are dilatatiofisdAtour plot for event 802105
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [ 2.452 —3.531 5.088 R 0.645 —-0.667 0.373
F=|-3806 -—-3.843 7.715 |, M= 1-0.620 —-0.173 0.765 |,
_—1.575 —0.132 —0.743 —0.446 —0.725 —0.525
) [—0.178 0.978 0.978 ) 10.746 0 0
U= |-0476 —-0.186 0.860] , D= 0 4.495 0
i 0.861 0.100 0.499 0 0 0.707
8-mode Matrix Fisher Distribution with scalar concentati
) 0.642 —-0.609 0.466
M= [-0.620 —-0.055 0.782 |,k = 3.141
—0.450 —0.792 —-0.525
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4. EVENT 802105 — Velocity model known
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Figure 5.42: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributio?(O|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 802105.
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4. EVENT 802105 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

03/05/1995

16:10:22.26

-38.174

176.645

15.000

2.5

Figure 5.43: Stereonet for event 802105 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (225.16°,62.10°, 154.55°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuons =36.007°. Blue
points are compressions, red points are dilatations. PTooomlot for event 802105
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [2.346 —3.011 5.193 ] R 0.659 —-0.273 0.701
F= 11022 1.588 —2.882], M= |0.718 —0.048 —0.694] ,
_0.207 1.596 —1.742_ 0.223 0.961 0.164
) [ 0.209 0.977 0.977] ) 7.375 0 0
U= |-0505 0.152 0.850], D= 0 2.100 0
i 0.837 —0.153 0.525_ 0 0 0.485
8-mode Matrix Fisher Distribution with scalar concentati
R 0.677 —0.078 0.731
M= 10721 —-0.123 —-0.681], 4~ = 2.299
0.143 0.989 0.164
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4. EVENT 802105 - Velocity model unknown
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Figure 5.44: Marginal PDF plots for Bayesian posterior PB©|d, w) (left), fitted 8-
mode Matrix Fisher distributioriP(@|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 802105.
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5. EVENT 802106 — Velocity model known

Date Time Latitude | Longitude | Depth | Magnitude
03/05/1995| 16:13:44.42 -38.174 | 176.645 | 20.000 2.4

Figure 5.45: Stereonet for event 802106 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (132.93°,87.61°, 334.19°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuions =38.563°. Blue
points are compressions, red points are dilatations. PTooomlot for event 802106
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—0.507 3.145 —5.190] —0.624 0.596 —0.505
F=| 4740 4235 —8225|, M= | 0678 0.090 —0.730],
| 1220 0.485 —0.775] 0.390 0.798 0.461
[—0.344 0.933  0.933] 11.767 0 0
U= |-0.445 —0.257 0.858|, D= 0 2994 0

| 0.827  0.250  0.504] 0 0 0.155

8-mode Matrix Fisher Distribution with scalar concentati

) —0.633 —0.339 —-0.696
M=1]0684 0176 —0.708| ,k = 2.591
0.362 —0.924 0.461
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5. EVENT 802106 — Velocity model known
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Figure 5.46: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted 8-

mode Matrix Fisher distributio®(0|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 802106.

117



5. EVENT 802106 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

03/05/1995

16:13:44.42

-38.174

176.645

25.000

24

Figure 5.47: Stereonet for event 802106 (left). The solitt iae indicates the MAP focal
mechanism solutiof® = (224.40°,65.06°, 181.43°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuions =37.975°. Blue
points are compressions, red points are dilatations. PTooomlot for event 802106
(right). Orange denotes the P-axis, green the T-axis. Tokeaenotes the MAP estimate,
while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [2.423 —3.058 5.097 | R 0.667 —0.287 0.688
F=|1.157 1.525 —-3.044], M= 10711 —-0.032 —-0.703] ,
0.094  1.395 —1.624] 0.224 0.957  0.183
) [ 0.216 0.975 0.975] ) 7.320 0 0
U= |-0501 0.060 0.863], D= 0 2.227 0
| 0.838  —0.216 0.502] 0 0  0.424
8-mode Matrix Fisher Distribution with scalar concentati
) 0.686 —0.055 0.726
M= 10715 —0.135 —-0.686]| , 4~ = 2.318
0.135 0.989 0.183
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5. EVENT 802106 — Velocity model unknown
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Figure 5.48: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributioriP(®|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 802106.
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6. EVENT 1697233 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

27/02/2001

11:51:15.60

-38.124

176.701

30.000

2.6

Figure 5.49: Stereonet for event 1697233 (left). The sdadidkdine indicates the MAP fo-
cal mechanism solutio® = (60.65°,62.05°, 273.25°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twhuions =46.511°. Blue
points are compressions, red points are dilatations. PTooomlot for event 1697233
(right). Orange denotes the P-axis, green the T-axis. Tiokealenotes the MAP esti-
mate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

- [-4707 3198 —3.708] ~[-0292 0562 —0.774
F=| 0267 0.486 1.380 |, M = | 0.388 0.809 0.441 |,
i 5479 —3.001 —0.394_ 0.874 —-0.172 —-0.454
) [ 0.817 —0.271 —0.271] ) 8.769 0 0
U= |-0497 0.113 -0.860], D= 0 3.190 0
i 0.291 0.956 —0.042_ 0 0 0.671
8-mode Matrix Fisher Distribution with scalar concentati
R —0.378 0.448 —0.810
M= | 0.246 0.892 0.379 | , A =2.752
0.892 —0.056 —0.454
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. EVENT 1697233 — Velocity model known
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Figure 5.50: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted 8-
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mode Matrix Fisher distributioriP(@|ﬁ‘) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramet&©|M, ) (right) for event 1697233.
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6. EVENT 1697233 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

27/02/2001

11:51:15.60

-38.124

176.701

40.000

2.6

Figure 5.51: Stereonet for event 1697233 (left). The sddickdine indicates the MAP
focal mechanism solutiof® = (233.93°,29.02°,264.41°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bstw the two solutions =
45.754°. Blue points are compressions, red points are dilatatiés.contour plot for

event 1697233 (right). Orange denotes the P-axis, greem-#&xé&s. The circle denotes
the MAP estimate, while the triangle denotes the solutierigby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [5.432 —3.776  2.941 R 0.705 —0.355 0.614
F= 12514 —-1.757 —-0.806] , M = 10.393 —0.525 —-0.755],
_0.040 0.223 —0.549 0.591 0.773 —0.230
) [ 0.776 —0.281 —0.281 ) 7.684 0 0
U= |-0541 0.166 —-0.825], D= 0 1.932 0
i 0.326 0.945 —0.023 0 0 0.201
8-mode Matrix Fisher Distribution with scalar concentati
) 0.752 —0.027 0.659
M= 10645 —-0.179 —-0.743]| , A = 2.102
0.138 0.983 —0.230
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6. EVENT 1697233 — Velocity model unknown
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Figure 5.52: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-
mode Matrix Fisher distributioﬂP(@|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration paramef©|M, &) (right) for event 1697233.
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7. EVENT 1728730 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

01/05/2001

09:53:26.68

-38.152

176.695

-3.000

2.3

Figure 5.53: Stereonet for event 1728730 (left). The sadickdine indicates the MAP
focal mechanism solutiof® = (278.70°,35.65°,317.51°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bstw the two solutions =
95.427°. Blue points are compressions, red points are dilatatiéfis.contour plot for

event 1728730 (right). Orange denotes the P-axis, greem-#&xé&s. The circle denotes
the MAP estimate, while the triangle denotes the solutierigby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [ 2.963 —3.600 5.780 R 0.650 —0.680 0.338
F=]-1582 -0.375 0.022 |, M= 1-0.627 —-0.732 —-0.267],
_—0.215 2.923 —4.952 0.429 —-0.039 —-0.902
) [ 0.273 0.960 0.960 ) 9.244 0 0
U= |-0500 0.193 0.844] , D= 0 2.315 0
i 0.822 —0.202 0.533 0 0 0.296
8-mode Matrix Fisher Distribution with scalar concentati
R 0.699 —-0.507 0.504
M= [-0.564 —-0.824 —-0.047| ,k = 2.356
0.439 —-0.251 —-0.902
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Figure 5.54: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-
mode Matrix Fisher distributioriP(®|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-
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bution with scalar concentration parameE€(|@|1\71, k) (right) for event 1728730.
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7. EVENT 1728730 — Velocity model unknown

Date Time Latitude | Longitude | Depth | Magnitude
01/05/2001] 09:53:26.68 -38.152 | 176.695 | 0.000 2.3

Figure 5.55: Stereonet for event 1728730 (left). The sadickdine indicates the MAP
focal mechanism solutiof® = (273.08°,32.38°,312.36°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bstw the two solutions =
99.014°. Blue points are compressions, red points are dilatatiéfis.contour plot for

event 1728730 (right). Orange denotes the P-axis, greem-#&xé&s. The circle denotes
the MAP estimate, while the triangle denotes the solutierigby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[ 4.807 —3.504 2.717 ] 0.751 —0.294 0.592
F=|2076 —1757 —1.118|, M = |0.494 —0.344 —0.798]|,
|—1.086 0920 —0.404 0.438 0.892 —0.113
[ 0.759  —0.202 —0.202] 7.028 0 0
U= [-0568 0262 —0.780|, D=1| 0 2050 0O

| 0320 0.944  0.084 | 0 0  0.081

8-mode Matrix Fisher Distribution with scalar concentati

) 0.832 —0.054 0.552
M= 10458 —0.494 —-0.739|,~ = 2.004
0.313 0.868 —0.113
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Figure 5.56: Marginal PDF plots for Bayesian posterior PB®|d, w) (left), fitted 8-

mode Matrix Fisher distributioﬂP(@|ﬁ) (centre) and fitted 8-mode Matrix Fisher distri-

bution with scalar concentration paramef€(|@|1\71, k) (right) for event 1728730.

127

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.0



For the first event (CUSPID 731019) there is very little diffiece between the VMK and
VMU results. In both cases the HASH solution is somewhatadisg0° — 40°) from our
MAP solution, but our MAP solution again fits the first motiomsll (see FigureE5.29[pTi00
and[5.31, pI02). There is an angular difference of Ju&2° degrees between the VMK and
VMU MAP solutions. The posterior and Matrix Fisher PDFs arsikar for both cases (Fig-
ures[5.3D, [pT01 arld 5134, p103), with the concentratiomnpetexs in the VMU case being
slightly lower — presumably caused by the added uncertamniglocity model. In both cases
the full Matrix Fisher distribution provides a better fit théhe scalar concentration version.

The second event (CUSPID 745516) again exhibits very liifierence between the VMK
and VMU results (ppI0#-107). The HASH estimate$ofr”” andv’ are reasonably close

to the corresponding MAP solutions, and again there is otilyyadifference (.81°) between

the MAP estimates o in the VMK and VMU cases (see Figuries 5.33 0104 andl5[351p106).
The concentration parameters of the posterior PDF in the \Wd&E are again lower. The
Matrix Fisher fit is good for both cases, but appears slighéiter for the VMK case (Fig-
ure[5.34, p105).

In the third event (CUSPID 788921) we see some differencesdsn the VMK and VMU
results. The MAP solutions are similar in the two cases (Sgarés[5.3F pI08 and 5139
d110), however the parameter estimates, P- and T-axis wantand posterior PDFs are all
strikingly different. Notably the modes of the posterior PBhift slightly from the VMK to
VMU case (FigureE5.39pID9 ahd5.40p111), and the contemty@arameters are reduced.
The fourth and fifth events (CUSPIDs 802105 and 802106) disw differences between
their respective VMK and VMU results, characterised by dtshithe modes and reduced
constraint on the posterior PDFs, however the MAP estintatesin similar. For all three of
these events the Matrix Fisher PDFs fit reasonably well, kewthis fit appears better for the
VMK cases. As the fourth and fifth events occurred in the saroation just three minutes (in
time) apart, we would expect them to have the same focal nésaina The posterior PDFs and
fitted parameters for the VMK case for both events are reddpsamilar (see Figures 512,
AII3 and5.46,[pI17), while the VMU posterior PDFs (Figlregl 5115 and 5.48[p1N9)

and parameter estimates are almost identical.

The sixth event (CUSPID 1697233) exhibits a rather largpatisy between the VMK and
VMU posterior PDFs (Figurds 5.0 p121 dnd$.52 p123), motthipin the\ versuscos §
marginal plot. Here, adding the uncertainty in velocity reltas resulted in a change from a
single mode in the VMK case to a bimodal plot in the VMU casehwhe modes being either
side of the original single mode. In the VMU case the Matrigher fit is not particularly
good. The seventh event (CUSPID 1728730) exhibits a poorstained posterior PDF in
the VMU case compared to the VMK case, evident in the plotguféd5.54 [p125 arid 5156
dIZ21) and the lower concentration parameters. The HASHhasti of © is very different
from our MAP estimate in both cases, and the P- and T-axisocosiare poorly constrained,
reflecting the poor focal sphere coverage of the first motiorkis event (see Figurés 5153

{122 and 555[126).

In general the MAP estimate & did not change much between our VMK and VMU cases.
Adding uncertainty in velocity model has resulted in pastePDFs of© that tend to have
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broader maxima which constrath less tightly. Some events showed very little difference
between the VMK and VMU PDFs, while others showed large dkfiees. We can only con-
jecture over what causes the posterior PDF of an event togehdramatically when we add
uncertainty in velocity model into the formulation. Comedfigured’ 5,590 and 5b2. In the
posterior PDF (particularly th& vs cos 6 marginal plot) the single modes in Figure 3.50 are
splitin two in Figurd5.5R. This could indicate a posterioatis bimodal in velocity models
v: with models where the velocity remains low for most deptés as favoured as models
where the velocity is uniformly high, but models with strog@dients in velocity not being
favoured by the data. Future work into a better motivatedrgar v would better inform us

of how the velocity model uncertainty affects the posteRBs of©.

The Matrix Fisher distribution, though fitting reasonablglivn the VMU case, provides a

better fit in the VMK case. This corresponds to what we obskmeSection 5.115, in that

the fit was better for the more well constrained events. Agaithe events seen here, the full
distribution is a more accurate fit than the simplified scetarcentration version.

It should be noted that the data quality for Kawerau is pober€ are relatively few P-wave
polarity data compared to the Raukumara data, and due tcdilew depth of the events,
only the outer region of the focal sphere is well covered.sTias resulted in poorly con-
strained posterior PDFs &, as demonstrated by the plots and the fact that all the etstima
of  lie in the range~ (2, 3.1), similar or more poorly constrained than the most poorly-con
strained of our chosen Raukumara events. A deploymentsineeneters in the region could
resolve these data issues, but this is beyond the scopesgbribject. Note that the HASH
focal mechanism solutions are all of poor quality, as deshbiea quality code (“D” for each
of the seven mechanisms), and the RMS difference of the taddepnodal planes from the
preferred solutions given in the results (all39°).

A map of focal mechanism solutions obtained using the awevatpcity model is shown in
Figure[R.5¥. Our estimated focal mechanisms are predotfymaormal (i.e. the dilatational
quadrant is in the centre of the focal sphere), with somengeaistrike-slip component. How-
ever, the most south-westerly located events appear todieke-slip mechanisms. These
results are consistent with the earlier focal mechanisulystuthe TVZ by Hurst et al. (2002),
which found mechanisms that were predominantly normal comal with a strike-slip com-
ponent.
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Figure 5.57: Map of Kawerau showing MAP focal mechanisnmestes obtained using
our method. Hypocentre locations are as calculated by Numdd. Beachballs are scaled
relative to their magnitudes.
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Chapter 6

Conclusions

In this project we have introduced a new probabilistic (Baage) method of focal mechanism
estimation that directly accounts for uncertainty in hygrace location, seismic velocity struc-
ture, and P-wave polarities. We have examined the case \kleeretocity model is assumed
to be precisely known (VMK), with application to data frometRaukumara Peninsula, and
the case when the velocity model is imperfectly known (VMWwIith application to data from
Kawerau. Introducing uncertainty over the velocity stamethad the effect of reducing the
concentration of the resulting posterior PDFs of the focathanism parameter®).

Our MAP estimates o® have been shown to accurately divide the compressionaliéatd-d
tional first motions. Given reasonable data quality, the Me&smates of focal mechanism
parameters that result from our method have also been stodvendonsistent with established
methods of focal mechanism estimation, with the advantégeowiding a full posterior dis-
tribution of © values.

We have explored the use of two generalised Matrix Fisheribligions — the 8-mode Ma-
trix Fisher distribution, and the 8-mode Matrix Fisher diaition with scalar concentration
parameter — for approximating the posterior PDF of the fosathanism parameters. The
full 8-mode Matrix Fisher distribution provides a supefibto the empirical distributions, al-
though, interestingly, for well-constrained events thedacconcentration distribution also fits
well. This appears to justify the approach taken by Arnold&vhend (2007), who assumed
that focal mechanism errors follow a Matrix Fisher disttibo with scalar concentration pa-
rameter, in their work on estimating tectonic stress. It lddae interesting to know if the
additional information of the full Matrix Fisher distridoh has a significant impact on the
outputs of the stress estimation procedure, or whetherlargepresentation is sufficient.

The advantages of our method over previously published odsthre, therefore, (a) that the
entire parameter space can be explored, (b) that the es8n@&® are more robust, as the
relevant uncertainties are accounted for, and (c) thatdstepor PDF o can be accurately

and succinctly summarised by the parameters of the fittedldison.

This work suggests a number of possible avenues for furdssarch. As mentioned in Sec-
tion[5.2.4, the approach taken here would benefit from funb@k into establishing a well
motivated prior for the velocity model in the VMU case, whigbuld better inform us of how
the velocity model uncertainty affects the posterior PDFS oFuture work could also inves-
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tigate the formulation and use of more informative prionstf@ focal mechanism parameters
0, as we have only considered the state of total ignoranceifaromprior) here.

Additionally, we have not examined the effect of varying #meplitude noiser, and polarity
errorm, parameters, and have not focused on robustly estimatisg fr&rameters. Sensitivity
analysis could be conducted, in order to assess how therfpo®F changes as the param-
eters are varied. Establishing a well motivated prior fasthparameters, rather than using
fixed values as in this project, could also be investigategrthermore, future work could
address the effect of varying other parameters that we hsstgnged known in this project
— o0y, which we obtained from GeoNet quality codes as describ8alne[4.1, andC, for
which we have used the NonLinLoc default values.

The Kawerau case study described in Sedfioh 5.2 demordstreeffect of poor data quality,
specifically that the low number of P-wave polarity readirggd in routine CUSP processing
resulted in poorly constrained posterior PDF£0fIn future, P-wave data could perhaps be
supplemented with S-wave polarisation data or amplitulesavhich would help constrain
the solutions when P-wave polarities are scarce. An adequatns of incorporating the S-
wave data and its inherent uncertainties into the formaretif the posterior PDF would need
to be established, but this would not affect the underlyiagdsian framework of our method.

To conclude, we have developed here a robust new method alff ieechanism estimation
by directly accounting for the relevant uncertainties. &ildocal mechanism estimates are
important tools in assessing the tectonic characterisfiagegion, and are inputs to the prob-
lem of estimating tectonic stress — changes in which mayeptanstraints on the processes
involved in earthquake occurrence and volcanism. Thus tbihod developed here can be
seen as addressing one component of the wider problem bfieake source characterisation
and tectonic interpretation.
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Glossary

The glossary contains a list of symbols used in this projedttaeir meanings, followed by a
list of terms used in this project and their definitions.

Symbols

0 dip angle

a null vector

n fault normal vector

p; unit vector from the hypocentre;, to the point on the focal
sphere corresponding to statibn

u slip vector

vF unit vector in the direction of the P-axis

vT unit vector in the direction of the T-axis

A rake angle

D concentration matrix of a Matrix Fisher distribution

d the data

F parameter matrix of a Matrix Fisher distribution

M modal matrix of a Matrix Fisher distribution

S stress tensor

U spin matrix of a Matrix Fisher distribution

X hypocentre location

w known parameters

) azimuth

™, probability of an incorrect polarity

i probability of a positive observed first motion
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Terms

nuisance parameters

the standard deviation of the amplitude of the first motion
P-wave arrival time error at statian
covariance matrix of 5}

covariance matrix of 2"}

the set of focal mechanism paramet&rs), \)
take-off angle

velocity model

strike angle

amplitude of the first motion at statian
theoretical P-wave amplitude at station
The Kullback-Leibler divergence

calculated travel time between a hypocentre locatiand sta-
tioni

rotation matrix with columnsa a nJ, used to define the focal
mechanism

location of seismic station

calculated seismic wave arrival time at statiogiven the im-
plemented velocity model

observed seismic wave arrival time at station

the difference between the observed and theoretical &inivas
at station

P-wave polarity at station

earthquake origin time

8-Mode Matrix Fisher distributiona generalisation of the Matrix Fisher distribution to situ-

angular difference

ations in which there is a two-fold ambiguity in the directio
defined by each column of the orthogonal matrix random vari-
able

minimum rotation about any axis needed to make two rotation
matrices coincide
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auxiliary plane

axial data

azimuth

Bingham distribution

circular data

compression

one of two nodal planes of a focal mechanism, and perpendic-
ular to the fault plane

directional data in which the positive and negative dicatdi
are equivalent

angle measured clockwise from north

probability distribution for axial data in 3D space, see Mar
& Jupp (2000)

directional data in 2D space

an upwards first motion

coupled hypocentre-velocity modsblving simultaneously for the hypocentre location and

dilatation

dip angle

directional data

epicentre

equivalent body forces

fault normal vector
fault plane

first motion

focal mechanism

focal sphere

force couple

hypocentre

velocity model
a downwards first motion

the angle that the fault slants downwards from the horidonta
to the right looking along the strike direction

observations that are directions, or unit vectors, in space

the point on the earth’s surface directly above the hypoeent
of an earthquake

a model of the faulting process; the forces that would yibeéd t
observed seismic wave radiation pattern

vector normal to the fault plane
planar surface on which an earthquake occurs

the direction of motion, or polarity, of the first P-wave aali
at a seismic station

geometrical representation of fault slip during an earéhgu

imaginary sphere of negligible radius surrounding theleart
quake source

two forces acting together

the location of an earthquake

Kullback-Leibler divergence a measure of discrepancy between two probability distiobst

likelihood

Matrix Fisher distribution

probability density function describing the probability the
observed data given a certain hypothesis

probability distribution for matrices on the Stiefel Mauwli,
see Downs (1972)
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minimum 1D velocity model velocity model with minimum root mean square (RMS) misfit

moment tensor

nodal planes

NonLinLoc

null vector

orientation data

orthogonal group

P-wave

posterior

prior

rake angle

S-wave polarisation

S-wave

seismic moment

seismic noise

seismometer

slip vector

special orthogonal group
spherical data

stereonet

of {£;*}
a quantity that depends on source strength and fault otienta
the fault plane and the auxiliary plane

a software package used “for velocity model constructi@vel-
time calculation and probabilistic, non-linear, globaksch earth-
quake location”

vector defined byan x 1, i.e. perpendicular to the slip and
normal vectors

observations made up of directions describing a dimen-
sional object

A Stiefel Manifold wheren = p; the group of x p orthogonal
matrices

longitudinal seismic wave that travels fastest from thehear
quake source

probability density function describing our knowledge bét
hypothesis given the data

probability density function describing our prior knowgglof
a given hypothesis

the direction of motion of the upper side of the fault with re-
spect to the lower side of the fault, measured in the faulig@la
anti-clockwise from the direction of the strike

splitting the S-wave into two perpendicular components, SV
and SH

transverse seismic wave that travels more slowly than the P-
wave from the earthquake source

a measure of the magnitude of an earthquake

fluctuations in the seismic wave signal caused by extercal fa
tors such as human activity

instruments that measure and record ground motions
vector in the direction the fault slipped during the eartkg.
The group ofp x p orthogonal matrices with determinant 1
directional data in 3D space

a 2D projection of the lower hemisphere of the focal sphere

136



Stiefel manifold

stress tensor

stress
strike angle
strike direction

take-off angle

velocity model

VMK posterior PDF

VMU posterior PDF

von Mises distribution

the set of allp x n matrices that describe the orientation of an
object inp-dimensions, defined by directions, and for which
XT'X =1,

a six component description of the tectonic stress field] trse
calculate the stress vector at a point for any plane thategass
through that point

a measure of force acting on a surface per unit area
the angle measured clockwise from north to the strike doact
the direction of a horizontal line in the fault plane

angle measured from the downward vertical to the point on the
focal sphere where a P-wave left the earthquake source

a simplified representation of the seismic velocity strretf
the earth

velocity model known posterior PDF of the focal mechanism
parameters

velocity model unknown posterior PDF of the focal mecha-
nism parameters

probability distribution for circular data, see Mardia &pju
(2000)

von Mises-Fisher distributiorprobability distribution for spherical data, see Mardia @pp

G i d2Ti me

NLLoc

Vel 2Gri d

Vel est

(2000)

program that calculates travel-times and take-off angkes b
tween a station and all nodes of ary, = spatial grid

program that implements Tarantola & Valette (1982)’s Bagyes
method of hypcentre location

program that converts velocity model specifications intda 3
grid file in binary format for use witksr i d2Ti me andNLLoc

a program that determines minimum 1-dimensional velocity
models
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Appendix A

Useful Definitions and Results

This appendix contains some useful definitions and redudiisare used in this project.

A.1 Rotation

A.1.1 Euler Angles
Euler Anglesb = (¢, 0,) are used to describe a rotation in three dimensions, where
0<op<2m, 0<O0<m, 0<y<2r

There are various definitions of Euler Angles, determinedvhich axes are rotated around
and in which order. Here we will use the definition providedAmold & Townend (2007),
who use a zyz convention. (f, y, z) are the coordinates of an initial coordinate system, the
Euler Angles are used to rotate the system as follows:

¢ Rotate the initial system anticlockwise byabout thez axis to obtainz’, ¢/, 2’)
e Rotate(x’,y/, ') anticlockwise by) about they’ axis to obtainz”, y”, 2").

e Rotate(z”,y”, 2”") anticlockwise byy about the:” axis to obtain the final coordinate
SySte m(x/l/’ y///’ zl/l) .

These rotations can be expressed as matrices

cosae 0 sinw cosae —sina 0
By(a) = 0 1 0 B.(a) = |sina  cosa 0
—sina 0 cosa 0 0 1

whereB; («) describes a rotation of angheabout axis (Arnold & Townend 2007). A rotation
matrix formed from the Euler Angles is given by

cos ¢ cosf costp —sin¢psiny — cos@cosfsiny — sinpcosyy cos@sin b
= |sin ¢ cosf cost + cos¢psiny —sin ¢ cosfsiny + cos pcosyy  sin ¢sinf
— sin @ cos ¢ sin @ sin 1 cos 0
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Rotation matrices are orthogond@¥{ R = I) and have ddt = 1. Any rotation matrixR has

equivalent Euler angles, given by

¢ =tan"! <@) ., O=cos 'Ry, ¢ =tan"! (

Ry3
(Arnold & Townend 2007).

Rs

— R

Euler anglesb = (¢, 0, ) are equivalent to focal mechanism parameges (&, 9, \):

T T
¢:§+§ 5:625—5
T T

So the rotation matrix that describes the an@ds

R(O) = B.(§ +5)B,(x — ) B.(A ~ 3)

sin £ cos d sin A + cos € cos A sin€cosdcos A —cosésin A\ —sinésind
= |—cos€cosdsin A +sinfcos A —cosécosdcos A —sin€sin A cossind
—sind sin A sin d cos A —cos 0
= [aan]

(Arnold & Townend 2007). From this it can be seen that= (¢, 4§, \), Euler anglesb =
(¢,0,1), and the rotation matriR(©) = [a a n] are all equivalent ways of describing a focal
mechanism.

A.1.2 Passive and Active Rotation

Given a coordinate system and a vector, a rotation matrixbeamterpreted in two ways.
Passive rotations the case when the rotation matrix is thought of as rotatwegcoordinate
system while the vector remains fixed - this was the methodribesl in Sectiofi A TI1.

Let the vectoxg be the representation of the veciom coordinate syster. Then
xp = RppXp

gives the representation ®fin coordinate systerA. The columns of?,p are the unit vectors
of the axes of coordinate systdirexpressed in coordinate systém

Active rotationis the case when the rotation matrix is thought of as rotatuegvector while
keeping the coordinate system fixed. A rotation of a vertabout an axis to obtaig’ can be
performed by putting

x' = R(¢,0,¢)x

for Euler angleg¢, 6, ).
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A.1.3 Rotation Angles and Angular Difference

A rotation matrixR rotates a coordinate system or vector about an axis by ae &gglen by

o (2)

The matrix R has one real eigenvalue, and the eigenvector correspotualithgs represents
the axis about which the rotation takes place (Arnold & Tomah2007).

If R, and R, are two rotation matrices, then the angular differendsetween them is the
minimum rotation about any axis needed to make the two cdécihis angle is given by

0 — o] (%)
: .

(Arnold & Townend 2007). This is a means of comparing two faoachanism solutions
obtained by different methods. Due to the existence of fguialent focal mechanisms for a
given solution (see Sectién 1.P.3), angular differencesalculated betweeR, and the four
equivalent representations &f;, or vice versa. By convention the minimum of these four
angles, ming), is taken (Kagan 2007).

Whena is zero, the matrices are identical. The maximum value for(@)ivaries betweef0°
and120° depending on the axis about which the rotation occurs (K26&7).

A.2 Spherical Coordinates

The spherical coordinate system can be used to locate poititeee dimensions. This coor-
dinate system is useful due to the importance of directidatd in this project.

Under this coordinate system, a point P in space is located two angles and one distance.
This description is based on that of Weir et al. (2005).

e pis the distance from P to the origin.

e ¢ is the angle clockwise from the positive x-axis td(P< ¢ < 2). In this project we
take x to be positive northwards.

e 0 is the angle from the positive z-axis to/® < 6 < 7). In this project we take z to be
positive downwards.

All points we are interested in are located on the unit sph&moint P is therefore able to be
located using just the two angleésandd. This is shown in FigureAl1.

Spherical coordinates can be converted to Cartesian cwiedi by the equations:

x = sinf cos ¢
y = sinfsin ¢

z = cosf
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Figure A.1: Spherical polar coordinates. A point P on theespltan be located by two
angles:¢, the clockwise angle from the positive x-axis, ahdhe angle from the positive
Z-axis.

Cartesian coordinates can be converted to Spherical cwisdi by rearranging the above
equations:

¢ = atan2(y, x)
~ Jtan™! () y>0
|7+ tan™? (%) y<0

0 = cos !(z)

A.3 Lambert-Schmidt Projection

The stereographic projection of the focal sphere onto all@rarea can be constructed us-
ing an equal-area Lambert-Schmidt projection. As mentlaneSectiorl_1.Z]1, the stereonet
represents the lower hemisphere of the focal sphere. loisgol using the usual mapping
convention; North is upwards, East is to the right.

A point on a sphere has an azimuthand a take-off anglé. This point is plotted on the
stereonet at a distanedrom the origin, at an anglé measured clockwise from north, where
r is given by:

0
r:\@sini

This method is known as the Lambert-Schmidt projection Esgere[A.2), and is used to plot
stereonets in this project.
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We useR to construct the stereographic projections for each eadke; We reverse the
points on the upper focal sphere (points witlr 7) and plot them on the lower focal sphere,
to enable every ray to be shown. If a point is on the upper fsphkre with azimutlkp and
take-off angled, we can transform it to a point on the lower focal sphere waimath ¢’ and
take-off angle)’ as follows:

¢ =¢+m
0 =m1—-0

Compressional points are coloured blue, while dilatatemesred.

Because the azimuth and take-off angle vary for each peskigjocentre location, there are
multiple points to mark (creating a cloud) for each statmryesponding to the different pos-
sible hypocentre locations. The colour scale varies aaegr the value of the hypocentre
PDF at the point - varying from white for zero probability,dark blue or red for high proba-

bility.

Given a focal mechanism solutidRd(©) = [a a n|, the nodal planes can be identified and
plotted on a stereonet as follows. The points where the ipesaand negative directions of
the vectors, a andu intersect the focal sphere are marked. Two great circles passing
through+n and+a, the other passing throughu and+a, give the nodal planes. Figure A.3
shows this procedure visually.

A.4 Averaging Angles

One must take care when averaging angles that are scattdredsede of2r. If we take the
average of such angle values, the result will incorrectlglose tor, since around half the
angles are just 0 and half are jusk 27 (Arnold & Townend 2007). In this section we give
formulae for averaging directional and axial data of vasi&inds.

A.4.1 Circular Data

When averaging angles{¢;},i = 1,...,n, the necessary adjustment is
- (sin ¢)
= 2
¢ = atan ((cos 2

where(...) represents an average or a weighted average. If the datalshen the necessary

adjustment is
-1 (sin 2¢)
O = §atan2 ((cos 2¢>)

(Arnold & Townend 2007).
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Figure A.2: Stereonet projection. (a) A point P on a sphetéa azimuth¢ and take-off
anglef. A point P on the lower half of the sphere is transformed asvsha (b) to the
point Q which is plotted on the stereonet in (c). (d) The jphottposition of the point
under the Wulff Q and Lambert-Schmidt Q* conventions.
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Figure A.3: Beachball diagram of a focal mechanism with diteary strike, dip and rake
of (£,0,A\) = (154°,52°,22°). The direction of the fault normal and slip vectors are shown
by small circles, while the direction of the null vector isogin by the square.
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A.4.2 Spherical Data

When averaging directions specified in spherical polar coordinategdy6;},i = 1, ..., n,

the necessary adjustment is
; (sin )
= 2
¢ = atan ( (cos 0)

and

7 — cos-! (cos )
V/ (sin @ cos )2 + (sin 0 sin ¢)2 + (cos 6)2
(Arnold & Townend 2007). If the data are axial then
r = (sin 0 cos ¢, sin @ sin ¢, cos §) "

is the unit vector in the mean direction (Arnold & Townend 2RO

A.5 Change of Variable Technique

Here we will consider the change of variable technique wwgl a single variable. This
method is based on that described by Hogg & Tanis (2001).

Given that a variabl@” with pdf ¢(y) is a function of another variabl& with pdf f(x), i.e.
Y = h(X), andh is monotonic, how is the pdf(y) related tof (x)?

The functionh maps a point onto a pointy. Hence the support of, sayz,,.i, < = < T4z
maps onto the support &f, A (zmin) = Ymin < Y < Ymae = P(Tmaz). Thus the distribution
function ofY” can be written,
PY <y) = P(h(X) <vy)
= P(X < h7l(y))

h=(y)
= / f(z)dz

()
= / f(z)dz. (A.1)
h—1 (ymin)

Now, integration by substitution tells us that:

o(b)

b
/ Fo0)eOa = [ s

#(a
So, ifwe putp = h™1, b =y, a = ymin, andt = y, we can express EquatibnA.1 as:

h=(y) Y -1
[ sede= [ oo™ Py

71(ymin) Ymin y

_ / " fa)de (ash~\(y) = 2)

Ymin

149



Therefore,
Yy

PY<y=[ f@) (A2)
— [ sway= [ s (A3)
dx

= 9() = () [, (A4)

So we now have a relationship betwegiy) and f(z). The reason for taking the absolute

value of &£ is to ensurey(y) is non-negative when h(X) is monotonically decreasing.sThi
. dy : -

term is known as dacobian(Sivia 1996).

A.5.1 Lighthouse Example

We can now apply this method to the lighthouse example ini@e&Z1. Here we had a
uniform prior onc: P(c|a,b) = X, and a relationship betweerandx specified by tan(c) =
x, — a. We want to obtain an expression B(z|a, b), so we apply Equatidn/Al4

de

d{L‘k
If we rearrangé tan(c) = x; — a, to makec the subject we get:

_ T —Q
— tan~!
c an ( b )

Deriving with respect ta;, we get:
dc 1

[ (5]

Now we can transforn®(c|a, b) into P(xy|a, b):

P(xg|a,b) = P(c|a,b)

de

P(zg|a,b) = P(c|a,b) x .

_ 1
br |1+ (252)°]

B b

w2+ (z - a)?)

Which is the Cauchy pdf.

A.6 Hypergeometric Functions of a Matrix Argument

The general form of a hypergeometric function of a positierdte symmetrien x m matrix
argumentX is given by Muirhead (1982):

Falar,.ayiby,. b X) =) %;R:::(%)R C,_,v(.X)

k=0 K
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wherex is a partition ofk up to lengthm, i.ex = (ky, ..., k,) wherek; > ky > --- > k,,,
the k; are non-negative integers ahd, k; = k£ (Muirhead 1982). If sayn = 3, some exam-
ples of such partitions are:

k = 1: There is only one partitions = (1) = (1,0, 0).

k = 2: There are two partitiong2) = (2, 0 0) and(l 1)=(1,1,0).

k = 3: There are three partitior{8) = (3, 0, ) (2,1) =(2,1,0)and(1,1,1).

k = 4: There are four partition$4 (4,0,0), (3,1) = (3,1,0), (2,2) = (2,2,0) and

(
) =
(2,1,1), however(1, 1,1, 1) would not be ncluded as its length is greater thag- 3.

Further,C (X) is known as &onal polynomigla function of the eigenvalues &, which can
be expressed in terms wfonomial symmetric functiond,. (X ) = 2z ... zF= 4 (all distinct reorderings
where ther; are the eigenvalues &. For example,

My(X) = z2928 + 2Jag2f + 2{adz)

=21+ 29+ X3
M2)(X) = o] + 25 + 23
M(l,l)(X) = X1X2 + T1T3 + T2T3.

Now,
2F k!
Cu(X) = X[zn](l)mZR(X) (A.5)
where
Ze(X) =) cuMi(X) (A.6)
and

[T, (ki — kj — i+ )
Hizl(kl +m —i)!

X (1) = &!

(McLaren 1976, James 1964).

(A.7)

Finally, (a), is known as thgeneralised hypergeometric coefficiethiéfined as

(@) =TJ(a~ 56 -1

i=1

where(a), = a(a+1)...(a+ k — 1) (Muirhead 1982).
The hypergeometric function of a matrix argument can beutaed inMATLAB using an al-

gorithm by Koev & Edelman (2006). We can evaluate this fuorcfromR using the R.matlab
package foR (Bengtsson 2007).

A.7 Numerical Integration

Numerical integration methods are used to calculate anoappate solution to a definite
integralf;’ f(z)dz. Numerical integration is particularly useful in this peoj for evaluating
the integral of functions for which we cannot find the antidative.
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A.7.1 Trapezium Rule

The trapezium rule is a means of of approximating a definitegimlf: f(x)dx by calculat-
ing the area of a number of trapezia formed by splitting tlggore of integrationa, b] inton
subintervals of equal widthz = =2, FigurelA3 indicates how the method works.

n—1"

Figure A.4: Diagram illustrating the trapezium rule. Théicddine is the functionf(x),
which is evaluated at a number of points The dotted lines indicate the trapezia, the
areas of which approximate the area unfder).

The approximation is given by

b n—1
/ f(x)dx ~ sz % (@) + f(i41)]
b—al —
=13 [f($1)+f($n)+22f(xl)]
b—a |« 1
-2~ [Z fle) =5 (fla) + f<xn>>]

where
1 i=lori=n
w; = 2 .
1 otherwise

This can be generalised to higher dimensions, e.g.

n m

d b d—cb—a
//f(:c,y)dxdy:m_ln_lszijf(:ci,yj)

i=1 j=1

while the weight function becomes;; = (1/2)", wherep;,; is the number of grid edges that
point:; sits on.
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A.7.2 Monte Carlo Integration

Monte Carlo integration is a means of approximating a defimtegral by evaluating the
integrand at a random sample of points, as described in R&deasella (1999).

Theorem A.1. [Monte Carlo integration] The integral

/m h(z)f(x)da

wheref is the pdf ofr, can be approximated by
1 m
m Z h(z;)
7=1
where{z;} arem points generated from the densjty

Proof. The proof is simply:

SN
m :

]
So in the case of Equati@n_3]19, we apply Monte Carlo integrab the following integral:
/ =1

[T PO = 2060 ) (B - @), 00, m,) | Plxl{t}0) d

Here,

h(x) =

H P(Y;|A; =2(p; - n)(p; - ), 0g, Wp)]
f(x) = P(x[{t:},w)

whereh(x) is a function ofx throughp;. The random sample from the densjtgre randomly
sampled hypocentre locations. Therefore,

HP Y|A == )(pz] 11) Ua,ﬂ'p)]

wherep;; is the take-off vector for the ray traveling to statiofrom hypocentre locatior.
Hence the approximation is:

/

n

HP (V3| A7 = 2(p; - n)(p; - 1), 04, 7p)

*2

Px[{t;},w) dx

P(Yi|A}; = (Pij'ﬁ)(ﬁz‘j'ﬁ)aaaaﬂp)]
=1

Wherem is the number of hypocentre points sampled from the P@f|{¢;},w). Here we
have droppedjﬁ into the normalisation constant, which we do not need touatalexactly.
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A.8 Tensors

A tensorcan be thought of as a generalisation of the concept of v@atwt matrices. Multi-

plying a vector by a scalar changes the magnitude but le&eegitection unchanged. If we
wish to change the direction of the vector as well we needitis@ta different type of entity

(Kolecki 2002).

Tensors can be classified by their rank - the number of ardiges used to describe the object.
For example, a tensor of rank O is a scalar, a tensor of rank Yestor, and a tensor of rank 2
is a matrix (Arfken 1985). However, the converse is not tnat all scalars are tensors of rank
0, not all vectors are tensors of rank 1, and so on — only thwgeatecoordinate independent
are tensors (Kolecki 2002). For example, for any two coatirsystems whose origins differ,
the position vectors andv* from the origin in the respective systems to a pamivill be
different — thus a position vector is not a tensor. Howevénéire are two point$; and P,
with position vectors/; andv, in the first coordinate system and position vectefaind v}

in the second, them, — v; = v} — v}, and thus the difference between two position vectors
is a tensor of rank 1 (Kolecki 2002).

A.8.1 Moment Tensor

The seismic moment tensM is a quantity that depends on source strength and faulttarien
tion (Aki & Richards 2002). The moment tensor is a repredentiaof the earthquake source
by equivalent body forceghat is, the forces that would yield the observed seismiewa-
diation pattern. Thus equivalent body forces are a moddiefeal faulting process (Stein &
Wysession 2003).

These forces are described by foomiples which are two forces acting together. These two
forces are offset by a distand@geeither in the direction of the force or normal to the direntof
the force. In 3D space and with three possible force dirastthere are nine possible couples,
and these make up the components of the moment tensor (AkicRaRis 2002, Stein &
Wysession 2003).

MJ:J: Mxy M$Z
M= | My, My, M,
Mzm sz Mzz

The equivalent body forces that describe an earthquakeoatdetcouples, so if the fault and
slip directions are oriented along the coordinate axesyibmment tensor will be of the form

0 My, O 010
M= (M, 0 0]=My|1 0 O
0O 0 0 000

wherel, is theseismic momena measure of the magnitude of the earthquake. However, in
general, the fault will not be oriented along the axes, aedhtbment tensor is given in terms
of the fault normal and slip vector,

Mij = M(](TLZ"U/J' + njui)
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and thus the tensor is symmetric.
The pressure (or P-) axis, which is parallelﬁtg‘i, and the tensional (or T-) axis, parallel to

&8 (Arnold & Townend 2007, Aki & Richards 2002), are the eigertees of the moment
tensor.

A.9 Dirac Delta Function
The Dirac delta functiod(z) is defined by the following three properties:
d(z) =10 r#0
/ d(z)dxr =1
| s@its = 10)

Thusé(x) is an infinite spike at = 0, and only makes sense as part of an integrand (Arfken
1985). An important property used in this project is

/_ T H@)0( — 20)dz = f(x0)

(Arfken 1985).
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Appendix B

Raukumara earthquake hypocentres

Table B.1: Raukumara earthquake hypocentres, as locatNolyinLoc

156

Continued on next page

CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M)
635146 | 25/07/1994| 15:23:56.63| -38.22 | 178.12 26.66 3.5
635767 | 31/07/1994| 05:58:40.01] -38.36 | 177.87 23.73 3.0
636036 | 03/08/1994| 15:47:23.60| -38.52 | 177.85 33.40 2.8
636120 | 07/08/1994| 22:28:12.33| -38.18 | 177.46 51.46 3.3
636149 | 09/08/1994| 09:53:27.12| -38.30 | 177.68 35.84 3.7
637373 | 16/08/1994| 20:19:24.35( -38.48 | 177.83 35.06 3.2
642468 | 19/08/1994| 00:27:22.18 -38.60 177.88 21.00 2.9
640980 | 21/08/1994| 13:36:52.95( -38.20 | 178.14 18.02 2.8
642506 | 21/08/1994| 23:23:15.60 -38.95 | 177.70 20.80 3.2
642225 | 22/08/1994| 03:17:20.45 -38.66 | 177.38 34.28 2.9
639865 | 22/08/1994| 03:19:45.99] -38.95 | 177.71 20.61 4.1
658523 | 24/08/1994| 07:54:36.18 -38.85 | 177.32 33.40 2.8
644710 | 24/08/1994| 11.:25:24.56 -38.26 178.22 21.97 2.8
659187 | 25/08/1994| 01:47:20.93 -38.04 | 177.93 32.13 3.1
644854 | 25/08/1994| 04:31:14.37| -37.88 | 178.32 18.85 3.2
646569 | 25/08/1994| 10:14:00.77| -37.97 | 177.96 34.28 2.9
641198 | 25/08/1994| 13:56:26.21] -37.90 177.79 46.29 3.0
642627 | 30/08/1994| 18:06:26.47| -38.41 | 177.55 36.82 3.5
646630 | 01/09/1994| 09:19:42.86( -38.47 | 178.10 25.88 2.8
646638 | 01/09/1994| 17:05:10.03| -38.22 | 178.18 20.61 2.9
639642 | 01/09/1994| 20:27:02.49 -37.94 | 178.05 28.42 2.9
645188 | 02/09/1994| 07:01:22.55/ -38.61 | 177.90 19.78 2.9
645191 | 03/09/1994| 10:46:50.14{ -38.15 | 178.36 18.26 3.0
645987 | 05/09/1994| 07:05:40.39| -37.77 | 178.32 27.54 2.9
653977 | 07/09/1994| 08:08:38.69 -38.62 | 177.79 30.66 2.8
652423 | 08/09/1994| 01:25:23.77| -38.12 | 178.28 24.90 3.2
653984 | 09/09/1994| 16:17:08.41 -38.69 | 177.97 27.54 2.8
652892 | 14/09/1994| 01:14:32.50 -38.39 | 177.88 21.83 3.0




Continued from previous page

CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M)
656806 | 15/09/1994 18:37:50.02 -38.42 177.84 29.74 4.9
653020 | 15/09/1994 18:42:45.48 -38.42 177.84 29.15 3.1
654104 | 16/09/1994 09:11:51.33 -37.96 178.02 30.96 2.8
652903 | 17/09/1994| 15:55:53.38 -37.78 178.29 28.42 3.0
653521 | 18/09/1994 02:23:56.78 -38.27 178.13 24.37 3.0
653233 | 19/09/1994 02:17:21.79 -38.47 177.85 33.50 2.9
655865 | 21/09/1994 14:17:40.82 -38.52 178.11 23.93 2.9
655881 | 22/09/1994| 13:12:22.13 -38.80 | 177.84 9.33 2.8
658508 | 23/09/1994 07:46:53.00 -37.79 178.11 32.91 2.9
660226 | 24/09/1994 03:52:03.05 -37.88 177.88 41.31 3.6
660234 | 24/09/1994| 08:24:09.37| -37.90 | 177.87 38.38 3.0
660254 | 24/09/1994| 18:21:08.84 -38.60 | 177.87 19.04 2.8
660615 | 25/09/1994| 15:40:31.14 -38.67 178.04 22.56 3.0
660625 | 26/09/1994 06:57:47.16 -37.86 177.80 76.17 3.5
655486 | 26/09/1994| 14:55:08.83 -38.04 | 177.98 20.95 2.8
655951 | 26/09/1994| 14:59:41.39 -38.12 178.05 35.64 2.8
654658 | 28/09/1994| 04:21:49.82 -38.23 178.59 28.42 3.7
667323 | 29/09/1994 01:18:27.86 -38.52 177.83 28.81 2.8
668273 | 02/10/1994 22:38:48.96 -37.87 178.08 30.96 2.9
669233 | 03/10/1994| 20:51:10.99 -38.54 | 177.81 26.12 3.0
667842 | 04/10/1994) 04:48:30.11 -38.41 177.83 31.35 2.8
675244 | 05/10/1994 22:03:53.16 -38.35 177.99 24.41 3.1
665887 | 06/10/1994| 02:16:48.18 -38.69 177.89 12.55 3.2
665710 | 06/10/1994| 10:44:18.11 -38.69 177.89 12.84 3.3
674383 | 06/10/1994 18:30:33.25 -38.35 178.03 25.73 3.1
668637 | 08/10/1994| 02:42:06.54 -38.42 178.16 23.54 2.9
668882 | 08/10/1994| 12:02:51.74 -38.43 178.18 25.68 2.8
665895 | 09/10/1994 11:34:02.22 -38.55 178.06 20.90 3.0
668888 | 09/10/1994 14:18:11.18 -38.63 177.81 32.23 2.8
671614 | 10/10/1994| 23:33:05.53 -38.50 | 178.01 20.56 3.2
671618 | 13/10/1994) 02:14:17.54 -38.42 177.84 29.59 3.0
672299 | 14/10/1994 08:36:42.06 -38.34 | 178.20 14.89 3.2
672060 | 16/10/1994| 09:43:48.61 -37.83 178.38 10.45 2.9
673014 | 20/10/1994 06:44:09.59 -38.03 177.94 28.22 2.9
672690 | 21/10/1994| 14:31:06.11 -38.16 178.29 16.75 3.2
672691 | 22/10/1994| 03:39:16.27| -38.10 | 178.22 13.48 2.9
671833 | 22/10/1994| 04:50:16.83 -38.35 177.72 48.54 3.3
675146 | 24/10/1994| 01:18:43.58 -38.54 | 178.10 25.49 2.9
679082 | 25/10/1994 03:07:15.74 -38.52 177.92 24.71 2.8
679409 | 25/10/1994| 07:29:49.47| -38.52 177.91 23.63 2.8
679418 | 26/10/1994| 23:45:51.21] -38.59 177.90 18.41 2.9
689619 | 29/10/1994 20:51:33.63 -38.67 178.05 22.46 3.8
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CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M)
693503 | 29/10/1994 20:53:11.54 -38.68 178.02 22.85 2.9
678369 | 29/10/1994 22:17:06.97| -38.51 177.83 29.25 3.8
680800 | 04/11/1994 22:40:47.84 -38.38 177.42 5.37 3.1
680829 | 05/11/1994| 13:56:53.33 -38.50 | 177.87 45.02 3.4
683290 | 10/11/1994 06:43:55.66 -38.35 178.14 16.11 2.8
689175 | 11/11/1994 16:10:47.68 -38.10 | 177.94 4.05 2.6
683331 | 13/11/1994 05:59:38.99 -38.51 177.84 37.70 2.8
683333 | 13/11/1994| 18:35:26.71 -38.54 | 177.85 26.22 3.6
688300 | 15/11/1994 10:53:47.71 -37.71 177.59 80.37 3.7
694887 | 21/11/1994| 04:47:38.10 -38.18 178.16 16.94 2.8
695581 | 23/11/1994 15:11:39.25 -38.23 178.19 20.85 3.0
694945 | 25/11/1994 16:37:47.73 -38.33 177.97 24.27 2.8
694964 | 28/11/1994| 17:14:45.21) -38.51 177.91 24.76 2.8
696995 | 30/11/1994| 03:36:49.75 -38.54 | 177.97 25.10 3.7
697029 | 05/12/1994 08:37:07.84 -38.88 177.55 34.08 3.5
703722 | 06/12/1994 18:08:59.09 -38.23 178.19 21.14 3.3
704459 | 14/12/1994 03:36:37.98 -37.88 178.00 62.89 3.8
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