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EXECUTIVE SUMMARY

The time-varying hazard of rupture on the Alpine fault is estimated using a technique that
takes account of uncertainties in data and parameter values. The north-east (Karangarua-
Haupiri) and south-west (Haast) sections of the fault are considered separately, i.e., it is
not assumed that they will necessarily rupture together. Data inputs are based on
geological estimates of the long-term slip rate and previous studies of fault traces and
forest ages and times of disturbance. The geological average strike-slip rate is taken to be
263:5 mrn/yr and the average single-event displacements to be 5.Oil.4m and 8.012.6m on
the north-east and south-west sections, respectively. The last four events on the north-
west section are dated at 1717, 1620+10, 1445+20 and 1150+50, and the last three events

on the south-west section at 1717, 1450+100 and 1150+50 A.D. Using these data and
associated uncertainties, the current hazard of rupture on the north-east section of the

fault is estimated to be 0.0049, 0.0092, 0.0104 and 0.0074 events per year under the

exponential, lognormal, Weibull and inverse Gaussian models respectively. The
corresponding probabilities of rupture in the next 20 years are 9%, 17%, 19% and 14%,
respectively. The current hazard on the south-west section of the fault is estimated to be
0.0032,0.0072,0.0064 and 0.0052 events per year for the four models, and the 20 year

probabilities 6%, 14%, 13%, and 10%, respectively. Increased precision in the date of the

second to last event on the south-west section of the fault would result in only small

changes to these rates and probabilities. The hazard under the lognormal model is about
double the long-term average (exponential) rate but less than half of that previously

estimated without taking account of uncertainties in the data and parameter values.
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1.0 INTRODUCTION

In the vicinity of the Alpine fault, recent investigations of fault traces (Cooper and Norris

1990, 1995; Berryman et al., 1992; Norris and Cooper, in press; Yetton et al., 1998),
forest ages and times of disturbance (Wells et al., 1998, 1999), and rock-fall and lichen

growth (Bull et al. 1994; Bull, 1996; Bull & Brandon, 1998) have greatly improved

information on the times of rupture of segments of the fault over the past thousand years.

Geological and geodetic observations and associated modelling have helped to improve

estimates of the long-term slip rate (e.g. Sutherland and Norris, 1995; Beavan et al.,
1999). Much of the data on past rupture on the Alpine fault has been brought together by
Yetton et al. (1998) who also undertook statistical modelling of recurrence, aimed at

estimating the current and future probability of rupture. However, uncertainties in the
data, including dates of rupture, long-term slip rate and magnitude of events, and in the
parameters of the recurrence time model, have not been integrated into their hazard
estimates. Estimates of the current hazard may thus be higher than the data justify. A

methodology for incorporating uncertainties developed by Rhoades et al. (1994) is
elaborated upon and used here to bring together both data and parameter uncertainties
into a single estimate of the time varying probability of rupture of sections of the Alpine
fault. The choice of model is independent of the data, but its effect on the hazard
estimates may be pronounced. The usual lognormal recurrence time distribution,
proposed as a generic model by Nishenko and Buland (1987), is compared to the well-
known Weibull and exponential models and to the inverse Gaussian, i.e., Brownian
passage-time model, recently proposed by Ellsworth et al. (1999), to ascertain the
influence of model choice on the hazard estimates

2.0 SUMMARY OF CURRENT INFORMATION ON PAST ALPINE FAULT

RUPTURES

The following observations, deductions and assumptions are admitted for the present
study. Uncertainties are standard errors, unless otherwise stated.

1. The geological average slip rate (5,000-50,000 years) is 25-30 mm/yr. This is the

total slip rate, including the vertical component.

2. The geological average strike-slip rate is 26+5 mmlyr. This is the horizontal
component of the slip rate only.

3. The geodetic strike-slip rate (5 years) is 24+3 mm/yr.

4. The seismic slip (paleoseismology, 1000 years) is 2515 mrn/yr.

5. The north-east (Karangarua-Haupiri) section of the fault has had four major
ruptures in the past 1000 years with a total displacement of 20+ metres.
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6. The south-west (Haast) section of the fault has had three major ruptures in the last

1000 years with a total displacement of 24 metres.

7. It is not assumed that the south-west and north-east sections rupture at the same

time, although it is probable that they did rupture at the same time in 1717 and in
c.1150 AD.

8. The last four ruptures of the north-east section of the fault occurred in 1717,

1620+10 and 1445+20 and 1150+50 AD.

9. The last three ruptures of the south-west section of the fault occurred in 1717,

1450+100 (uncertainty not well determined) and 1 150+50 AD.

The information in 1-9 above was almost entirely derived from a summary of agreed

conclusions on past events and rates on the Alpine fault that emerged from a combined

workshop on the Alpine fault held in September 1998. The summary was prepared and

made available to us by R.J. Norris.

The central date and standard error of the second to last event on the south-west section

did not come from the summary of agreed conclusions referred to above, although a wide

uncertainty in this date was acknowledged. The standard error of 100 years on this date is

intended to reflect the wide uncertainty, and the central value of 1450 AD is consistent

with a rather regular recurrence time on the south-west section of the fault. In the hazard

calculations described below, the alternative value of 50 years was also considered for the

standard error, to assess the sensitivity of the hazard to the level of uncertainty in the date
of this event.

The measurements (5 and 6) of total displacement in recent major ruptures give mean

single-event displacements of 5m and 8m, respectively, on the north-east and south-west

sections of the fault, but do not afford estimates of the uncertainty of these means. To

estimate the uncertainty on these values, it is necessary to look to more detailed studies
that have been carried out elsewhere.

Stein et al. (1997) have presented data of the amount of right lateral slip occurring in 10

earthquakes during 1939-1992 on the North Anatolian Fault, Turkey, at different points

along the fault. Their figure 1 shows that the amount of slip in a single event typically

varies between locations along the fault, and at a few locations where more than one

event has been measured the amount of slip varies between events. The Appendix Table

A. 1 tabulates slips for individual events measured from figure 1 of Stein et al. (1997) at

intervals of 25 km along the fault.

The data from Table A. 1 can be used to get an indication of the variability of

displacements in earthquakes on a single fault, as follows. The within-earthquake
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(between locations) coefficient of variation is 0.59 and the within location (between

earthquakes) coefficient of variation is 0.57. Assuming the same coefficients of variation
on the Alpine fault, the mean of four observations will have a coefficient of variation of

0.57/44, i.e., 0.285, and the mean of three observations will have a coefficient of
variation of 0.57/6, i.e., 0.329. This gives standard deviations of 0.285x5 and 0.329x8

metres respectively for the mean single-event displacement on the north-east and south-
west section of the fault.

A New Zealand example of measurements of repeated movements at a single location,
although not on a strike-slip fault, is provided by the sequence of uplifted beaches at
Turakirae Head, near Wellington. The most recent uplift occurred in the 1855 Wairarapa
earthquake. The sizes of the last four uplifts at Turakirae Head are estimated to be 5.98,
9.13, 5.51 and 3.00 metres (Hull and McSaveney, 1996), giving a coefficient of variation

of 0.43, not dissimilar to the value of 0.57 for repeated ruptures on the North Anatolian
fault. The value from the North Anatolian fault is adopted, because it is supported by a

larger data set and represents single event displacements on a strike slip fault.

We thus assume the following in addition to 1-9 above.
10. The mean single event displacement at the point where measurements were made

on the north-east section of the Alpine fault is 5.011.4m.
11. The mean single-event displacement at the point where measurements were made

on the south-west section of the Alpine fault is 8.012.6m

The uncertainties in mean single event displacement, like those in average slip rate are
assumed to follow a lognormal distribution. This assumption ensures that any sampled
values from these distributions will be positive.

3.0 STATISTICAL METHODOLOGY

A method for handling uncertainties when estimating fault hazard in a recurrence-time
modelling context was presented by Rhoades et al.(1994). Both data values and

parameter values enter into their analysis by way of probability distributions. In this way
they explicitly considered both data uncertainties and parameter uncertainties, and
incorporated them into the hazard estimate by averaging over these distributions.

Following the analysis of Rhoades et al. (1994), let f denote the recurrence time

probability density function for events that rupture the fault at some point. Then fdepends
explicitly on the parameter values 0 of the assumed recurrence time model a. The
parameter values in turn depend on the data x. Let f(tIO,xia) denote the recurrence time
distribution for particular values of 0, x and a. Then
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f(t I xia) = f f(t 10,xia)&(0·Ixia)de (1)
8

where g(0Ix,a) is the conditional density of 0 given x under the model a, commonly called

the "likelihood function". The hazard at time t since the last rupture of the fault,

conditional on the particular data values x, is given by

h(t I x; a) = f(t 1 x i a) (2)
1-F(tlx;a)'

where F is the cumulative distribution function associated with the probability density
function f. Averaging over the distribution of possible data values, we have

h(t la) = h(t Ixia)fx (x)dr. (3)
X

Thus, averaging over parameter values is by a "mixture of distributions" (1) and the

averaging over data values is by a "mixture of hazards" (3). The mixture of distributions

is the means by which information on the repose time since the last rupture is

incorporated into the parameter estimates. As time passes without an earthquake

occurring, those values of 8 that are more consistent with longer repose times

automatically receive a higher weighting in the mixed density (1), and hence in the

hazard also (2). Thus, the hazard function of the mixed distribution does not necessarily

have the same properties as the hazard function of a particular distribution following the
same model.

Here we consider four different recurrence time models, giving in each case the density

functionfttloia) and cumulative distribution function F(tIO;a).

al· Exponential:

f (t I A; at ) = lexp(-61) (t > 0; A > 0). (4)

F(t  A; a1 )=1- exp(-,it). (5)

az· Lognormal:

f (t 1 ki, ai c(2 ) =
1

-at Jii exp-
1 (logt-#)21

2 02 
(t> 0; p > 0; a> 0). (6)

© Institute of Geological &
Nuclear Sciences Limited 5

Probability of Rupture of the Alpine Fault
Allowing for Uncertainties



C logt -

F(t j v, a; 02 ) = (D a . (7)

where (D is the standard normal integral, i.e., *(x) = (1/ 422) [ exp(-u 2 11)du.
4 -tch

a3· Weibull:

,c-1 / \C

ct t ft)f(t IB,ciaJ) --| - 1 exp -1-1 (t> 0; B> 0; c> 0). (8)
BLB) UP)

-

'C

Itl

F(tl#,cia3)=1-exp -- . (9)

6(4· Inverse Gaussian:

f(t 1 /4,71;aD : 1,271213 exp-
t - B2 p

2712/4 
(t > 0; p > 0; Tl > 0). (10)

F(t I #,71;aD = 4 t-B

44*

<2

 + expl -2l rl
t+# 1
44* j

(11)

The exponential distribution (4) is the model of least information. It is the model

associated with rupture times occurring according to a Poisson process, most commonly

assumed in probabilistic seismic hazard analysis. The parameter 1 represents the hazard

rate and the mean recurrence time is 1/ 1. If uncertainties in parameters and data are

ignored, the hazard under this model is constant.

The lognormal distribution (6) has been widely used in the context of fault rupture

recurrence modelling and has been proposed as a generic model (Nishenko and Buland,

1987). The parameters p and a are the mean and standard deviation of the logarithm of

the recurrence time. The mean recurrence time is exp(# +,14 02) and the coefficient of

variation is exp(02 )-1. If uncertainties in parameters and data are ignored, the hazard
under this model increases from a low value immediately after the last rupture to some

maximum, after which it begins to decline and approaches zero as t -6 00.
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The Weibull distribution (8) is widely used in failure time modelling for manufactured

items, where "new is better than used", and has been proposed as a model of fault rupture

recurrence (Hagiwara, 1974). The mean recurrence time is tr'(c-1 + 1) and c is a shape

parameter. If uncertainties in parameters and data are ignored and if c>1, the hazard

under this model increases monotonically starting from zero at the time of the last

rupture.

The inverse Gaussian distribution (10), which is the distribution of the first passage time

of Brownian motion with positive drift (Johnson & Kotz, 1970), has recently been

proposed by Ellsworth et al. (1999) as a physically realistic model of earthquake

recurrence. The mean recurrence time is p and 71 is a dispersion parameter, called the

aperiodicity. If uncertainties in parameters and data are ignored, the hazard of rupture
increases from zero at the time of the last rupture to some maximum, after which it tails
off to a rate of [1/(2,"12)] as t -> 00 . Ellsworth et al. (1999) suggested 77 = 1/2 as a

generic value of the aperiodicity of recurrence-time distributions. At this value, the

asymptotic hazard rate is 241, i.e., twice the average hazard rate.

4.0 DETAILS OF ESTIMATION UNDER THE VARIOUS MODELS

4.1 Sampling from the Distribution of the Mean Recurrence Time

The data include distributions for the long-term average slip rate, and the mean single

event displacement at specific points on the fault. If single values, r and d respectively,

are sampled independently from these distributions, then the mean recurrence time T

associated with this sample is
a

T=-. (12)
r

A large sample of T-values generated in this way will reflect our knowledge of the

distribution of the average recurrence time. This distribution can be fed in directly to the

various statistical models as prior information on (one of) the parameter values.

4.2 Sampling from the Distribution of Specific Recurrence Times

The only other data to be incorporated is the information on specific recurrence times at a

given location. Each rupture date has a standard error, which is assumed to represent the

standard deviation of a normal distribution. To construct a single sample of the last two
and three recurrence times from the north-western and south-eastern sections of the fault,

respectively, we generate a random sample independently from the distribution of each

rupture date and take differences.

© Institute of Geological &
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4.3 Exponential Model

Each value of 1/T, where T is a sample from the distribution of the mean recurrence time

generated as described above, represents a sample from the prior distribution of the

parameter Aof the exponential recurrence-time distribution. Now let Ti,···,Tkbe samples

of the last k specific recurrence times. Then the likelihood function is

k

f (2171,·..,rk ) OC /13 exp(-AIT; ). (13)
i=1

4.4 Lognormal Model

Each value of T, where T is a sample from the distribution of the mean recurrence time

generated as described above, represents a sample from the prior distribution of the mean
y of the lognormal recurrence-time distribution. The prior distribution of the coefficient of

variation is taken to be uniform on the interval (0,1). A sample (Ps, as ) from the prior

distribution of (U, a) is given by

Ps = log T - 1 log65,2 + 1) , (14)

as = dlog(€ + 1), (15)

where ds is a sample from the prior distribution of 8. If Ti„..,Tk are samples from the

distribution of the last k specific recurrence times, then the likelihood function is

f(Fs,as IT„···,Tk)Oc
1 kl E

n - expi -
ask (27T) k/2 i.=1 T L

1 (log 7; - ps) 2 -
22as J

(16)

4.5 Weibull Model

Each value of T, where T is a sample from the distribution of the mean recurrence time

generated as described above, represents a sample from the prior distribution of the mean
Br(c-1 + 1) of the Weibull recurrence-time model. The prior distribution of the parameter

c is taken to be such that 1/c is uniformly distributed on the interval (0,1). Thus we are
only entertaining the possibility of values of c greater than 1. A sample A from the prior

distribution of # is given by

Ms =T / rico +D (17)

where cs is a sample from the prior distribution of c. If Ti, ···, Tk are samples from the

distribution of the last k specific recurrence times, then the likelihood function is

© Institute of Geological &
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CS
exp -1 -, (18)

4.6 Inverse Gaussian Model

Each value of T, where T is a sample from the distribution of the mean recurrence time

generated as described above, represents a sample from the prior distribution of the mean

p of the inverse Gaussian recurrence-time distribution. The prior distribution of the

aperiodicity 71 is taken to be uniform on (0,1). Thus we are not entertaining the possibility

of the recurrence-time distribution being highly aperiodic. If Ti,···, Tk are samples from

the distribution of the last k specific recurrence times, then the likelihood function is

f(/4,77,171,···,71)Oc 2mljkoc41)expI(7; - Ps) 2 1
241 B J i f

(19)

where Fs = T and,ls is a sample from the prior distribution of 4.

4.7 Numerical Procedure

Taking account of the above considerations, the following numerical procedure was

carried out to compute the hazard estimates for each section of the fault, under each of the
models.

1. Generate a sample of size n from the distribution of the geological average strike-
slip rate in mm/yr, i.e., from the lognormal distribution L(26,5) with mean 26 and

standard deviation 5.

2. Generate a corresponding sample of size n from the distribution of the mean

single event displacement in metres, i.e. from the lognormal distributions L(5,1.4)

and L(8,2.6) for the north-east and south-west sections of the fault, respectively.

3. Hence calculate n sample values from the distribution of the mean recurrence-
time T, as described above.

4. Generate a corresponding sample of size n from the distribution of the times of

occurrence, assumed normal, of individual ruptures during the last thousand years

on each section of the fault. By subtraction obtain a sample of the last k
recurrence-times Ti,· · ·,Tk, where k=3 for the north-east section and k=2 for the

south-west section of the fault.

© Institute of Geological &
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5. Each sample value of (T, Ti, · ··, Tk) comprises a sample data vector x.

6. For each of the n sample values of x, generate a further sample of size m from the
conditional distribution of the parameters 0 given x using the likelihood functions

described in equations (13-19). A method for generating random samples from a
distribution was described by Rhoades et al. (1994). The procedure used here is

the same, except that the sample values of 0 are selected initially from a prior
distribution as described in the section above. They are then accepted or rejected

by a random procedure in which the probability of acceptance is proportional to
the value of the likelihood function.

7. For each sample value of x, calculate the density function for the time from the

last rupture to the next as a mixture of distributions (c.f. equation (1)):

f(t I x,a) = -2, f(t 10„ x;a) . (20)

8. Calculate the hazard function h(t I x;a) by equation (2).

9. Perform the hazard mixing over the data sample, i.e., calculate

h(t I a) = - 1 h(t I xi ; a) . (21)
n i=t

10. Finally, the probability of an earthquake occurring in any time interval (ti , t2 ) of

interest is calculated by

P[Ect,1,2, 1 -1- exp[- h(t I a)dt]. (22)

fl

5.0 RESULTS

The method outlined above was applied with the number of data samples set at n=200,

and the number of parameter samples for each data sample set at m=30. These numbers,

although somewhat arbitrary, are sufficiently large to make the results repeatable to the

level of precision reported here.

Figure 1 illustrates the differing hazard functions for samples from the distribution of
parameters under the four different models. Each of the hazard functions illustrated

conforms exactly to the standard form of the model concerned. Thus, for example, all of
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Figure 1. Hazard functions for ten samples from the distribution of parameter values
under the exponential, lognormal, Weibull, and inverse Gaussian recurrence-time models
applied to the south-west section of the Alpine fault. Note that the vertical scale differs
between plots.
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the exponential hazard functions are constant, and all of the Weibull hazard functions are

monotone increasing, while the lognormal and inverse Gaussian hazard functions can be

increasing or decreasing in the range of times plotted, depending on the particular

parameter values sampled.

The hazard curves in Figure 1 can be contrasted with those in Figure 2, which represent

the hazard functions for samples from the distribution of data. Here, the distributions

have been averaged over all sampled parameter values. The hazard functions of the

mixed distributions do not conform to the standard form of the model concerned. For

example, the exponential hazard functions are now monotone decreasing because, as the

time since the last movement increases, the estimate of hazard is increasingly re-weighted

in favour of parameters consistent with longer mean recurrence-times. Similarly, for the

other three models a wider range of hazard function shapes is now possible, e.g., the

Weibull hazard functions are not necessarily monotone.

5.1 Hazard Estimates for North-east Section of Alpine Fault

Figure 3 shows the mean hazard function under each of the models for the north-east

section of the fault. This curve is the average of the hazard functions over all samples

from the data distribution computed by equation (21). It shows the rate of hazard that will

be applicable at any time between the years 2000 and 2100, if no fault rupture occurs

before that time, taking into account the uncertainties in data and parameter values.

The differences between the models are quite clear. The exponential model gives the

lowest hazard, at a slightly declining rate of about 0.005 events per year. This represents

an average recurrence of about 200 years. The decline in the hazard rate over time for all

models is the adjustment for the increasing elapsed time since the last rupture. This

adjustment is achieved by the mixing of distributions for different parameter values, as

described above. The Weibull model gives the highest hazard, at about 0.01 events per

year or twice the exponential model rate. This was to be expected because this was the

only model for which the underlying hazard functions are all monotone increasing. The

lognormal and inverse Gaussian models give intermediate levels of hazard at about 0.009

and 0.007 events per year respectively.

Table 1 shows estimates of the probabilities of rupture of the fault on the north-east

section for the next year, 20 years, 50 years and 100 years. These values were computed

from the hazard curves of Figure 3 using equation (22). These values are in general much

lower than corresponding estimates by Yetton et al (1998), which were based on the
lognormal distribution and did not have regard to uncertainties in the data or parameter
values.
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Figure 2. Hazard functions of the mixed distributions, i.e., averaged over all sampled
parameter values, for ten samples from the distribution of data under the exponential,
lognormal, Weibull, and inverse Gaussian recurrence-time models applied to the south-
west section of the Alpine fault. Note that the vertical scale differs between plots.
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Hazard on NE section of Alpine fault
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Figure 3. Hazard function averaged over all sampled data values under the exponential,
lognonnal, Weibull, and inverse Gaussian recurrence-time models applied to the north-
east section of the Alpine fault.
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east section of the Alpine fault.

Table 1. Estimated probability of rupture of the Alpine fault at points on its north-east
section during time intervals starting in the year 2000 A.D., based on the exponential,

lognormal, Weibull and inverse Gaussian recurrence-time models, taking into account

uncertainties in data and parameter values.

Time Interval

Model 1 year 20 years 50 years 100 years

Exponential 0.0049 0.09 0.21 0.38

Lognormal 0.0092 0.17 0.36 0.58

Weibull 0.0104 0.19 0.41 0.64

Inverse Gaussian 0.0074 0.14 0.30 0.51

5.2 Hazard Estimates for South-west Section of Alpine Fault

The results for the south-west section of the fault are summarised in Figure 4 and Table 2.

Figure 4 shows the mean hazard function under each of the models. Again the hazard is

lowest under the exponential model which indicates that the long-run average rate is

about 0.003 events per year, i.e., the mean recurrence time is about 300 years. In this case
the present hazard is highest under the lognormal model at about 0.007 events per year,

although taken overall there is not a large difference between the mean hazard functions

under the lognormal and Weibull models.

Table 2. Estimated probability of rupture of the Alpine fault at points on its south-west
section during time intervals starting in the year 2000 A.D., based on the exponential,
lognormal, Weibull and inverse Gaussian recurrence-time models, taking into account

uncertainties in data and parameter values.

Time Interval

Model 1 year 20 years 50 years 100 years

Exponential 0.0032 0.06 0.15 0.27

Lognorrnal 0.0072 0.14 0.31 0.52

Weibull 0.0064 0.13 0.30 0.52

Inverse Gaussian 0.0052 0.10 0.23 0.40

Table 2 shows estimates of the probabilities of rupture of the fault on the south-west
section of the fault for the next year, 20 years, 50 years and 100 years, computed from the
hazard curves of Figure 4 using equation (22). These probabilities are lower than the
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Hazard on SW section of Alpine fault
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Figure 4. Hazard function averaged over all sampled data values under the exponential,
lognormal, Weibull, and inverse Gaussian recurrence-time models applied to the south-
west section of the Alpine fault.
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corresponding values for the north-east section (Table 1) because of the larger single

event displacement, i.e., longer mean recurrence time, estimated for the south-west
section.

5.3 Sensitivity of Results to Standard Error of Date of Second to Last Event

The standard deviation of 100 years assumed for date of the second to last event to occur
on the south-west section of the fault was not well determined. It is instructive to consider

how the results would have been affected if a standard deviation of 50 years had been

applied to this date. Accordingly the calculations have been repeated with this data item
changed. The results were almost identical to Table 2 for the exponential and inverse
Gaussian models but the probabilities were slightly higher in the case of the other two
models (see Table 3).

Table 3. Estimated probability of rupture of the Alpine fault at points on its south-west
section during time intervals starting in the year 2000 A.D., taking into account
uncertainties in data and parameter values, and using 1450+50yr for the date of the

second to last rupture and all other data the same as for Table 2.

Time interval

Model 1 year 20 years 50 years 100 years

Exponential 0.0032 0.06 0.15 0.27

Lognormal 0.0092 0.17 0.36 0.58

Weibull 0.008 I 0.16 0.36 0.59

Inverse Gaussian 0.0055 0.10 0.24 0.42

It is to be expected that, in general, if the sequence of dated events is short, the effect on
the hazard of refining the distribution for the time of occurrence of individual events will

be small. Improving the precision of the mean recurrence interval, i.e., refining the
distributions of the average slip rate and the average single event displacement is likely to
have a greater impact on the hazard.

5.4 Comparison with Previous Estimates

Yetton et al. (1988) applied the lognormal recurrence-time model to estimate the hazard
on the Alpine fault, and calculated a probability of 0.65+0.15 for a fault rupture occurring
during the next 50 years. A 50 year probability of 0.65 corresponds to a mean hazard rate
of 0.021 events per year. This is more than double the rate of about 0.009 events per year
calculated here for the north-east section of the fault when uncertainties in data and
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parameter values are allowed for, and three times the rate of about 0.007 events per for
the south-west section of the fault.

6.0 CONCLUSIONS

Of the four models treated here, it is the results for the lognormal model and the inverse

Gaussian model that deserve to be taken most seriously. The lognormal model has

become widely accepted as a model of fault recurrence. And the inverse Gaussian model,

although proposed only recently, has a strong physical basis that lends it some credence.

In any case the range of probabilities covered by the four different models is not too

wide, despite the very different assumptions underlying them. This range may be a

sufficient indicator of the level of hazard for many practical purposes.

The hazard estimated here of future rupture of sections of the Alpine fault is markedly

lower than previous estimates under the lognormal model, which did not take account of

uncertainty in data estimates and parameter values.

The type of analysis presented in this report is useful for investigating the likely effect on

the hazard of improved precision in one or more of the data estimates. It has been shown

that the large uncertainty in the date of the second to last rupture on the south-west

section of the fault has only a modest effect on the hazard, and then only for two of the
recurrence-time models.

A useful outcome of this study is that a computer program is now available to rapidly
rework the estimates of hazard in the event that new information on the long-term slip

rate, average single event displacements or dates of individual rupture of the Alpine fault

should become available. It can also be applied to any other faults for which similar
information is available.
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9.0 APPENDIX

Table A. 1. Single event right lateral slip in earthquakes on the North Anatolian fault,

over the period 1939-1992. Positions are measured as distances east of 358. Data were

obtained from figure 1 of Stein et al. (1997).

Event (year) Position (km) Slip (m)
1967 -400 0.4

1967 -375 1.0

1967 -350 1.5

1957 -325 1.5

1944 -300 2.0

1944 -275 3.0

1944 -250 3.0

1944 -225 2.5

1944 -200 1.9

1944 -175 1.4

1944 -150 1.2

1943 -125 2.5

1943 -100 4.5

1943 -75 3.8

1943 -50 3.0

1943 -25 2.8

1943 0 2.6

1943 25 2.4

1943 50 2.2

1943 75 1.5

1943 100 2.6

1943 125 2.1

1939 150 2.5

1939 175 2.8

1939 200 3.5

1939 225 3.8

1939 250 4.5

1939 275 4.0

1939 300 6.5

1939 325 5.8

1939 350 5.7

1939 375 6.0

1939 400 6.3

1939 425 0.5

1949 525 1.5

1949 550 1.5

1966 600 0.5

1951 -225 0.7

1951 -250 0.3

1939 100 1.3

1939 125 1.8

1942 175 1.8

1992 425 1.0

© Institute Of Geological &
Nuclear Sciences Limited 21

Probability of Rupture of the Alpine Fault
Allowing for Uncertainties

43

'4 '4 »wk*i 21©0%1®4 e

R-31*17@Ne»Vierit



NON-TECHNICAL ABSTRACT

The probability of a major rupture on the Alpine fault is considered to be increasing

gradually since the last event in about 1717 AD. This increase has been estimated by

using statistical models of time-varying hazard, and a procedure which takes account of

uncertainties in estimates of the long-term slip rate, the average size of individual

ruptures and the dates of the last few rupture events. The probability of rupture over the

next 20 years is estimated to be up to 20% on the north-east section of the fault and up to

15% on the south-west section, depending on the particular model used. These figures

represent about twice the long-term average probability.
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TECHNICAL ABSTRACT

The time-varying hazard of rupture on the Alpine fault is estimated using a technique that

takes account of uncertainties in data and parameter values. The north-east (Karangarua-

Haupiri) and south-west (Haast) sections of the fault are considered separately, i.e., it is

not assumed that they will necessarily rupture together. Data inputs are based on

geological estimates of the long-term slip rate and previous studies of fault traces and

forest ages and times of disturbance. The geological average strike-slip rate is taken to be

263:5 mm/yr and the average single-event displacements to be 5.0+1.4m and 8.0+2.6m on

the north-east and south-west sections, respectively. The last four events on the north-
west section are dated at 1717, 1620+10, 1445+20 and 1150+50, and the last three events

on the south-west section at 1717, 1450+100 and 1150+50 A.D, Using these data and

associated uncertainties, the current hazard of rupture on the north-east section of the

fault is estimated to be 0.0049, 0.0092, 0.0104 and 0.0074 events per year under the

exponential, lognormal, Weibull and inverse Gaussian recurrence-time models,

respectively. The corresponding probabilities of rupture in the next 20 years are 9%,

17%, 19% and 14%, respectively. The current hazard on the south-west section of the

fault is estimated to be 0.0032,0.0072,0.0064 and 0.0052 events per year for the four

models, and the 20 year probabilities 6%, 14%, 13%, and 10%, respectively. Increased

precision in the date of the second to last event on the south-west section of the fault

would result in only small changes to these rates and probabilities. The hazard under the

lognormal model is about double the long-term average rate but less than half of that

previously estimated without taking account of uncertainties in the data and parameter
values.
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