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1.  INTRODUCTION

Both geological and topographical conditions are known to strongly influence
the nature of ground motion at a site. In particular, soft sediment filled basins may
cause significant amplification of earthquake motions due to wave phenomena such

as focusing and resonance.

Recent large magnitude events, like the 1985 Michoacan (Mexico) earthquake
and the 1989 Loma Prieta (California, U.S.A.) earthquake, have highlighted the
amplification effects produced by deposits of alluvium of relatively shallow depths,
e.g. 20 - 30 metres. The Loma Prieta earthquake in particular showed the existence
of significant "site effects" with surface accelerations at sites interlaid by alluvium
being two or three times that recorded at closely adjacent rock sites. It also showed
strong evidence that the amplification factors in soft sediments are much larger for
weak motion than for strong motion, both recorded at the same site (Darragh and
Shakal 1991). Such an effect is not observed for stiffer soils. From similar
observations at sites on Franciscan rock and nearby sediments it is evident that
differences in amplification factors between strong and weak motions start to appear
at acceleration levels greater than 0.1g to 0.3g, and it is suggested that this effect is
due to nonlinear response of the sediment sites (Chin and Aki 1991).

In the past two decades considerable effort has been devoted to develope
modelling techniques of seismic wave propagation in complex media to study the
effect of the geological site conditions on the ground motion. Most of the techniques
assume a linear relationship of stress and strain, while others consider either that the
stress-strain relationship of soils may depend on the intensity of the confining
pressure or that shearing nonlinear behaviour will appear as result of large shear
inputs. Linear models have been developed extensively for two-dimensional
structures, and the general features of the 2-D seismic response are well established
(Aki, 1988). To much lesser extent the linear models for three-dimensional
structures are developed at present, and the reader is refered to the pioneer work of
Lee (1978, 1984), Lee and Langston (1983), Sanchez-Sesma (1983), and Mossessian
and Dravinski (1989, 1990). The case of nonlinearity has been studied mainly by
geotechnical engineers, and extensively for one-dimensional structures. Early studies

in structural engineeringing showed that in general the shearing stress-shearing strain



relationship can be represented analytically by the so-called Ramberg-Osgood (O-S)

curves (Ramberg and Osgood, 1943), which involve three parameters, namely the

shear modulus, the yielding stress value and the power of the ratio of the stress to
the yielding value. These curves became widely used to represent hysteretical
constitutive relationships, and although strictly speaking the nonlinear shear stress-
strain relation of soft soils is represented by a hyperbola (Hardin and Drnevich
1972), soil engineers have frequently used R-O curves to represent soil columns,
solving the wave equation by bilinear analysis or equivalent linear methods (Iddriss
and Seed, 1968), and also by the method of characteristics (Streeter et. al 1974).
The latter procedure was extended to two dimensions by arranging the basic one-
dimensional element into a latticework. Similarly, Joyner and Chen (1975) and
Joyner (1975) used the yielding element proposed by Iwan (1967) to study the
nonlinear seismic response of one and two dimensional soil structures. As two-
dimensional nonlinear analyses of ground response using models designed for
yielding structures are beginning to find their way into soil engineering practice, our
purpose in this paper is to investigate the similarities and differences of the responses
computed with one of these methods and with a linear method for a prescribed 2-D
problem. We choose a sediment filled valley and used a recorded earthquake to
generate two amplitude input levels. The nonlinear and linear computations were
performed independently by two teams among the authors, upon agreement of the
problem specification and parameters. To some extent our objective is also to meet

the seismological and engineering viewing of this classical problem.



NONLINEAR METHOD OF ANALYSIS

The method of analysis was developed by Joyner and Chen (1975) for one-
dimensional structures, and by Joyner (1975) for two-dimensions, and will be
presented here in outline. Modifications to the theory were made by incorporating
a modified nonlinear soil model Larkin (1979) which is briefly described in this
work.

The computational method uses an explicit finite difference scheme applied
over a grid of discrete points chosen to model the valley, as shown in Figure 1. The
soil mass is divided into a number of elements, either quadrilateral or triangular, and
is underlain by a semi infinite elastic medium known with compression and shear
wave velocities. This medium is the source of the input seismic enmergy. A
transmitting boundary between both media is used to allow wave energy to return
from the valley into the underlying halfspace. The computations are carried out in
terms of particle velocity and two independent uncoupled solutions are achieved:

(i) The in plane solution, which solves for particle velocities V, and V,, as shown

in Figure 1, and is referred to as the PSV solution since it utilises the
propagation of compression waves and in plane shear waves.

(ii)  The out of plane solution, in which the dependent variable is V,, as shown in
Figure 1, and which is referred to as the SH solution since it utilises the

propagation of shear waves causing out of plane distortions.

Analyses (i) and (ii) are carried out in terms of total stress and utilise the
mean stress oy, and the deviatoric stress ¢;, defined in equations (1) and (2),

where the repeated index denotes demotion and J; is the Kronecker delta.

0 = X (1)
g, = 8 - 0, 6ij 2

Mean strain and deviatoric strain are defined in the same fashion as the

stresses. The computations pass over the entire grid at each time step and



velocity gradients are used to calculate the new values of strain. The values
of stress are computed from the rheological model, described in the section -

that follows, from which forces and new velocities are obtained.

Constitutive Relationship
The stress - strain model used is based on classical incremental plasticity

theory as described by Iwan (1967). The one dimensional version of this model has
been used by Joyner and Chen (1975) and Taylor and Larkin (1978). Joyner (1975)
developed the two dimensional version, which we take as the framework for the non-
linear computations in the present study, with a modification that is described as
follows (Larkin 1979).

The model uses a family of yield surfaces in stress space, each surface

following the yield criteria of von Mises.
I:.("'J’ij & C“nij) = k: 3)

where k, is a characteristic of the n" yield surface and o is the origin of the surface
in stress space. The total deviatoric strain e; consists of an elastic strain eg; plus a
plastic strain component e; associated with the outer most yielding surface. This
association of e,; with the outer most yielding surface is a modification to the Iwan
model (Larkin 1979). The Iwan model as used by Joyner (1975) has the concept of
a plastic strain increment for each yield surface and sums the results for each surface
that is associated with yielding. The modification results in savings of computing
time of about 10-15%.

Kinematic hardening of the Prager type is used; that is, each yield surface
translates in space and remains attached to the stress point on reaching yield until

unloading occurs, so that

day, = c, de; (C))

oy

where ¢, is a constant associated with the n* yield surface. The rule of flow normal
to yield surfaces is invoked such that the plastic strain increments are normal to the

corresponding yield surfaces. The relationship between mean stress and mean strain



is assumed elastic.

de. = 2 (5)

where K is the bulk modulus.

The model may be based on laboratory data, such as dynamic torsion tests or
cyclic simple shear tests. The values of k, and c, are then chosen to fit the
laboratory data. Alternatively a hyperbolic stress-strain model (or any other suitable
analytical or empirical relationship) may be used. The hyperbolic model has been
widely used in soil dynamics and is described by Hardin and Drnevich (1972). In
this study we use a hyperbolic initial loading curve to represent the dynamic

properties of the alluvial valley.

The parameters required to specify the material properties are the low strain shear
and compression wave velocities V, and V,, the undrained shear strength S, and the

mass density p. These are representative of parameters whose values are commonly

measured in alluvial soils.

LINEAR METHOD OF ANALYSIS
The linear analysis was performed using the hybrid method presented by

Benites and Haines (1991). A Riccati equation approach computes the wavefield
within a heterogeneous region (Figure 2) resulting from any incident disturbance, and
the Boundary - Integral Technique is used at the interface with the surrounding
uniform medium to match the wavefields on the two sides of the interface, and
thereby, incorporate a specified incident wavefield and generate the wavefield
scattered into the uniform medium. The heterogeneous region can be of arbitrary
shape and arbitrary material composition. The calculations are performed in the

frequency domain and the time-domain solution is synthesised from independent

solutions for a range of frequencies; i.e. u (x,t) = I u (x, w) e“'dw . Any linear

visco-elastic rheology can be considered. In particular, for the present study we
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used constant-Q dispersive attenuation:

_1 = ._.]l_. 1 + 1 fn | - .&J
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where the S-wave quality factor inside the valley Q, was chosen so that the visco-
elastic damping of shear waves was comparable to the hysteretic damping in the non-
linear analysis, and Q, was assigned a value (twice Q) such that the decay of
P waves with distance was very much less than the decay of S waves.

As it is explained in the Appendix, the Ricatti equation approach generates a

set of displacement wavefields
u X, k=1,2, ..

such that the complete seismic wavefield u (x, w) within the valley can be expressed

as a superposition of these wavefields:

ux, @) = Y o (@) u (X, ) ©6)
k
Each of the displacement fields u, (X, w) and its associated tractions 7, (X, w) satisfy
the elastodynamic equation. Because the rheology is linear the tractions associated
with a combined displacement field (6) are
X0 = Y o (@ 7, (X 0)
k
The coefficients «, correspond to a particular incident wave u, (X, ) and the

wavefield u, (x, w) scattered back into the surrounding medium, and are determined

by satisfying boundary conditions at their interface. Using the Boundary Integral
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representation of the scattered wavefield (Ursell 1973) and the discretisation scheme

based on source - point distribution, the total displacement and traction wavefield

outside the valley can be written as

B e = &) + Y G, & X, ) Fx, )

T, ) + Y G, (%X, ©) F(x, ©)

5

Ty(X, @)

where x, denotes the sources positions and G, (X, X,, @) and G, (X, X,, w) are the
standard uniform-media displacement and traction Green’s functions. The strengths

of the sources F(x,, w) and the coefficients for the valley o;(w) are determined by

minimising a weighted sum of squares

interface

Y WX @y (x0) - [5 &, *+ ), g(z,ﬁ,w)F(g,w)]

+ W, 1) o (@7, 0) - ‘32 ® o + Y G, (X, x,w) F(g,w)]
k X,

corresponding to the mismatch of the boundary conditions at the interface between

both regions, where W, and W, are the weights assigned to displacements and

tractions respectively.
The time-consuming part of the calculations is solving the Riccati equation to

generate the set of independent wavefields

(uJ, 3&), k=1 2 ..

inside the valley, but after these have been generated just once for a full set of
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frequencies, the above procedure can be used to obtain quickly the coefficients o (w)
and F(x,, w) for any number of incident wavefields with different time histories and
different spatial distributions. For the present study, however, only one incident
wavefield was considered for each rheology. Because of this and because the valleys
were chosen purposely to be very simple, the full potential of the hybrid method was
not exploited. The accuracy and power of the method have been demonstrated
elsewhere (Benites and Haines 1991). The computation time depends on only the
scale of the heterogeneity, in wavelengths, irrespective of the complexity of the
problem.

Description of the Problem
The two dimensional basin modelled has a trapazoidal shape with a central

depth H = 100 m and surface width L = 400 m. The so-called shape ratio H/L is

therefore %. The shoulders have a constant slope of 45° as shown in Figure 3..
Two problems were analysed for this basin; the case of a homogeneous
composition of the sediments and the case where the shear and compression

velocities varied linearly from the ground surface to the bedrock.

The material properties for the homogeneous basin are:

V, = 400 m/s

vV, = 2000 m/s

p = 1800 kg/m®
Sy = 100 kPa

The value of Poisson’s ratio is 0.48.

The material properties for the non-homogeneous basin are:

V, = 200 - 400 m/s
vV, = 1500 - 2000 m/s
p = 1800 kg/m®
S, = 100 kPa
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The value of Poisson’s ratio is not constant.

The material properties of the bedrock assumed to underlay the basin are:

V., = 2000 m/s
vV, = 3750 m/s
p = 2700 kg/m?

with a value of 0.3 for Poisson’s ratio.

Output from 16 points marked on Figure 2, at three depths in the basin was
used to compare the nonlinear and linear results, and of these 16 points 5 in
particular were used in detailed analyses. These points E, Q, C, M & B are also
marked on Figure 2. Both in-plane (SH) and out-of-plane (PSV) analyses were
carried out.

As input motion we used the ground acceleration recorded during the 1971
San Fernando Earthquake at the Castaic Old Ridge Route Station, California, USA.
This record was chosen because it was recorded on firm bedrock and was of
reasonable magnitude - peak horizontal acceleration 0.3 g. The earthquake record
used has a duration of 50s in these analyses. The horizontal record was scaled to
two levels of excitation to produce analyses at two strain levels. The high strain
level has a peak input acceleration 0.4 g and the low strain level 0.04 g. The same
scaling factors were applied to the vertical acceleration record. The same horizontal
record was used for both in-plane and out-of-plane solutions, and the disturbance was
taken to arrive vertically at the valley.

With the linear analysis the highest frequency was set to 5 Hz. This figure
was then used to control the maximum nodal spacing in the nonlinear analysis.
Higher frequencies will exist though in the nonlinear analysis and frequencies to 8
Hz will be represented with reasonable accuracy..

Initial runs were made with the nonlinear analysis to gauge the average levels
of strain produced throughout the mesh over the whole analysis. This was done at
both strain levels, and then this information was used to obtain the corresponding

values of Q used in the linear analysis. These values were



High Strain Q = 3.125
Low Strain #4 = 12.5

In addition, very low strain results are presented with Q, = 50 for a case
where the nonlinear analysis gave behaviour resembling undamped, linear elasticity.
In all instances the value of the reference frequency w,, for the constant-Q rheologies
was chosen to be 5 Hz.

Output was obtained at the 16 points for all 3 components of motion, at two
strain levels and for the two forms of material properties by both programs and the
results were compared. The forms of output are:

Acceleration Time Histories and their Peak Valves
Acceleration Response Spectra with 5% damping

Fourier Spectra of the Acceleration time histories.



RESULTS

Fourier Spectra of the Acceleration Time Histories

Fourier Spectra for the quarter point Q in Figure 3 are shown in Figure 4 for
both the PSV and SH solutions for the weak and strong events, and for both the
uniform and non-uniform valleys. These spectra show a level of agreement between
the linear and nonlinear analyses that is typical of the Fourier spectra we considered.

For frequencies up to 3 Hz, and sometimes higher, the spectral amplitudes are
very similar, with both analyses predicting the same differences between the weak
and strong events. Such agreement is not found in the acceleration time histories,
the peak accelerations nor the response spectra. The likely explanation is that the
Fourier spectral amplitudes are most strongly influenced in both methods by the
same factors, in particular the geometry of the valley, distribution of wave velocities
and the magnitude of the visco-elastic or hysteretic damping. The similarity of the
spectra diminishes as the frequency increases. This is expected because the constant-
Q damping in the linear analysis has its strongest effect at high frequencies, whereas
with the nonlinear method there is a tendency for the highest frequencies to be
amplified rather than attenuated, especially when the soil response is taking place at
low strain. The high frequency response in the non-linear case is contaminated by
numerical noise due to the finite difference scheme, as small artificial signals are
generated whenever the strain level changes from one yield surface to another.
While this effect is present, it is expected to be much less influential than the effects
due to the fact that hysteretic damping is much less at low strain than at high strain.

The principal difference between the spectra for the weak and strong events
is that for the weak event the spectra are characterised by a small number of large
peaks, whereas, for the strong event the spectra shows many small peaks, reflecting
the character of the input motion. The large peaks for the weak event are associated
with site resonances which occur whenever seismic waves travelling by different
paths arrive in phase at a particular point. The largest resonances occur when many

different paths are involved, and cannot arise if each wave is heavily damped before



it has been reflected many times within the valley. Consequently, the only easily
identified resonances for the strong event are at the fundamental horizontal site
period (1 second). In the linear case with the constant-Q rheology, it is known that
attenuation with distance increases with increasing frequency, and for Q, = 3.25, for
instance, shear waves lose 60% of their amplitude every time they traverse one
wavelength. The effects of hysteretic damping in the non-linear method are less
understood, but given that the non-linear spectra for both events have the same
features as those for the linear spectra, such effects must be similar to the effects of
constant-Q damping in the build up of resonances. In particular, strong hysteretic
damping on high strains prevents the focusing of wave energy in the same way that
low-Q does.

The other consistent difference between the two events is the shift in the
fundamental horizontal site period to a lower frequency for the strong event. The
mechanism is different for the two analyses. For constant-Q rheology V, and V,
decrease with decreasing frequency. The decrease in velocity is much more marked
for the strong event with Q, = 3.25 than for the weak event with Q, = 12.5, and,
of course, the fundamental period is inversely proportional to the shear -wave
velocity. In the non-linear analysis there is also an effective decrease in velocity for
the strong event, because at large strains the instantaneous tangent modulus is low.

For the weak event the SH nonlinear solution for the non-uniform valley
shows an interesting effect when the strain level is very low. In this case the
nonlinear method treats the medium as though it were linearly elastic with effectively
no damping, and, as a result, there can be very large resonance peaks in the Fourier
spectra. The corresponding linear solution for Q, = 50 is shown in Figure 5. The
amplitude variations are similar to the nonlinear case, though whereas in Figure 5
the peaks decrease in amplitude at high-frequency, this does not happen for the non-
linear solutions. This may be an indication that the effective value of Q, for the non-

linear solution is higher than 50.
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Response spectra with 5% damping are shown in Figure 6 for the motion at
Q, for the same complete set of solutions as the Fourier spectra in Figure 4.

It is clear from these excitation data that there are substantial differences
between the linear and nonlinear solutions. This is an interesting observation
considering the close similarity of the Fourier spectra. Seen from an engineering
design point of view the two method of analysis would result in quite different
estimates of base shear of a typical medium size building. Generally our
observations show that the linear analysis yields response spectra that are of larger
amplitude with more pronounced peaks. This may be due to the fact that an inherent
characteristic of linear analyses is that wave energy never transfers from one
frequency band to another while non-linear analyses produce such transfers of
energy. Since the Fourier spectra for the two analyses are almost identical, these
energy transfers in the nonlinear case must be counterbalanced some time later by
energy transferring back to the original frequency band.

The time histories, discussed below, show the peak horizontal ground
acceleration of the linear method to be larger than the nonlinear, yielding response
spectra showing disparities particularly at the peaks, with the difference being a
factor of 3 for the strong event and 2 for the weak event. This agrees with results
from one-dimensional comparisons showing that as the strength of the event is
increased the linear and non-linear methods produce diverging results.

In comparison with the nonlinear analysis the linear analysis amplifies the
strength of the response at the fundamental horizontal site period (1 second) for both
the horizontal components. Because the ratio H/L is not small enough for the valley
to be effectively the same as a flat horizontal layer, both analyses predict that for the
uniform basin there is a more dominant peak in the in-plane horizontal response at
a period slightly smaller than the fundamental period, as shown particularly in the
spectrum excited by the weak motion.

The response spectra of the vertical motions computed by the nonlinear and
linear models show good agreement at short periods close to the peak in the spectra,
although the spectra diverge for larger periods, with the linear spectra having

11



consistently higher values. This difference is due to the effects of the boundaries of
the valley since the vertical response spectra at the centre point C, shown in Figure
7 for the strong event, are in good agreement close to the peaks of the spectra and
across the rest of the period range. The corresponding Fourier spectra, also shown
in Figure 7, are in equally good agreement for frequencies less than 3 Hz, but the

agreement is no better than for the Fourier spectra at the quarter point in Figure 4.

Acceleration Time Histories
An examination of the acceleration time histories in Figures 8 and 9 for the

week and strong event yields the following major points. The corresponding peak

accelerations for the labelled points E, Q, C, M and B are given in Table 1.

(i)  The nonlinear analysis has a significantly higher content of energy in the high
frequency range. We have already noted that this is to be expected since
some of the soil response takes place at low strain levels where there is little
hysteretic damping. Another contributing factor is the different high
frequency bandwidths of the analyses. For the linear analysis the upper
frequency limit was 5 Hz, whereas in the nonlinear case the response was
modelled to approximately 8 Hz.

(i) The linear analysis yields generally higher amplitudes, typically by a factor
of 1.5. The reason the Fourier spectral amplitude of both linear and non-
linear agree is that the duration of motion is also significantly different
between the methods. The major effect is for the non-linear analyses to
stretch the waveform and produce typically about twice the duration of the
linear solution. This effect occurs because the wave front in nonlinear
analyses propagates at the velocity associated with very low strain levels while
the tail of the stress wave is moving at a much lower velocity associated with
high-strain levels.

(iii) A difference between the results using the weak and strong input motions
confirms the point already made about the magnitude of damping and its effect
on the superposition of waves travelling by different paths to the same point.

In the case of the strong motion (0.4g) both the linear and nonlinear results

12



(iv)

(v)

show little change in wave amplitude across the basin surface. In contrast,
the results for the weak motion (0.04g) from both methods show a substantial
increase in amplitude towards the centre of the basin. For both linear and
non-linear analyses the waves excited by the strong input are much more
damped than those when the input is weak. Consequently, amplifications
resulting from superposition of waves travelling by paths of different lengths
are likely to be much larger for the weak input motion than for the strong.
For strong and weak motion the nonlinear analysis gives marked
deamplification at the edge point E, associated with stress concentrations at
the sides of the valley (Larkin and Marsh 1991). It is possible that these
stress concentrations act as barriers to the passage of waves from the valley
into the surrounding medium.

In the case of weak motion using the nonhomogeneous basin the nonlinear SH
solution shows the pronounced resonance effect already remarked upon. Its
manifestation in the time histories is the low amplitude (very low strain), long

duration seismograms of uniform frequency content.
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DISCUSSION AND CONCLUSIONS

Corresponding results for simple 2-dimensional alluvial basins have been
obtained using linear modelling and the yielding-element model of non-linear
behaviour proposed by Iwan (1967). It is establised that, though there are clear
similarities in the character of the wave propagation for the two approaches,
differences exist that are of primary importance for engineers, especially in regard
to response spectra. The yielding-element non-linear model produces pronounced
stretching of the time domain waveforms in the soils, resulting in lower peak
accelerations and response spectra than that predicted by linear modelling. This is
a consequence of different effective elastic moduli applying at different strain levels,
so that as the strain changes at each point in the soil the phase and group velocities
of waves passing through that point are altered. In particular, the effective moduli
are less at high strain than at low strain. Whenever significant wave intensities build
up the wave-forms move slower and, as this results in each wave packet becoming
stretched over a longer interval of time, the amplitude of the packet diminishes,
because of energy considerations. Such behaviour cannot be reproduced by linear
modelling.

On the other hand, the Fourier spectra of the two sets of results are
remarkably similar. From an engineering perspective, this means that linear
modelling can predict accurately the total (time-integrated) intensity of shaking
experienced by structures sited on soft soil deposits, even though the peak levels of
shaking given by the response spectra may be overestimated. By choosing Q values
giving the same average damping in the basins as the non-linear soils response for
the weak and strong events, features of the non-linear wave propagation are
reproduced. Resonace peaks obtained for the weak event are not present in the
Fourier spectra for the strong event, because the greater damping of the high-strain
case inhibits the formation of resonances. As a result, for the strong event the
amplitudes of the time-histories are more uniform across the valley than the
corresponding amplitudes for the weak event, which are larger in the centre than at

the sides. The only clear resonance for the strong event is the fundamental
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resonance (about 1Hz) expected from the thickness of soil alone; that is, there is no
clear focussing of energy resulting from the 2-dimensional nature of the basins. The
frequencies for this peak in the Fourier spectra are smaller for the strong event than
for the weak event, because the effective phase velocities are smaller. In the case
of the linear method, the reduction in phase velocity results from the very small
value of Q,(= 3.25) used for the strong event.

The points of agreement between the non-linear and linear results are in what
can be termed "phase-velocity" phenomena, particularly resonances which occur
when waves are in phase, whereas the main area of disagreement is assoiated with
the group velocities at which packets of waves travel. The shapes of wave packets
affect how fast they move and how much they are stretched in non-linear soils. An
earthquake record is used as the input rock motion in this study. In future studies
it is desirable that a variety of input pulse shapes, from very simple to very
complicated be considered, to analyses their influence on the differences between

linear and non-linear modelling.

15



APPENDIX:

Riccati Equation Approach
The details of the Riccati equation approach to the solution of the

Elastodynamic equation are beyond the scope of the present paper. Relevant theory
and properties of the solution are discussed in an internal monograph by Haines
(1989). Papers on practical applications are in preparation. We will restrict
ourselves to a brief description of the concepts involved.

The starting point is the choice of a range spatial variable ¢ and either one
cross-range spatial variable, n, for 2 dimensional problems or two cross-range
variables for 3-dimensional problems. For valley problems £ is a generalised depth
co-ordinate, equal to O at the surface, 1 at the bottom of the first layer and so on,
and 7 is a function of the horizontal position x (Figure Al). Let n be the downward
unit normal to each of the surfaces S,, such as the top and bottom of the valley,

where £ is constant, and dS, denote increments of surface area, or line length in 2-D,

on these surfaces. Now suppose

¢ m, j=12, ..

are an orthonormal set of basis functions for the valley; that is,
-<%¢k>=[%wr¢umm = b

At each point in the valley x (¢, 7) the components of displacement
u, €me), p=1,2,3,

for each solution to the elastodynamic equation can be expanded as

U, En,0) = Y U, Ee) ¢ 0 (A1)
J

where

Uy €0) = [ ¢ @), Enw)dn.
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Likewise, the associated components of modified traction

- dS
23 £
Tpg (E$ n:w) = ———dn ; Yo I'lq

for the surfaces S, can be written

T € m0) = E T,; (€, ) ¢;(n) (A2) |

where

T, &) = [ ¢ 07 Ene) dn
Then the surface integrals like
IS Yow Ema) Y 1 @) n, 6,
t p q

- [ T w @no T, G dy

P

can be converted into sums:

I Z up. (ss 7?,03) fpg (E, '-‘],01) d‘}]
" (A3)

=Y Y U ¢ T, o).

P i

In particular, the total energy that flows through each surface on which £ is constant

is given by
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_J [Jsg _;Ea@,:)zq: Tog (L,t)nquz}dt

p 2«[ l:JS Eiwup° (E,w)z 7,4 & @) nquE:|dw.
) q

The contribution each frequency makes to the total energy flow through the surfaces
S, is, therefore, proportional to the imaginary part of the sum (A3).
We will work in terms of the vectors U(¢, w) and T(¢, w), whose components

U,;¢, w) and Ty(¢, ), p = 1,2,3, j = L,2,..., are the coefficients in the

expansions (A1) and (A2) of u,(¢, 7, w) and 7,, (£, 1, w), and will denote the sum
(A3) as < U(¢,w), T(¢,w) >. This is equivalent to working in terms of the

functions u, (¢, 7, w) and 7, (¢, 7, w), p = 1,2,3. The rheological law at each

frequency giving the tractions as linear combinations of the spatial derivatives of the

displacement field can be converted into an equation of the form.

F UG = P69 UEw - D)6 IE (A%)

where the matrices [Dw] (¢, w) and [Dw] (¢, w) involve the visco-elastic parameters

for the medium and take account of the cross-range spatial derivatives of the
displacements. Similarly, the elastodynamic equation, relating spatial derivatives of

traction to acceleration, can be converted into

F 16w = PJEw UEW +[D,]6w TE o) (AS)

Henceforth the functional dependence on £ and w will be implicit.
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Now let us check whether a general displacement field U can be split into
independent displacement fields Up and Uy for which the overall flows of energy
through each of the surfaces S, are respectively in the forward direction of increasing

¢ and the opposite, backward direction. We write

e Wl T=T«E.

Can we introduce matrices [AF] (¢, w) and [AB} (¢, w) such that at each value of

the range variable £

Tp ¢, 0) = [A] ¢, ) Uk, w),

T, €0) = [&) ¢ ) Uy G o)

and the two wavefields Uz and Uy are uncoupled, irrespective of the properties of
the medium (provided, of course, that the rheology implies a linear relationship
between displacement and traction)? One reason for doing this is that the directions

of overall energy flow, either forward or backward, given by

Im < U, Tp > and Im < Uy, T, >

for Ur and Uy respectively, are then controlled by the signs of the imaginary, or

anti-Hermitian, parts of [A;] and [Aj]. Substituting into equation (A4) gives

22 o) e ol P

For Ug and Uy to be uncoupled this requires that

2 - Rl (46

and
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“i—; - {o.] - . A,

Substituting into equation (AS5):
S - o+ g - o - P o,
g7 (80 + [0y} - {[Dm] + (D, [AF]}&

[==]
I

15 - b l (P + e L
dE dg it

-1 e ) - (2 +[D~1[AF1)] Uy
. ‘hdﬁ] 3 (Pu] + [P ][84]) - (0] + )]%
20

(A7)



-

which implies

(e
i

ldﬁ”] [P + 2] 8 - (. +[Df,][ap])} U,

and

(=]
I

‘aﬁa] + [ag] (D] * [Pu][A4) - (P.4] +[D,,}[AB])] u,,

if Ur and Uy are uncoupled.

Conversely, if [A;] and [A;] are independent solutions of the Riccati equation for
matrices [A]

0 - A ] o] 4) - (0. 0.Ja) (A8
and are such that their anti-Hermitian parts are of the appropriate, opposite signs to
ensure that the overall flows of energy forward and backward for Up and Ug

respectively, then, if Up and Uy satisfy equations (A6) and (A7), the displacement,

traction pairings

n

» T = [Ad U

=

and

» Ta = [A] U

=

are independent, uncoupled solutions of the elastodynamic equation for the particular

linear rheology being considered.
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The above scheme has two advantages. First, it avoids the instability in other
methods caused by not separating wavefields that decay in opposite directions
(AboZena 1979). Energy considerations (to be precise, the second law of
thermodynamics) ensure that numerical stability is assured when the Riccati equation
(A8) is solved in the opposite direction to the overall energy flow associated with
forward going Up and backward going Ug, and then equation (A6) and (A7) are
solved in the direction of energy flow. In the case of Ug, for example, for there to

be overall flow of energy in the forward direction at § there has to be overall

forward flow of energy at £ - d§, and, hence, the anti-Hermitian part of [A] can

never go to zero. Furthermore, since the overall forward flow of energy associated
with Ug cannot increase in the positive ¢ direction, Up must behave stably when
equation (A6) is solved in this direction. For problems like the valleys considered
in this paper it is necessary to have both a forward-going wavefield Ur and

backward-going wavefield Uy so that the combined wavefield
U = U+ Uy T=[A] 5 + [4]U
satisfies the free-surface boundary condition

I=20

and involves no nett vertical flow of energy there. Second, once a single pair of

solutions [A;] and [A,] have been obtained to the Riccati equation (A8), equations

(A6) and (A7) can be used to generate a full set of solutions

U, = U + Upso

to the elastodynamic equation, each of which is for a different initial condition at the
bottom of the valley, such that any other solution U can be expressed as a

superposition of these solutions:
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7.

Figure 8:

Finite difference grid used in the non-linear analysis for the
sedimentary basin described in the text. The mesh consists of
rectangular and triangular elements, with modal spacing of m and
time step S.

Domain representation of the hybrid method used in the linear analysis.
The heterogenous region is shadowed, and the dots along the boundary
represent artificial point wave sources. The arrows drawn at some of
them depict scattered waves.

Geometry of the 2-D basin, showing the points where results from the
non-linear and linear analyses were compared.

Fourier spectra from the linear (dashed) and non-linear (solid) analyses.
The following coding is used to label the SH and PSV solutions: H =
horizontal component, V = vertical component, Q = quarter point in
Figure 3, U = homogeneous basin, N = non homogeneous basin with
linear velocity gradient, S = strong event, W = weak event.

Fourier Spectrum of the linear SH solution at Q for the non-
homogenous basin with Q, = 50. For this value of Q, the solution is
denoted by Z, and the excitation level is set at 0.004 g, which is 10
times smaller than the excitation level for the weak event and 100 times
smaller than the excitation level for the strong event.

Response spectra with 5% damping for the SH and PSV solutions at Q.
The coding is the same as in Figure 4.

Response spectra with 5% damping and Fourier spectra for the vertical
component of the PSV solution at the centre point C in Figure 3 for the
strong event. Spectra are shown for both the homogeneous basin (U)
and the non-homogenous basin (N).

SH accelerations for the strong event, at all the points indicated in
Figure 3, obtained with the non-linear and linear methods. time
histories are shown for both the homogenous basing (U) and the non-
homogenous basin (N).
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Figure 9:

Figure Al:

Table 1:

SH accelerations for the weak event, presented like in Figure 8.

Co-ordinate system used in the Riccati approach, showing surfaces on
which the range co-ordinate ¢ is constant.

Peak positive and negative accelerations at the labelled points in Figure
3, predicted for the strong and weak events by the non-linear (NL) and
linear (L) methods. Values for the homogeneous basin (uniform mesh)
are presented first, followed by the values for the non-homogenous
basin (linear gradient mesh).
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MP54 9 3737462 0 TABLE L

I FROM :CIVIL ENGINEERING TO 54 4 4710877 1992, 05-05 14:22 332 P.@1/02
I UNIFORM MESH PEAK ACCELERATIONS (m/s?)
I STRONG WEAK

| NL I NL T

0 sH ¢ |+ |25 3.55 0.80 0.94

n - | 2.14 2.58 1,13 0.65

l Q| + |208 4.18 0.46 0.68

l || - 250 4,45 0.48 0.83

| E | + |098 3.00 0.32

I - | 1.6 4.14 0.42

| M| + |237 3.02 0.80 0.82

- |25 2.69 0.68 0.91

B 4+ 10,56
- 0.57
M + 12,01
= 1052
B + | 2,14
- 13,69

Q 2.67
2.90

E 1.15
1.20

M 2.48
2.44

B 43
28

PSY C 4+ |3.12 2.55 0,54 0.38

0.50
0.57

0.24
0.18

0.31
0.22

0.13
0.12
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I LINEAR GRADIENT MESH PEAK ACCELERATIONS (ny/s?)
l | STRONG WEAK
I NL - NL L
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