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Quantification of seismic wavefield amplification by topographic features

SUMMARY

The present report is presented in two parts. In Part I a review of the experimental and

theoretical research on the effects of surface topography on earthquake ground motion done

in the last 20 years reveals significant disagreements between observations of the ground

motion on top of elevated topographies, like mountain ranges and hills, and the corresponding

theoretical predictions. Although the general trend of amplification on top of massive crests

is predicted, the values of the amplification factors are underestimated by the predictions. In

the past, these disagreements were attributed to the simplicity of the models involving

isolated ridges of homogeneous material properties. In recent years there have been

improvements in the theoretical methods to incorporate complex underground geological

structures associated with two-dimensional mountain ranges, and to compute the ground

motion in three-dimensional topographical features. It appears that the observed

amplification factors are caused to a large extent by mountain base deamplification, in

addition to the amplification on its top. The case of depressions is less controversial, mainly

due to lack of observations for a thorough comparison.

In Part II several examples of modelling the effects of two- and three-dimensional generic

topographies on the ground motion due to earthquakes are presented and discussed. The

modelling is performed by using numerical methodologies developed in New Zealand. For

the two-dimensional cases we consider three possible types of ridges, the first two corres-

ponding to uplift, with the ridge being flanked by two small sedimentary basins of different

irregular shapes. In the first of these cases the material properties of the ridge (i.e. density,

velocities of P and S waves) are constant, and in the second the S-wave velocity varies with

position and depth, in a way that resembles some observed uplifts. The last two-dimensional

example corresponds to a ridge formed by tilt of a stack of irregularly shaped layers,

exhibiting inhomogeneous material properties. Results for these cases show that the larger
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amplifications, up to 12 times the amplitude of the incident wave, occur in the basins at

points on the free surface close to the base of the ridge, for both homogeneous and

inhomogeneous material properties. To a lesser degree, there is also amplification at the top

of the ridge, up to 3 times with respect to the incident wave, which is in agreement with the

results by the models discussed in Part I. Finally, we computed the seismic responses of

three-dimensional canyons and hills whose material properties are constant, for several types

of incident waves and for several angles of incidence (with respect to the vertical) and

azimuths. The results show that amplifications up to 14 times the amplitude of the incident

wave occur at the top of the ridge, and that the three-dimensional response is strongly

sensitive to the shape ratios (i.e. major axis to minor axis, height to major axis) and to the

input frequency.
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Quantification of seismic wavefield amplification by topographic features

PARTI

1. INTRODUCTION

By effects of topography on earthquake ground motion we refer to the spatial variations of

the ground motion resulting from the scattering and diffraction phenomena introduced by the

shape of the earth surface on the incoming waves caused by an earthquake. The study of such

effects is therefore relevant to the assessment of earthquake damage in mountain ranges,

depressions, or areas were there is a combination of both.

Regarding the effects produced by the presence of elevated topographies, like mountains,

numerous observations of the damage caused by destructive earthquakes in hilly areas show

consistently that the intensity of the damage is much larger at the top of the hill than at its

base (Geli et al. 1988, reporting such observations since 1902).

In order to quantify such phenomena several experiments were carried out (Davis and West,

1973, Rogers et al. 1974, Griffiths and Bollinger 1979, Tucker et at. 1984) confirming in

general the observed amplification trend at massive crests, regardless of the complexity of the

geological setting of the region. Direct measurements of the spectral ratio of the motion at

the top of the hill with respect to that at its base, yielded values of the corresponding

amplification factors of up to 30 (Davis and West, 1973). It appears that the maximum values

occur for input wavelengths comparable to the width of the hill at its base, and that they

depend weakly on the shape ratio h/l, i.e. the ratio of the height h to the half-width l of the

hill.

To characterise this amplification effect, several theoretical models of seismic wave

propagation in mountains have been proposed since 1972. Earlier models considered a

homogeneous half-space exhibiting an isolated ridge topography (two dimensions), and

incident SH, P and ST/ plane waves. To represent the wave propagation they used Finite
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Difference schemes (Boore, 1972), Finite Element (Smith, 1975), Discrete Wave Number &

Aki-Larner (1970) methods (Bouchon, 1973; Bard, 1982), Integral Equation and Boundary

Integral (Sills, 1978, Sanchez-Sesma et al., 1982). Results from these models confirm,

consistently, the observed amplification trend at the top of the ridge, but the values obtained

for the top/base amplification factor are in the range from 1 to 3, for horizontal and vertical

components of the motion (in plane), and for SH motion (antiplane), whether the amplifica-

tion factor is determined from time domain (peak-to-peak) ratio or from frequency domain

(spectral) ratio. The discrepancies between observed and predicted top/base amplification

factors are dramatic, suggesting that the model of an isolated ridge in homogeneous half-

space is too simplistic to represent realistic cases of seismic wave propagation in a mountain

range. Since some of the above mentioned experiments involved two and three dimensional

isolated ridges, the implication is that the effects due solely to the presence of the ridge

topography may not be observed in nature but are combined with the effects introduced by

other features of the ground. The case of depressions, like canyons, has been studied

thoroughly theoretically (Trifunac, 1973; Smith, 1975; Bouchon, 1973, among the earlier) but

only few observations are available for comparison. Perhaps the best known records are the

two horizontal components of acceleration recorded by the Pacoima Dam accelerograph

during the San Fernando 1971 earthquake (Trifunac, 1973; Boore, 1972; Bouchon, 1973).

In this report we review recent advances in the study of topographic effects in the ground

motion. First we will summarise briefly the relevant details and results of the experimental

and theoretical studies mentioned above, then we will present the latest theoretical efforts to

incorporate two-dimensional realistic media and three-dimensional analysis in order to reduce

the gap between observed and predicted amplification factors.

2. OBSERVATIONS OF TOPOGRAPHICAL EFFECTS AND COMPARISON

WITH SIMPLE THEORETICAL MODELS

In this section we describe briefly the results of some experiments carried out to quantify the

effects on the ground motion of elevated topographies and depressions, as well as early

theoretical attempts to characterise them. Then we will compare both and suggest the
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probable reasons, in each case, for the reported discrepancy between observed and predicted

amplification factors.

2.1 Experimental Results

Mountain Range

Several aftershocks of the San Fernado 1971 earthquake were recorded at stations located on

the top and at the base of the Kagel Mountain and the Josephine Peak. Davis and West

(1973) computed the top/base velocity spectral ratios and found large amplification at

wavelengths approximately equal to the width of the mountain at its base. Davis and (1973)

West also applied their analysis to the seismic records observed on the top and base of the

Butler Mountain, Nevada, caused by the collapse of an underground cavity. Their results in

this case show large, frequency dependent amplification factors up to 10.

Rogers et al. (1974) recorded an underground nuclear explosion at several sites across the

NASA Mountain, Nevada. This mountain range can be considered to be two dimensional in

shape, of smooth geometry and regular properties (homogeneous). The wavefront of the

recorded incident seismic waves was parallel to the ridge axis. Their computation of top/base

ratios was restricted to the time domain since only analog records were available, yielding

amplification factors of about 1.25 higher at the top. In addition Rogers et al. (1974)

performed scale model experiments of the topographic effect using Oliver et al.'s (1954)

seismic model and ultrasonic incident P waves. They found not only a qualitative agreement

with the observed records, but were able to perform a parameter study of the effect of a hill in

terms of angles of incidence and azimuth, slope of the hill and frequency. They found an

amplification factor of about 1.55 corresponding to a diffracted Rayleigh wave. A seismic

experiment in the Appalachian Mountains was carried out by Griffiths and Bollinger (1979),

who recorded one earthquake and 136 events corresponding to quarry and mine blasts, at

stations located on six topographical features. In this case the topography (corresponding to

hill and valleys) can also be considered two-dimensional, with the incident waves from most

events coming at azimuths nearly perpendicular to the mountain axis. The horizontal

14&3
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seismometers were aligned parallel to the ridge strike so their records would correspond to

the SH motion. However, the geological structure was clearly different from the one studied

by Griffiths and Bollinger (1979), in that thin layers of soft sediments appear to cover the

ridges, and these were not isolated but appeared as spatially periodic elevated topographies.

In this case, too, the records were analogue, and the computed time domain amplification

factors, top/base, yielded values between 1.7 and 3.4. A specific experiment to measure

spectral differences of the motion in an small ridge was carried out by Tucker et al. (1984).

They observed that the spectral ratios were almost independent of azimuth distance and size

of the seismic events. The spectral amplification factor with respect to a nearby tunnel not

located at the base of the ridge was about 8. In addition, they reported other observations at

ridges with much smaller top/base spectral amplifications. Finally, Umeda et al. (1986)

reported that boulders on top of a 100m high and 500m wide ridge were thrown offduring the

Western Nagama Prefecture, Japan Earthquake, 1984, suggesting the occurrence of

anomalously high accelerations at the site. They computed a top/base spectral amplification

factor of the order of 10. This small ridge is nearly two-dimensional and exhibits a non-

homogeneous underground structure.

Depressions

There are not many observations of ground motion in depressions (like canyons). Perhaps a

unique case is the strong ground motion recorded at the two horizontal components of the

Pacoima Dam accelerograph AR-240 during the San Fernando 1971 earthquake (Trifunac and

Hudson, 1971; Boore, 1972). The recorded peak acceleration was as large as 1.25g. The

question is: is this a good estimate of the actual acceleration field within the epicentral

region? or it is the result of local site effects?

Looking at the regional scale, the accelerograph was at the bottom of a canyon, about 8 km

south from the epicentre and on the strike of the fault plane *70° W). However, looking at

the local scale, the accelerograph sits on top of a small ridge inside the canyon. Considering

that the peak acceleration occurs at 10 Hz, and assuming that the shear wave velocity is about

2 km/s, and a Poisson ratio of 0.25, the corresponding wavelengths would be about 340 m for
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P waves and 200 m for S waves (Bouchon, 1973). For this input, it appears that the effects of

the ridge should be predominant. There is no consensus on this issue, which we address in

the next section.

2.2 Theoretical Results

The problem of characterising the effects due purely to irregular free-surface topography is

not trivial considering that even a flat free-surface introduces complex effects on the motion,

depending on the type of incident wave (P, SK SU), angle of incidence and source

characteristics. On one hand the flat free surface doubles the amplitude of SH waves, with no

local variations and for any angle of incidence. On the other hand it amplifies dramatically

the horizontal component of an SF wave incident at the critical angle, as shown in Figure 1

(Aki 1988). Some researchers attribute to this effect the localised large damage pattern

observed during Whittier Narrows 1987 earthquake in Los Angeles (Aki 1988), and it must

be expected when the free-surface topography departs from flat to irregular.

Mountains

Boore (1972) used a Finite Difference scheme to represent the propagation of SH waves in a

homogeneous half-space with a mountain topography. He calculated the top/base

amplification factors for two slopes, 23° and 35°, and found that the maximum value was

about 1.4. Smith (1975) used Finite Elements to study a triangular shaped symmetrical

mountain, of 20° slope (shape ratio h/l = 0.373. He found that the maximum top/base

amplification factor, about 1.8, occurred for SF waves for values of input wave lengths equal

to 1.5 times the half width of the mountain. Bouchon (1973) modelled a symmetric ridge of

cosine shapes, for incident SH, P and SF waves, using the Discrete Wave Number DWN

technique (Aki-Lanier 1970). His results for vertically incident SH emphasised the effect of

the shape ratio for values h/l = 0.23,0.4,0.67 and 0.8, setting the input wavelength as X = 5h.

For example, for h/1 - 0.23 (i.e. 1 - 1.150, the amplification factor top/base was about 1.25,

while for h/1 - 0.8 0. = 20 it was about 1.7. These values increased slightly with the angle of

*3
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incidence. For the case of P-SK keeping Wl = 0.4 and X = 4h (1 = 1.60, the top/base

amplification factors were about 1.5 and 1.4 for vertically incident P and SF plane waves,

respectively. While the effect of a 35° angle incidence can be neglected for P, it increased the

amplification factor for SFup to 2.3 (Figure 2).

There have been other studies of the effects of elevated topographies using modifications of

these techniques (Zahradnik and Urban, 1984 with Finite Differences, Bard 1982, with

DWN). Although they confirmed the observed amplification effect at the top, it remains

always less than a factor of 3. A summary of the results for SH waves is shown in Figure 3

for a mountain of Wl = 0.4. Here the frequency response in terms of the non-dimensional

frequency 11 is computed for six stations distributed down the mountain slope, from top to

bottom. Note that in this model the quality factor Q has been incorporated into the DWN

procedure.

Depressions

Since Trifunac (1973) presented his closed form solutions for the displacement fields

produced by plane SH waves propagating in a half-space with cylindrical canyon topography

of semi-circular and semi-elliptical cross-sections, the seismic response of two dimensional

canyons has been studied thoroughly using various numerical techniques developed to

incorporate in the solution the geological complexities and type of incident seismic wave

encountered in realistic problems (Aki 1988). The exact frequency response of a semi-

circular canyon to incident SH waves is shown in Figure 4, at eight stations distributed across

it. In Figure 4 a is the radius of the canyon, co = 2,c f (f is frequency), 7 is the angle of

incidence. The response is given for three angles of incidence, 0° (vertical), 30° and 90°,

measured clockwise from the vertical. We observe a remarkable variability of the site effects,

showing that the largest amplification occurs at the edges of the canyon. Both the amplitude

and variability of the response are significantly affected by the angle of incidence, reaching

an almost constant value of 4 (twice the response due to the flat surface) at the edge on the

incident side, for y = 90°. Similar results were obtained by Sanchez-Sesma and Rosenblueth

14&3
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(1979) using a boundary integral scheme, which in turn can be applied to problems involving

arbitrary cross-sectional shapes. Both the analytical solutions due to Trifunac and the results

of the Boundary Integral method have become testing benchmarks for other approximate

techniques aimed to compute accurately the effects of irregular topographies on the ground

motion.

Bouchon (1973) presented the case of a cosine-shaped depression (Figure 5) for incident P,

SK, and SH waves, first by fixing the shape ratio h/l to 0.62 (top), then by assuming several

values of shape ratios for SH only (bottom). This parametric study of the responses

emphasises the relation between input wavelength X and the depth of the depression h in the

form 1-5h, considering that this relation is characteristic of the responses for input

wavelengths in the range between 2 h and 20 h.

As these effects became important in the modern design of long linear canals, bridge supports

and dams, researchers have extended their analyses to more complex geological structures.

Among them Wong (1982) studied the case of P and SF waves scattered by circular canyons,

for the first time; Sanchez-Sesma (1985) presented an analytical expression (originally due to

Macdonald, 1902) for SH waves diffracted by a wedge-shaped ridge or depression, Moeen-

Vaziri and Trifunac (1988) studied the shear motion in canals of arbitrary cross-sectional

shape, Dakoulos and Gazetas (1986) computed the vibrations of embankment dams due to

input shear waves, and Vogt et al. (1988) treated the case of a canyon of arbitrary cross-

sectional shape in layered half-space. The time domain solutions for P, SK SH and Rayleigh

waves in a semi-circular canyon of radius a were given by Kawase (1988), using a hybrid

method based on DWN and Boundary Element methods. Figure 6 shows the transient motion

at a dense array of stations distributed along the range, for SH (top first) and SF (middle and

bottom) incident waves with Ricker wavelet source time function of central non-dimensional

frequency 11 = 2, where 11 = 241. The remarkable features in these seismograms are the

diffracted waves (or "creeping" waves) travelling in the canyon which, on interacting with the

incident wave, cause a very localised amplification and phase shift at the edges.

4)
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The extensive theoretical work mentioned so far has helped to confirm the observed

amplification patterns of the ground motion due to irregular free-surface topography and to

understand the basic wave phenomena involved in it. This is summarised in Table 1, for

ridge and canyon irregularities. If these theoretical models could be verified by direct

comparison with data, they could then be used for a reliable estimation of the ground motion

in sites where no earthquakes have been recorded. Such data are considered in the next

section.

3. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Although the amount of research on two-dimensional modelling of irregular topographies is

extensive, few experimental data or other type of observations are available for comparison in

the case of canyons. This is mainly because few geological configurations regarded as

depressions or canyons are long enough to be considered two-dimensional. As pointed out by

Trifunac (1973) one of those could be the Kern Canyon, in Sierra, Nevada. Another which at

least would be satisfactory for qualitative analysis is the Pacoima Canyon, in the vicinity of

the Pacoima Dam. The situation is different for elevated topographies, as mentioned in the

introduction, and direct comparisons of theory and experiment are possible for various cases.

For example, response spectra have been obtained at two stations over granite in the Kagel

Mountains (Davis and West 1973). Bard (1983) tried to model the observed amplifications

with an isolated ridge. His comparisons are shown in Figure 7 (a), (b). Many other authors

have contributed to similar comparisons, and their results are summarised in Figure 8 (time-

domain), and Figure 9 (frequency-domain), in terms of the shape ratio of the ridge, and for

several events (both figures reproduced from Geli et al. 1988) . In these figures open symbols

represent observed result, the darker ones being regarded as three-dimensional observations

(Davis and West 1973), while closed symbols represent those from theoretical models (two

and three dimensions). The code for each symbol prescribes the author and year of the

results, as specified in the caption. Only one paper for the three-dimensional results has been

included (Zhengpeng et al. 1980) because his results are directly comparable with those

reported for the two-dimensional case. The non-dimensional frequency is defined as 2a/1. In

*3
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both Figures 8 and 9 we note generally a significant mismatch of observed and predicted

results. In the time-domain the horizontal component is predicted better than the vertical

component, which shows a large scatter for different observed events. In the frequency

domain we observe drastic mismatches, particularly when the comparison involves two-

dimensional models. For example, for Wl = 0.4 the values of observed and best predicted

top/base amplification factors are in the ratio 30/2 for the horizontal component, and about

9/1.6 for the vertical component.

In the case of depressions, Trifunac (1973) associated the large values of acceleration

recorded at the Pacoima Dam accelerograph with the amplification effects computed at the

edges of a cylindrical canyon of semi-circular cross-section shape. The comparison is very

qualitative, based on the assumption that different sections of the output wave at the canyon

came from different fracturing sections of the fault. A more thorough modelling was

proposed by Bouchon (1973), who considered the canyon as regional scale, and the top of a

small ridge within the canyon (where the accelerograph sat) as local site scale. His

comparisons show good qualitative agreement (Figure 10) although the amplitudes cannot be

matched.

Taking into account most of the work done between 1972 and 1984 on the observations and

theoretical models of topographical effects on ground motion, and their comparison, we draw

the following conclusions.

For a mountain:

• There is a consistent broadband amplification at the top of the mountain, which appears

to reach its maximum when the wavelength of the incident wave is comparable to the

mountain width at its base.

• The base of the mountain suffers a trend of amplification-deamplification, ranging

between 1.25 and -0.5 with respect to the amplitude of the incident wave, depending on

the observed top/base amplification factors. For incident P waves the deamplification
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starts at large wavelengths (i.e. several times the mountain width), while the maximum

amplification factors occur for wavelengths slightly longer than the mountain width.

• The amplification is lower for incident P waves than for incident S waves, but it is

slightly larger for inplane motion (P-SP) than for antiplane motion (SAD.

• The amplification is lower on the flanks of the mountain than at the top, but it develops

rapid phase variations causing large differential motions.

• The amplification is weakly dependent on the shape ratio, but strongly dependent on the

angle of incidence.

• There is a remarkable mismatch between observed amplifications at the top of a

mountain and those predicted by their corresponding theoretical models, suggesting that

the models may under-estimate the response of the mountain by factors up to 15. The

mismatch is more pronounced in the frequency-domain than in the time domain.

For Depressions:

• There is not enough experimental data to check the results of theoretical models of

depressions. Exact results for ideal canyons predict large amplifications at the edges

and deamplifications in the center. The amplification depends strongly on the angles of

incidence and weakly on the shape ratio.

• The Pacoima Dam horizontal acceleration records have not been modelled

satisfactorily.

In the next section we will review the theoretical efforts since 1984 aimed at decreasing the

gaps between observations and theory. We will no longer make distinctions between elevated

topographies and depressions, since most of the recently developed methods apply to both, as

well as to sediment filled basins.

4. RECENT THEORETICAL MODELS

As efficient numerical methods to compute seismic wave scattering and diffraction by

irregular topographies developed, it became clearer that the gap between the observed and

*3
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predicted values of amplification was due to the simplicity of assuming a two-dimensional,

isolated, homogeneous topographical feature. In most real experiments the surface geology

was well known. For example, the Kagel Mountain and the Josephine Peak, in California

(Davis and West, 1973) are composed of granite and dacite, respectively, from top to base.

However, a suitable 2-D model of homogeneous material (Bard and Tucker, 1985) predicted

responses far below those observed. The disagreements were attributed to the marked three-

dimensionality of the mountains, and to weathering effects on their tops (Rogers et al., 1974).

On the other hand, experiments on two-dimensional mountain ranges (like NASA Mountain,

Appalachian Mountain) yielded large discrepancies too, even for SH calculations. The

possible causes for the discrepancies were summarised as follows:

1. The recording sites were covered by thin layers of low-velocity alluvium.

2. The topographical features were not isolated but belonged to an environment of

periodic, similar structures or neighbouring topography.

3. There was an irregular layer structure underneath the topographical feature.

4. The topographical feature was prominently three-dimensional.

We shall divide this part of our review in two subsections: complex two-dimensional

topographic modelling, and three-dimensional modelling.

4.1 Two-dimensional complex topography

The studies reviewed here are mainly due to P.Y. Bard and B.E. Tucker (1985), and Geli et

al. (1988). The case of neighbouring topographies affecting the response of a homogeneous

mountain was treated by Bard and Tucker (1985) using the DWN method. Figure 11 shows

the response of a structure composed of three similar sinusoidal ridges in a homogeneous

half-space, for vertically incident SH waves, at six stations distributed from top to bottom

along the flanks of two adjacent ridges. For comparison, the response of a single ridge is

given by a solid line (as in Figure 3). It appears that the presence of neighbouring ridges

amplifies the motion at the top of the central ridge, and deamplifies the motion at its base,

13



which in turn induces the largest peak in the corresponding spectral ratio (see Figure 13 (b))

of amplitude 10 at q = 0.7.

The effects for other station distributions (inner and outer flanks) are similar but less strong,

systematically showing their maximum amplitude at the top. Geli et al. (1988) extended this

study to include underground layering, in addition to neighbouring topographies. Their

results are shown in Figure 12, which also describes the stratified medium used in the

computations. As in Figure 11, the solid line corresponds to a single ridge. In this case the

amplifications tend to be narrow-banded, three to four times larger than their corresponding

homogeneous case, for all stations. This effect can be attributed to the interference between

subsurface layering and surface topography. The largest amplification of up to 12 occurs at

the top of the central ridge, for wavelengths comparable with the width of one ridge. Explicit

comparisons of the amplifications at the top of the ridge for both homogeneous underground

and layered underground are given in Figure 13, (a) and (b) respectively. The comparisons

are made for an isolated ridge, and for the central ridge of three-neighbouring identical ridges.

The results are given as the spectral ratios of top to base for the isolated ridge (full line), top

to base for the central ridge (thick dotted line) and top to next lateral base for the central ridge

(tilin dashed line). In all cases the largest amplification is given by the spectral ratio for the

latter case.

The next important work by Geli et al. (1988) was the study of the effects of subsurface

layering in an isolated ridge. They set up the models shown in Figure 14, according to the

assumptions that the subsurface layering in elevated topographies can be associated with

weathering (top) i.e. uniformly covered with thin layers of soft material; and erosion (middle

and bottom) i.e. covered with irregular layers of sediments whose thickness increase

downward on the flanks. This case is treated with a modified version of the Aki-Larner

(1970) method, in which the effect of the flat layers is introduced by means of the Thompson-

Haskell propagator matrix (Aki and Richards, 1980). The quality factor Q for each layer is

also incorporated. Results are shown in Figure 15, for SH waves (vertically incident) for two

velocity values of the surface layer, 0.603 full line and 0.4133 dashed line, where 133 is the

£-
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shear wave velocity of layer 3. Each row from left to right represents the amplifications at

the top, at the bottom and the top/base spectral ratios, for each configuration. It is shown that

in every case the maximum amplification factor is below 3, occurring at about 11 = 0.8. It is

remarkable that there is a low frequency amplification (of up to 1.1) which is independent of

the surface layer velocity and underground layering. It is also noted that the narrow band

top/base spectral peaks of higher frequencies are actually the result of base deamplification.

These amplifications seem insensitive to the deep underground structure (compare (b)

and (c)). Although the types of inhomogeneous mountains treated by Bard and Tucker

(1985) and Geli et al. (1988) are complex, they do not solve the problem of the large

observed amplification factors. It was evident, however, that such large values could be the

result of base deamplification rather than authentic amplification at the top. When there is a

deamplification it is better to compute explicitly the transfer functions at each station. Taking

into account that there are numerical problems related to the Rayleigh-ansatz assumption in

the Aki-Larner methods (not discussed in Geli et al. 1988), an alternative method was

developed by Benites (1990) using a hybrid method based on Boundary Integral and

Gaussian beam methods. The simple case of an SH wave impinging upon a ridge of cosine

shape was treated, in which the shear wave velocity varied linearly with depth. The purpose

was to isolate the effects of the velocity gradient by studying the response of the mountain as

it departed from the homogeneous case. The results relevant to our review are given in

Figure 16, showing the spectral transfer function for five stations from top (No 1) to bottom

(No 5), in terms of the non-dimensional frequency n. The velocity gradient is 100% in (a),

i.e. the velocity at the bottom is twice the velocity at the top; and 0% in (b) (homogeneous).

The most striking feature observed in Figure 16 (a) is the rapid increase of the spectral peak

amplitudes towards the top, reaching a maximum value of about 14, or 28 absolute

amplification value (amplitudes are normalised with respect to the response of the flat-free

surface). A closer look shows that the frequency at which the maximum amplitude occurs

shifts towards the top, from about 11 = 0.5 for the station in the bottom to 9 = 0.7 for the

station at the top. The amplification factor computed from the spectral ratio top/base at 11 =

0.7 is about 18. For comparison, the amplification factor at the top of the homogeneous

mountain is about 5. It is worth noting that in the homogeneous case the peak amplitude also

*3
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occurs at q = 0.7 at the top, but at n = 0.2 at the bottom. From the theoretical results of this

particular case we may infer the effects of the vertical inhomogeneity:

(1) The spectral amplitudes of the ground motion increase everywhere, from the top of the

mountain to the base, but most strongly along the flanks towards the top, and gently at

the bottom. It appears that some deamplification occurs in the high frequency range.

(2) The frequencies of the spectral peak amplitudes at the bottom shift upwards for

frequencies less than that corresponding to a wavelength of one fourth of the width of

the mountain (a/4). It is not clear if this shift also occurs at stations on the top.

(3) The frequency shift of the peak ground motion at the bottom induces large

amplification factors at the top, reaching values of up to 18 for 100% shear velocity

gradient.

Benites (1990) also computed the time domain solution for SH waves of a mountain with

vertical heterogeneity in order to study the effects on the wave propagation. These are shown

in Figure 17, for four gradients 'g', aspect ratio h/a = 0.4 and Ricker input wavelet with

central frequency 11 = 2. For this particular case a = 2.5 (units of length) and Ph is fixed at

Ph = 2 (units of length/ sec). Since 'g' is defined by Bo = 13/1 - gh (see top of Figure 16), 00 =

2 - g (absolute). So a gradient g = 0.25 sec-1 implies that the surface velocity 13.= 1.75.

In addition to the discussion by Bard (1982) on the differential motions generated along the

flanks of a homogeneous ridge, it is worth noting that the elevated topography keeps the

amplitude of the incident wave almost unchanged, while it generates an outward going

diffracted wave whose amplitudes increases as it propagates from the center towards the

edges, along the flanks (see Figure 17, g = 0). Just outside the region of the mountain, the

amplitude of the diffracted wave decreases abruptly. When the velocity gradient is

introduced, it induces a strong wave interference within the ridge and the effects observed in

the homogeneous case become more pronounced. For example, for g=litis observed that

the diffracted wave loses its energy rapidly outside the ridge. The conclusions drawn from

this numerical experiment cannot be generalised since the proposed model is very simple;

*j
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however the results suggest that the response of a mountain with realistic geological structure

is strongly affected by near surface layering involving shear wave velocities increasing

downwards, causing large amplifications at its top.

So far in this section we have described studies involving sinusoidal ridges with complex

velocity distributions and SH waves. Kawase (1990) studied the effects of a homogeneous

ridge, whose free-surface topography conforms to an arc of a circle, on propagating SH, P-SF

and Rayleigh waves. His results for SH incidence are very similar to those already described

for the sinusoidal homogeneous ridge. For SI/ incidence the character of the diffracted wave

generated within the ridge is entirely different from the SH case. The corresponding time

domain solution for 30° incidence is shown in Figure 18, for horizontal (a) and vertical (b)

components of displacement. In (a) the first arrival must correspond to a diffracted P wave,

judging from its apparent velocity. Also, the amplitude of the direct SF wave varies within

the ridge, being significantly amplified along the slope on the side of incidence. Later

arrivals appear to correspond to diffracted P, SF and Rayleigh waves, the P and SF

propagating backwards as well. For P wave incidence, shown in Figure 19, the diffraction is

less complex than for SK having clearly defined diffracted P and Rayleigh waves at the

edges. An interesting case reported by Kawase (1990) is that the ridge appears to split an

incident Rayleigh wave into two wave-trains, clearly observed in both horizontal and vertical

components. In each component these waves have the same amplitude, which is about one-

half the amplitude of the incident wave. Diffracted P and SF waves also appear to be

generated but with very small amplitudes.

Summarising the present section, two-dimensional models of elevated topographies with

complicated geological configurations have helped to reduce the disagreement between

observed amplification factors at the top of a mountain and those predicted for the isolated,

homogeneous ridge, but their predictions are not yet satisfactory. They have improved the

understanding of the phenomena, suggesting that the observed large amplification factors

may be induced to a large extent by deamplification at the base of the ridge. Models

associated with combined weathering and erosion of an isolated ridge do not improve the

predictions, yielding amplification factors of less then 3. On the other hand, models that

*3
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incorporate either weathering or neighbouring ridges yield a factor of 10. It is demonstrated

that the response of the ridge is not affected by the deep underground structure, but it is by

the near-surface layering. Simple models of ridges with vertical variation of velocity show

that the response is strongly affected by the velocity gradient, yielding amplification factors

of up to 18. This value results from large amplifications on the top and rather small ones at

the bottom, due to shifting of the frequency at which the maximum amplification at the

bottom occurs.

4.2 Three-dimensional topography

Modelling of the effects of three-dimensional topographies on seismic ground motion is still a

subject in development, even for simple geometries. At present the slow progress is due

more to computational limitations in obtaining solutions for frequencies of significance in

strong ground motion, than to the lack of suitable numerical methods already developed for

the problem.

Perhaps one of the earliest attempts to study seismic wave propagation in 3-D media is the

one by Evans et al. (1954), using scale models, with piezoelectric source of acoustic waves.

These models corresponded to stratified elastic plates, and their three-dimensionality was

intended mainly to study the wavefronts resulting from reflections at the front and back faces

of the models. It should be noted that the authors modelled Lamb's problem in free elastic

plates, obtaining excellent agreement with the theory. Early purely theoretical attempts used

equivalent surface load distribution to represent the scattering field by depressions (and

inclusions) of gentle slopes (Hudson 1972). A first order approximation of Green's function

was developed to reproduce some observed surface waves. Since then, several authors have

contributed to the subject, namely Singh and Sabina, 1977; Lee, 1982; Zhengpeng et al.,

1980; Sanchez-Sesma, 1983; Wong, 1966; Luco and Wong, 1987; Mossessian and Dravinski,

1989. Among them, perhaps the most complete study is due to Zhengpeng et al. 1980, for a

topography of truncated conical shape on a homogeneous half-space (Figure 20). The cone

can be upright, representing a mountain, or dipped downwards, representing a depression.

The problem of scattering of an incident shear wave is reduced to a two-dimensional problem
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using axisymmetry, in terms of the azimuthal angle ¢. The wave propagation in the 2-D

media is then solved by Finite Differences. Results for the hill are shown in Figure 20, for

the spectral ratio of the radial and tangential components with respect to the incident wave.

The slope of the cone is 45°, and the ratios are given in terms of a non-dimensional period

T = 2Ce R = UR

where R is the radius of the cone

Zhengpeng et al. argue that if XZR and the input motion is horizontal, the amplification of

the ground motion is due to the vibration of the hill as a whole, and if the input is vertical the

amplification is due to convergence of wave energy propagating from the base upwards. The

spectral ratio reaches its first maximum at To = 3.2 R/[3, for H/R = 1/3. The amplifications

shown in Figure 20 are less than 5. According to the authors the method predicted the

amplification factor of the tip of an isolated hill observed during the Haicheng 1975

earthquake. No details about the observed values are given. Sanchez-Sesma (1985) treated

the case for a hemispherical cavity for vertically incident P waves. He used azimuthal

decomposition (axisymmetry) and expansion of the scattered wavefield in terms of a

specified set of basis functions. The boundary conditions are satisfied in the least squares

sense. His results are for relative ground motion for several single frequencies. For the

vertical component of the motion he obtained a maximum amplification of about 3.4 for a

frequency that corresponds to a wavelength equal to twice the size of the cavity, and about

3.2 in the case of a ridge (same size of wavelength). No results are given for the frequency

domain amplification, nor for inclined incidence, nor for wavelengths shorter than 1.33 times

the width of the ridge or cavity.

Luco et al. (1989) have studied the case of the three-dimensional response of a canyon in a

layered half-space. The canyon is infinitely long but of arbitrary cross-sectional shape, and

the incident wave (SH, P or SV plane waves) impinges in the underlying half-space with

incident angles measured with respect to the vertical and horizontal axis of the canyon. The

authors compare their results for simple geometries in the limiting two-dimensional case with

the corresponding results by 2-D methods, and perform a comprehensive parametric study of

14113
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the 3-D canyon with semi-circular cross-section. They demonstrate that the effect of the

horizontal angle of incidence strongly affects both the amplitude and the variation of the

motion within the canyon. They also perform a test to compute the ground motion at the

Pacoima site, obtaining amplifications of up to a factor of 6 for a frequency of 5 Hz.

5. CONCLUSIONS

We have reviewed the research work regarding the effects of topography on earthquake

ground motion of the last 20 years. Observations of the shaking intensity in hill areas during

destructive earthquakes suggests that the tops of hills and mountains are subjected to

anomalously large amplifications. Measurements of ground motion confirmed this, and

theoretical modelling aimed to characterise the amplification effect in simple, homogeneous,

isolated topographies showed that indeed amplifications occur at the top of mountains, but

predicted values were far below those observed: the maximum predicted amplification factors

were below 3, while the maximum observed, at the top was 30. New methods were

developed in order to incorporate the modelling of complicated geological configurations

associated with topographies. These included weathering, sedimentation neighbouring

topographies and vertical velocity gradient.

Only the vertically inhomogeneous mountain yielded large values of the amplification

factors, comparable to those observed; but overall, the importance of the new developments

has been to improve our understanding of the processes that lead to such large amplification

factors. It has become clear that deamplification at the base of the mountain is responsible to

a large extent for such large factors. It was also concluded that only the near surface layering

has a strong effect on the response of a mountain. The deep underground structure has little

effect.

Regarding the three-dimensional modelling of ground motion in topographies, none of the

proposed models so far has given strong evidence that the third dimension contributes to

large amplifications. An important outcome is that the response of the topography is
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strongly affected by both the azimuthal and vertical angle of incidence. This is highly

relevant to prediction of strong ground motions at a site close to the epicentre, as well as far-

field sites. Three dimensional modelling of a topographic feature close to the epicentre

should include the radiation pattern produced as the rupture propagates along the fault.

Finally, the performance of all theoretical models, 2-D and 3-D, compared with the

experimental data, is summarised in Figure 21. Large discrepancies still exist, and it seems

that more work, both theoretical and experimental, needs to be done to confidently predict the

effects of topographies on seismic motion.
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Effects Basic phenomena Spectral characteristics Application to Earthquake Engineering

2D Structure 

Surface topography

a

7 YJ

Di ffraction of outward

propagating surface waves.

Energy focusing in convex

parts (such as mountain

top).

Diffracted or"creeping"
waves propagating within

the canyon.

Strong interference with the
incident wave at the edges

of the canyon.

Broad band effects centered

on the frequency for which

the wavelength is

comparable to the width of

the topographic feature

(X = 5a to 1= a/4)

Large variability of the

amplitude spectra from site
to site: broad band outside

the canyon, narrow band

inside the canyon. Strong

dependency on the angle of
incidence.

- Amplification on top, deamplification
at mountain base differential motion on

slopes.

- Effects much larger on the horizontal

components than on the vertical

component.

- Response depends strongly on the

angle of incidence: amplification on the

side of the incidence, deamplification
on the side opposite to the incidence.

- Effects larger on the horizontal

components than on the vertical.

Table 1. Summary of basic phenomena, spectral characteristics and applications to earthquake engineering for two 2-D structures.
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Figure 2: Normalised amplitude of synthesised displacement for P and SF waves upon a cosine-shaped ridge.

Shape ratio h/l = 0.4 (from Bouchon, 1973).
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Figure 6: Time domain response of the circular canyon to vertically incident SH (top), SF (middle for horizontal
motion, bottom for vertical motion). Input wavelet is Ricker pulse with central frequency 13/a. Small numbers
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the velocity at the top, (b) for a homogeneous ridge. The velocity at any depth Z is defined as 0 0 = Bo +
g(Z-Zo), where g is the velocity gradient. The non-dimensional frequency (ETA) 9 = 2al, where X is the
wavelength of the incident wave.
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Figure 18: Time responses along the surface of the ridge whose shape is an arc of a circle of radius 2.5 h (where
h is the height of the ridge) to incident SF waves with 30° angle (which corresponds to the critical angle).
Poisson's ratio is 1 /3. The characteristic frequency of the Ricker's pulse is 1. (a) horizontal component of
displacement, (b) vertical component of displacement (from Kawase, 1988).
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Quantification of seismic wavefield amplification by topographic features

PART II

1. INTRODUCTION

The results of the two-dimensional (2-D) modelling cases reported in Part I reveal that the

complexities assumed for the material properties of hills do not yield significant increases of

the computed amplifications at the top, in comparison with those from the corresponding

cases with homogeneous material properties. Since these results grossly mismatch some

observed amplifications (estimated from spectral ratios) it is suggested that these may be due

to either deamplification at the base of the hill, or to three- dimensional (3-D) effects, despite

some of the reported observations being made on two-dimensional mountain ranges. Since

deamplification at the bottom of the hill is not apparent from the results of the 2-D modelling

so far, we extend the study to the cases where the hill is surrounded by basin-like deposits of

sediments, in order to analyse the effects of their coupling on the overall response. This

includes the cases of constant material properties (Case 1) and varying wave velocities of the

media outside the basins (Case 2), in order to account for the possibility of irregular uplift of

layers of similar material properties, which may result in resonance. A more complex type of

ridge formed by the dipping of two sedimentary irregular layers embedded in an alluvial

basin is also considered (Case 3), to account for cases where tilted layers may produce strong

focusing effects.

We also address problems of 3-D topographies, by modelling the ground motion of cosine-

shaped canyons and ridges upon the impact of plane waves (teleseismic) in order to perform a

parametric study of the response in terms of the angle of incidence, shape ratio, frequency and

type of incident wave.

The 2-D problems discussed here have been treated with a hybrid method based on the

Riccati-Matrix Equation method (Benites and Haines, 1991, Haines, 1989), and the Boundary
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Integral method (e.g. Benites and Aki, 1994). The 3-D problems were treated with a boundary

integral scheme based on artificial wave source distribution over an extended area covering

the irregular topography.

2. 2-D MODELLING

In this section the predicted ground motions for the 2-D models described above are

presented in terms of both frequency response computed at several recording points (or

stations) along the spatial range of the models, and synthetic seismograms. These seismo-

grams are computed from the synthesis of 100 complex valued frequency responses along the

spatial range of the models, using a Ricker wavelet as source-time function whose peak

frequency is 1.5 Hz, unless specified otherwise. For Cases 1 and 2 a parametric study

considering several types of incident waves, several angles of incidence, three components of

motion and 100 stations along the range where the motion is computed, yield large amounts

of data. To best describe them the frequency responses are given without specifying the

position of the stations, except for the one that yields the maximum amplitude for a particular

component of motion. In this way the general features of the responses can be analysed. Later

in the section some details of amplification at particular positions will be discussed. For Case

3 the analysis in the frequency domain is done for three particular positions within the range.

Finally, for the three-dimensional cases the results are given only for the spatial distribution

of ground motion for prescribed frequencies.

2.1 Case 1

Consider the stratigraphy depicted in Figure 1, consisting of a hill flanked by two small

basins, extending over 10 km. The height of the hill is 1 km, with shape ratio (i.e. the ratio of

height to half-width at its base) equal to one. The maximum depth for each basin is 250

metres. The material properties of the hill and bedrock are density P2 - 1.5 g/cmt S-wave

velocity [32 = 2 km/s and P-wave velocity a2 = 3.5 km/s. For both basins pl = 1 g/cmt 131 = 1

km/s, al = 1.73 km/s. Figure 2 shows the response to a vertically incident SH wave, for up to
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3 Hz. The geometry has been divided into three regions; regions 1 and 3 containing the basins

to the left and to the right of the hill, respectively, and region 2 containing the hill. The

responses are given at 9 stations distributed uniformly along region 1, one being set off the

axis (at x = -1 km) to represent the half-space without the model, 5 stations being set within

region 2 and 8 stations within region 3. The amplitudes of the responses are given in terms of

non-dimensional values corresponding to normalisation with respect to the response of a half-

space with flat free-surface without the topography (a factor of 2). The actual units for the

computed amplitudes are the same as those of the amplitude of the input wave, and we will

refer to them either as 'units of amplitude' or simply by giving their absolute value.

A dominant feature in Figure 2 is that the largest amplitude occurs in the region 1, of up to

8.6 units of amplitude (or 2 x the value 4.3 in the figure) at the station located at x = 3.5 km,

for frequency f = 1.71 Hz. To a lesser degree, the stations on the hill also yield high

amplitudes, of up to 5.2 at x=5km (top). The variability of the responses with frequency

along the basins is remarkable, compared with those on the hill which yield rather flat

spectra. In terms of the non-dimensional frequency 9 = base width/X, our 3 Hz maximum

frequency corresponds to 11 = 6. Taking this into account, the response of the hill resembles

that of the examples shown in Figure 10 of Part I.

Figure 3 shows responses in the time domain computed at 21 stations distributed uniformly

along the 10 km range. In addition, we have included two stations on each side of the range

outside the basins, to account for the phases travelling away from the model. The total

duration of the seismograms is 20 seconds. It is observed that the incident wave is amplified

about 2.5 times at the station on the top of the hill, and reflected away from the hill,

propagating horizontally throughout the basins (marked with '92 in the figure). In general, the

seismograms of the stations within the hill are of relatively short duration. These suggest that

there is a lack of strong multiple reflections within the hill, and that the computed

amplification at the top is mainly due to single scattered waves which originated at the base

of the hill. The later arrivals, of relatively small amplitude at these stations, are likely to be

due to diffraction of waves originating in the basins. On the other hand, the long duration and

large amplitude seismograms at stations within the basins suggest resonance, but it must be
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pointed out that for region 1 the larger amplitudes do not occur at the center of the basin

where the depth is maximum, but rather close to the hill (this is true also for the frequency

response). This fact, and the propagation of a wave reflected from the hill horizontally

towards the stations outside the range, determine the coupling between the hill and the basins.

Note that i is not only transmitted away from the range, but is also reflected at the edges of

the basins, contributing to their amplifications. The case of a vertically incident plane P wave

is shown in Figures 4 and 5, for frequency and time domains respectively, also normalised

with respect to the response of a half-space without the topography (a factor of 2). Figure 4(a)

shows that the larger amplitudes for the horizontal component of the motion occur in the

basins, as in the previous case, although the maximum value (2 x 2.3 = 4.6 at 3.5 km for

2.25 Hz) is about one half of that for the SH case. The responses along the hill yield flat

spectra, with a maximum value of 2.4 for 1.8 Hz. The variability of the response is large

within the basins, but in region 1 the response decays abruptly towards the end of the basin.

This suggests significant wave conversions taking place at the edge of the basin opposite to

the hill. This is not apparent in the basin of region 3, where such decay appears quite smooth.

The maximum amplitude of the vertical component Uz (Figure 4(b)), of about 10.8 at x = 2.5

km, forf= 1.77 Hz, is significantly larger than that of U. The abrupt decay observed for 4

in region 1 is also observed here, but for stations closer to the center of the basin than towards

its edge. It is of interest that the maximum amplitude for each component occurs at a different

frequency, and that the frequency of maximum amplitude of M is similar to that of SH in

Figure 2 (see also Table I). Again, the spectra on the hill appear quite flat, with no particular

distinction among stations. The synthetic seismograms in Figure 5(a) show that the horizontal

component cancels out at the top of the hill, in spite of the asymmetry introduced by the

basins. Only weak secondary arrivals appear, resulting from its interactions with the basins.

The synthetic seismograms for component M (Figure 5(b)) show that resonance occurs at

both the center of the basin in region 1 and at 7 km in region 3. At the top of the hill the

incident wave is amplified by a factor of 1.5. From both seismogram sections it appears that

the waves propagating from x= 2.5 km in region 1 and from x=8 kmin region 3 towards the

ends of the range are dispersive, with both components 90° out of phase, suggesting Rayleigh

waves travelling away from the model as a result of P wave impact.
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Figures 6 to 11 correspond to the cases of an SF plane wave vertically incident, an SV

incident at 75°, and a Rayleigh wave incident, upon region 1, for frequency and time

responses. The description of the results follows that from the previous cases, and we refer

the reader to Table I (homogeneous) for the peak amplitude values and their corresponding

positions and frequencies, in each case. We describe here only the most salient features of

these results. The seismograms in Figures 7 (a) and (b) for a vertically incident SF show that

the waves travelling away from the basins do not exhibit dispersion, as happened in the case

of P incidence, but rather show body P and S waves converted/transmitted at the edges due

the incident wave, and to multiple bouncing of trapped waves within the basins. The

seismograms for SF incident at 75° (Ricker wavelet peak frequency = 1.04 Hz) show strong

reflected body Sp and Ss waves in region 1 (Figure 9(a)), while the wave emergent from

region 2 may correspond to a Rayleigh wave (S, in Figure 9(b)). Rayleigh waves incident

upon region 1 reflect weak P waves and strong Rayleigh, while strong P and Rayleigh

emerge from region 2 (Rp and R, in Figures 11 (a),(b)), where Rp means incident Rayleigh

wave converted into P wave, and so on.

The computations of ground motion so far may raise some questions about the estimation of

amplification factors from spectral ratios using teleseismic waves. For instance, if

amplification factors for the hill were to be computed from spectral ratios with respect to

stations in region 1, the results will depend strongly on the reference location. For example,

let us take the case of the vertically incident SF wave, in Figure 6(b). In the frequency range

of 2 to 3 Hz, the stations at the edge of and outside the basin, which presumably are

dominated by the incident wave rather than by the effects of the basin, yield flat spectra with

values varying from about 0.2 to 0.1. For the top of the hill, whose amplification values vary

from about 1 to 2.8, the spectral ratios yield factors for the vertical motion between 5 and 28.

Note that this will happen even if the reference spectrum is smoothed. Clearly, the problem

boils down to either identifying the frequency content of the source, in which case near-to-

middle field sources may be more appropriate, or to use a large time window of the

seismograms, which may have the disadvantage of contamination by other nearby site effects.

On the other hand, teleseismic waves may be convenient for reverse situations; that is, when
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the amplification factors of the basins are to be found from spectral ratios using the hill

(outcrop) as reference. The reason is because, as observed in our calculations so far, and in

the ridge models reviewed in Part I, the response of a hill over a half-space is not strongly

affected by heterogeneities outside it. In other words, the variability of the response over an

isolated hill (flanks and top) does not change dramatically in the presence of other

stratigraphic features around it. Having one of these seismograms as reference, the effects of

the hill can be easily modelled and removed from the data, yielding a seismogram that

reflects the source and/or path effects more accurately.

The effects of heterogeneities within the hill on the hill's response have not been fully studied

at present. In the next case we address some examples to this subject.

2.2 Case 2

In this case the geometry of the problem (Figure 12) is exactly the same as that for Case 1,

but the S-wave velocity of the bedrock varies along the range and with depth, so that its value

at a reference point x-5 km, z= 2.5 km is 13=3 km/s. Contour lines through points of the

inhomogeneous bedrock having the same S-wave velocity are depicted in Figure 12. We

constrain our analysis to the case of incident SH waves only. The effects introduced by the

inhomogeneity of S-wave velocity are quite strong in both the frequency and time domains,

but not dramatic. This may be due to the fact that the density and the S-wave velocity of the

bedrock at the bottom of the basins are still the same as those at the top of the hill, so that the

impedance contrast along the boundaries of the basins and the bedrock is still the same as it

was in Case 1. It is the velocity at deeper points in the bedrock which increases, introducing

the effect of focusing the incident seismic energy. Comparing the response with its

corresponding homogeneous case (Figure 2) and referring to Figure 13, and to Table I, the

values of its maximum amplitude, frequency and position are 13.6, 1.8 Hz and 3.5 km,

respectively. The variation with frequency of the response on the hill is smaller in this case;

the station right on the top becoming almost indistinguishable from the others. The variation

of the response in the basins remains almost unchanged with respect to the homogeneous

case, except that the resonances are well defined and the amplitudes larger, being up to 14 for
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the basin in region 1. The synthetic seismograms in Figure 14 show that the pulses within the

basins appear strongly amplified, by a factor of 2, with respect to the corresponding traces in

Case 1 (Figure 3). The seismograms are of higher frequency content than those for the

homogeneous case (e.g. compare traces at 2,2.5,8,8.5 km) and of longer duration. In

general, it appears that the effect of the S-wave velocity inhomogeneity is to enhance the

resonances in the basins, without shifting either the positions or the frequencies of the

maximum amplitudes. The seismograms at stations outside the basins, in the half-space, show

the arrivals (with arrows) of the first waves reflected at the basin-bedrock boundaries, and of

the waves that propagate horizontally from the hill throughout the basins, at earlier times than

those corresponding to the case of homogeneous S wave velocity. In addition, a train of

phases of similar waveforms but of decaying amplitudes arrives at intervals of about one

second. These phases are not observed in the case of homogeneous S wave velocity, and are

due to multiple bouncing in the inhomogeneous medium close to the surface. On the top of

the hill the incident pulse is amplified by a factor of about 2.7, slightly higher than it was in

the homogeneous case. The seismogram shows the arrival of waves back-scattered in the

basins more clearly than the homogeneous case, although it remains of short duration. The

response to an SH horizontally incident at +90° is shown in Figure 15. The amplitudes over

the hill are about the same as those for vertical incidence, exhibiting similar variation with

frequency. On the other hand, the amplitudes are significantly larger at all stations within the

basins, of up to 20.6 for 1.77 Hz, at x = 3.5 km in region 1. The corresponding seismograms

in Figure 16 show slight amplification of the incident wave at the top of the hill, of about 1.3

times, exhibiting significant distortion of the wavelet compared with vertical incidence. The

seismograms in the basins show resonance, with peak-to-peak amplitudes between three to

four times larger than the incident wave at x = 3 km in region 1, and at x = 7.0 km and x =

7.5 km in region 3.

2.3 Case 3

Referring to Figure 17, let us consider a ridge formed by two dipping irregular layers of

gravels within a sedimentary basin. The whole geometry extends over 2 km, with maximum

depth of 500 m. The ridge rises 100 metres above the flat free-surface. The stratigraphy is
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formed by four layers numbered from 1 to 4, over a half-space (bedrock), numbered 5; with

all layers exhibiting inhomogeneous material properties as listed on the sides of the model in

Figure 17. The symbol Q stands for the quality factor, which is input in the model for both P

and S waves. As an example, Figure 18 shows contour lines corresponding to variations of

S-wave velocities between 0.2 km/s and 0.25 km/s in layer 1, and 1.2 km/s and 1.5 km/s in

layer 4.

Computations of the ground motion for vertically incident plane SH, P, and SF waves are

shown in Figure 19, normalised to the response of the flat-free surface half-space without the

basin, and for a single input frequency of 2.5 Hz. The motion was also computed along 1 km

of the flat free-surface extending over each side of the basin, to account for the incident wave

plus waves reflected/transmitted away by the model. The maximum amplitude of the motion

over the hill is not larger than 4, or twice the input amplitude. For incident P there is no

amplification for the horizontal component U„ in spite of the irregularity of the medium.

Figures 20 (a) and (b) show the ground motion for 60° incidence and for SH and Rayleigh

waves incident at =690°, respectively. In general, the motion on the ridge is significantly

smaller than that on the horizontal deposits for all the incident waves considered, and large

amplitudes up to 24 (2 x 12) occur at stations on the sediments close to the left edge of the

basin and close to the base of the ridge, for SH waves at horizontal incidences. For these cases

we compute the frequency response at a total of nine stations, distributed as follows: three

outside the basin, towards the left, three within the basin, at 0.2 km, 1.0 km and 1.8 km,

labelled stations 1,2,3 respectively, and three outside the basin towards the right. Results are

shown in Figure 21, for incident angles +90° (top) and -90° (bottom). Spectra are given for a

frequency range from 0 to 4.78 Hz. The latter value corresponds to an input wavelength X =

0.52 km in the bedrock (13 - 2.5 km/s), which in turn corresponds to four wavelengths within

the range. On the surface over the sediments (13 = 0.2 km/s) that is equivalent to 47

wavelengths, and over the ridge(13 = 0.7 km/s) to 14 wavelengths, along the range. Only the

responses within the basin are identified, as indicated in the top right of the figure, because of

their large variability with frequency. The maximum amplitude occurs at station 2, of up to

20 (2 x 10), for f = 0.32 Hz, and for -90° incidence. The sharpness of the peak suggests
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resonance due to waves propagating through regions of low attenuation within the medium.

At the same frequency the responses of the stations outside the basin on the left, and the

response of the station 3 (on the ridge) are much smaller than the maximum amplitude, which

implies that resonance is occurring mainly within the horizontal deposit of sediments (layers

1 and 2 in Figure 17). The corresponding wavelength is 0.625 km on the surface, or about

one-half the size of layer 1, suggesting that the resonance is mainly due to waves propagating

horizontally within it. The response of the basin to an incident Rayleigh wave (half-space) at

+90° is shown in Figure 22, for up to 1.6 Hz. The labels are the same than those for Figure

21. As in the previous case, the maximum amplitudes are larger at station 2 than those at any

other station, for both components of motion. No sharp peaks are observed, and the

frequencies of the two largest amplitudes are around 0.50 Hz and 0.64 Hz, respectively. In

both examples the responses on the ridge yield flat spectra with low amplitudes and, in

general, their character is similar to that of the responses of hills described in the previous

section.

To illustrate the complexity of the wave propagation for this Case 3, we have computed the

synthetic seismograms for all the incident waves mentioned above, and for 120 receivers at

the surface, covering 2 km of the half-space on each side of the basin (a total of 6 km). These

are shown in Figure 23 (a)-(d). In general, the common feature in all the seismogram sections

is that the motion is concentrated mainly within 0 and 1.2 km, that is in the part of the basin

between the left edge and the base of the ridge. In comparison, the motion over the ridge

(from 1.2 km to 2 km) is small, and of short duration. From these figures, let us discuss the

dependency of the time response on the type of incident wave and the angle of incidence. In

the case of a vertically incident P-wave (Figure 23 (a)) the waves reflected/converted at

bottom of the basin in the bedrock arrive with negligible amplitudes at stations outside the

basin. Inside the basin, between its left edge and the base of the ridge, the motion appears to

be dominated by body waves travelling in opposite directions during the first five seconds

after the arrival of the incident wave (t - 4.5 x 2 = 9 sec in the figure). After the 9-th second

the motion becomes rather coherent; all stations within that range exhibiting about the same

amplitude of horizontal component (UD. The vertical component (Uz) appears to cancel at
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several stations after 10 seconds, but displaying similar coherent pattern. Travel times for

both components suggest that the velocities of the waves travelling back-and-forth for the

vertical component are slower than those for the horizontal. An SF wave vertically incident,

i.e. with particle motion polarised along the X direction (Figure 23(a), bottom) is strongly

attenuated at stations along the basin, but generates body waves of amplitude about four times

larger than those for an incident P wave during the first eight seconds after its arrival. The

waves generated towards the base of the ridge are of significantly larger amplitudes than

those generated at the left edge of the basin, in particular for the horizontal component (up to

three times). At stations close to the base of the ridge the first onsets after the incident wave

arrive almost in phase, suggesting focusing induced by the dipping layers. Since the incident

wave is purely horizontal, and the horizontal component does not cancel at any station in this

region, the motion appears to be dominated by the waves which originated at the base of the

ridge travelling in one direction, back-and-forth. The coherency patte,ns shown by these

seismograms, for both components, are similar to those described for the P incidence, except

that in this case coherence appears at about 12 seconds. It is interesting to note that the

inclined incidences of P and S waves (at 60° and 30° from the right side, respectively, (Figure

23 (b)) generate larger amplitudes than those at vertical incidences at all stations on the

sediments, suggesting stronger resonance. The description of the propagation for Rayleigh

(Figure 23 (c)) and SH (Figure 23 (d)) horizontal incidences follows the context of the

previous cases in regard to amplitudes and coherence patterns. It is worth mentioning that it is

not possible, without a thorough analysis of particle motion, to conclude whether the motion

in the basin after the 10-th second is dominated by body waves or by surface waves. Also, the

largest amplitudes among these cases correspond to an SH wave horizontally incident from

the right side of the basin (Figure 23 (d)), at stations close to the base of the ridge. We select

this particular case to analyse the maximum amplitude of ground motion for several input

frequencies. Referring to Figure 24, we compute 10 seconds of synthetic seismograms at 11

stations along the same range of the previous cases. We choose four values for the breadth of

the Ricker wavelet; 4 - 1.1, 0.55, 0.36667, and 0.275 seconds, corresponding to peak

frequenciesf = 0.71,1.42,2.13 and 2.84 Hz, respectively (4 = 46/7[ 4). We observe that the
maximum amplitude occurs at the station located at 1 km (labelled 'station 2' in Figure 21) for
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these four frequencies. But the most interesting feature is that the value of maximum

amplitude increases with frequency, peaks at 1.42 Hz, and then decreases with frequency. On

the other hand, the duration of the seismogram at this station decreases uniformly from the

lowest to the highest frequencies.

3. 3-D MODELLING

Consider the topographic features depicted in Figure 25, corresponding to a cosine-shaped

3-D canyon (top) and to a hill, or mountain (bottom) defined in a 31 km by 31 km square

area. Both features are of square shape at their base, of side 2a, extending between 10 km and

20 km within the larger area (a = 5 km), in both the directions of X and K The reasons for

choosing this square geometry are two; the first, which is of concern here, is to allow the

comparison of the responses at different 2-D profiles parallel to the sides of the square

without changing the relation of input wavelength to the base width of the mountain. The

comparisons will thus emphasise the dependence on depth (or height for the mountain) at

constant frequency. In this sense, comparisons with similar 2-D models by Bouchon (1973)

will be possible. It can also allow the choice of profiles along the diagonals passing through

the center, for instance, so that the relation of input wavelength to the base width will change.

Finally, it will allow us to check the effect of the azimuth of the incident wave. The second

reason is because it is the most suitable geometry to combine the Boundary Integral solution

with that of Riccati Matrix Equation (Benites and Haines 1991, Haines 1989) to incorporate

3-D basin structures, which will be done in future studies. The maximum depth (height) is

3 km, at the center of the square, i.e. atx = 15 km andy = 15 km. The grid points at which the

ground motion is computed are defined by 100 lines regularly distributed between 0 and

31 km along each axis. The incident wave considered in all examples that follow, corresponds

to a plane wave, defined with respect to a Cartesian coordinate system E (for East), N (for

North) and Z (for depth, positive down), with E and N oriented in the direction of X and Y ,

respectively. The incident plane wave is contained in a plane defined by the azimuthal angle

0, measured clockwise from N, and by Z, henceforth called azimuthal plane. The particle

motion of the incident wave is defined as follows: contained in the azimuthal plane for an SH
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wave, perpendicular to the azimuthal plane for an SK; and in the direction of the angle of

incidence with respect to the vertical 0, for a P wave. The frequency of the incident wave is

given in terms of a non-dimensional frequency 11 defined as n = la/k.

3.1 Mountain

Results for the case of a mountain upon the impact of vertically incident P wave are shown in

Figure 26. These correspond to the three components Un Uy and Uz of the ground motion

measured at each point of the grid defining the area containing the mountain. The input

frequency TI=2 (i.e. when 1 - a). The motion consists ofthree components along X, F and Z

The 3-D views of the horizontal components of motion in this section must be interpreted as

follows: for M (top) we look at the variations of the ground motion along the X-coordinate, or

Y-coordinate, of "sliced" cross-sections, or profiles, cut for a particular Y-coordinate, or

X-coordinate, respectively. Accordingly, the variations of Uy with respect to either X or Y

must be seen in the plot below (middle) along the Y-coordinate, or X-coordinate, of sliced

cross-sections, or profiles, cut for a particular X-coordinate, or F-coordinate, respectively. We

observe that after rotation by 90° the horizontal components are equivalent, with nodes (zero

motion) at all points along X and F of the cross-sections cut at the center of the mountain, as

expected from the symmetry of the incident wave. The square symmetry of the horizontal

motions, shows cancellation towards the edges, for both components, indicating minimum

leaking of seismic energy towards the half-space in the directions along the diagonals at the

base of the mountain. The variations of the vertical component M along both X and Y are

shown at the bottom of the figure. The value of 2 corresponds to the response of the half-

space to the incident P wave. The maximum amplitude, of about 8.5, occurs at the top of the

hill. This can be seen in Figure 27, where the top two rows correspond to the three

components of ground motion at two perpendicular profiles intersecting at the top of the

mountain along X and F, respectively. The maximum amplitude for the horizontal

components is about 2, occurring on the flanks of the hill. The zero responses are along the

profiles corresponding to the nodes in Figure 26. An example of the ground motion computed

at points away from the center is shown by the two rows of plots at the bottom of Figure 27,

corresponding to two perpendicular profiles intersecting at a point x = 12 km, along X and Y,
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respectively. Note that the responses is this case are totally different from those at the

corresponding profiles at the center, attributed to the effect of the third dimension. The case

of a vertically incident SF wave in shown in Figure 28. Nodes occur at profiles crossing the

center along X and Y for 4, and along Y for Ur Maximum amplitude occurs for U:, of up to

4.3, but the amplitudes for the horizontals are significant, of up to 3.8 for Ux along profile F

(Figure 29). It is interesting to note that large amplitudes for the vertical component occur

towards the flanks of the mountain, decreasing abruptly to zero right on the top, in

accordance with the fact that the incident wave has no vertical motion. Although no

computations were made for a 2-D cosine shaped mountain of equal shape ratio (3/5) as for

these profiles, the motion does not resemble any of the 2-D responses given by Bouchon

(1973) for several shape ratios. For the perpendicular profiles at point x = 12 km described

above, no large amplitudes are observed. The SH vertical incidence is shown in Figures 30

and 31, for completeness. Except for the fact that U and Uy correspond to a 90° azimuthal

rotation of the SK as expected, the description of results is exactly the same as for the

previous case.

3.2 Canyon

Results are presented for 11= 2 for incident P waves, in order to compare the motions with

those of the hill in Figure 26, and for 9 = 1.5, i.e. the incident wavelength is 2/3 of the base

width (2a), for incident S waves. For the vertically incident P wave case, shown in Figure 32,

the profiles along X and F passing through the center are nodal axes for U and Uy,

respectively, showing that both components correspond to a 90° azimuthal rotation of the

incident wave in each case, as expected. The maximum amplitude is about 2.3 for the vertical

component at the bottom ofthe canyon, as observed in Figure 33 (top).

The cases for vertically incident SF and SH waves are shown in Figures 34 and 35,

respectively. It can be observed that the three components in each case correspond to a 90°

rotation of the input wave around the Z axis. The 2-D profile analysis is presented only for the

SM case in Figure 36, showing that the maximum amplitude, about 4, occurs for 4 along the

profile Y through the center. If this were a 2-D structure, Ux would be equivalent to the SH
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response measured along F (anti-plane). Taking this into account, and that the ratio of depth

to half-width in our case is 3/5 = 0.6, and that our input wavelength is X = 4a/3 (or 1.33 a),

we compare these 3-D responses with those by Bouchon (1973) for a cosine-shaped canyon,

in Figure 5 of Part I. Although there is no case in Bouchon (1973) that matches exactly our

shape ratio and input wavelength, we can take the case of h/l = 0.62 in that figure as the

closest (h is depth and l is half-width, i.e. equal to a in our case). We also take into account

that the input wavelength X = 5 h (about 3a) is characteristic of the response between X =a

and 1 = 20a (Bouchon 1973). Bearing in mind the normalisations in Figure 5 of part I, the 3-

D response of Ux along F for an SF incidence resembles roughly the 2-D response for an SH

wave. As well, the motion M along X resembles the 2-D vertical motion to an incident SK

Similarly, the 3-D Ux response for incident P in Figure 33 resembles the 2-D horizontal

motion for a P wave. Such resemblance breaks down for the profiles X-Z passing through x =

12 km, where neither the horizontal component Uy nor the vertical Uz cancel out.

Next we computed the 3-D responses of the canyon for an SF wave vertically incident but

with azimuthal angle ¢ = 45°, shown in Figures 37 and 38. That is, the incidence is upon the

largest base-width of the canyon equal to 2.83a. The responses are symmetric in spite of the

incidence, as expected, because it is only the phase of the seismic arrivals that changes in this

case. As observed in Figure 38 (top), the responses along the two profiles passing through the

center are remarkably the similar to those corresponding to ¢ =0, although the amplitudes are

in general smaller by a factor of about 0.75. Note that the nodal lines for the horizontal

components in the previous case disappear, indicating dependency on azimuthal angle. For

the profiles at x = 12 km (Figure 38, bottom) the symmetry breaks down, but the maximum

amplitudes do not change significantly.

For the last case in this section we consider an inclined incident SF wave with 0 = 30°, but

with * = 0, shown in Figures 39 and 40. The node for Uy along X observed in the vertical

incidence is conserved, but those for Uy and Uz along Y disappear. The responses are non-

symmetric with respect to X and symmetric with respect to Y, for both sets of profiles. The

characters of the responses of Ux along X and Y change drastically compared with those for
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vertical incidence for both sets of profiles, indicating strong dependency on the angle of

incidence. Contrary to most cases of inclined SF incidence in 2-D, here the amplitudes are

smaller in general than those for vertical incidence, except for the vertical component.

4. CONCLUSIONS

In this Part II we have performed a parametric study of the ground motion of two and three

dimensional topographical structures in terms of the type of input seismic wave, frequency,

angle of incidence with respect to the vertical, azimuthal angle, elastic parameters of the

media and dimensions defining the shape of the structure. This study was prompted by the

outcome of Part I, indicating that large mismatches exist between observed amplification

factors along mountain ranges, and those predicted by theoretical methods. Such

disagreements may be attributed to complex material properties, 3-D effects, and to the use of

spectral ratios to compute amplification factors. Our study focused on 2-D and 3-D models

that, although generic and subjected to the impact of teleseismic (plane) waves, may occur in

practice. The most important outcomes from these theoretical modellings are listed below.

2-D models

• For a cosine-shaped hill surrounded by basin-like deposits of soft sediments (Case 1),

the maximum amplification occurs always in the basins, for frequencies between 1.6

and 2.3 Hz, and regardless of the type of incidence (P, SF or SAD. The maximum

amplitude is about 13 for the hill with homogeneous material properties, and about 21

for that with heterogeneous distribution of S-wave velocity in the bedrock, for

horizontally incident SH waves (resembling Love waves). The time-domain responses

indicate that the maximum amplitudes correspond to resonance, in the basins. On top of

the hill the incident wave is strongly amplified, up to four times, but the computed

seismograms are of short duration. Although the spectrum is rather flat, the time-

domain pulse may yield large values of peak amplitudes of the ground acceleration.
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• The motion on the hill is not strongly affected by presence of the basins. That is, its

responses in the frequency and time domains are similar to those of an isolated ridge in

a half-space, yielding moderate amplification and mainly flat spectra along its range.

The maximum amplitudes are around 3 (units of displacement of the incident wave),

which is about the same for the isolated hill (Part I). The coupling between basins and

hill is determined by a wave generated on the hill and propagating horizontally through

the basins.

• In terms of amplitudes and variability, the coupled responses of basins and hill are

sensitive to the angle of incidence.

• The inhomogeneity of the S-wave velocity distribution in the bedrock (Case 2)

significantly affects the responses of the basins and the hill, in terms of variability and

amplitudes. This applies to both the frequency and time domains.

• For the ridge formed by dipping gravel layers within a sedimentary basin (Case 3) the

maximum amplitudes, up to 20, occur on the deposits of sediments, close to the foot of

the ridge, for all types of incident wave considered. The amplitudes on the ridge are

much smaller in comparison, but reach a maximum value of 5 for horizontally incident

SH waves. The variability of the response along the ridge is small, compared with that

on the basins, yielding mostly flat spectra.

• The time-domain responses show that most of the wave propagation processes occur

within the sediments after the arrival of the incident wave. Except for the strong

amplification of the primary pulse, only small phases appear to arrive at stations on the

hill scattered from the basins.

• Amplifications at the base of the ridge in the case considered increase with frequency

up to 1.42 Hz, then decrease abruptly.
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3-D models

• The maximum amplitude of the response of a cosine-shaped hill, or mountain, with

square base and homogeneous material properties occurs for the vertical component, of

up to 8.5 (units of displacement of the incident wave) upon the incidence of a P plane

wave. The effect of the third dimension at the top of the hill is to strongly alter the

horizontal components. For the case of the canyon, the maximum amplification values

do not exceed 4 for all the input waves considered.

• In general the character of the responses for both canyon and hill, or their spatial

variation, depends weakly on the azimuthal angle of incidence *. However, the nodal

profiles for a particular azimuth, i.e. the profiles along which one or more components

of motion cancels out, disappear at different azimuths.

• The responses of both hill and canyon depend strongly on the incident angle.

• The motions at 2-D cross-section profiles away from the center of the hill do not

resemble at all those corresponding to profiles passing right through the center. This

can be attributed mainly to 3-D effects because, first, the relation of input wavelength to

size of hill at the base of these profiles is the same as for the center and, second, the

effect of the change of shape ratio due to smaller height only does not strongly affect

the character of the overall response.

• The 3-D models of canyons reveal that when the response of one of the horizontal

components is nodal along profiles passing through the center, the response of the other

components with respect to either X or Y roughly resemble those for an equivalent 2-D

model (see Figures 33 and 34, compared with Figure 5 of Part I). This resemblance

breaks down when none of the horizontal components is nodal. Resemblance to 2-D

responses does not appear to occur for the case of the hill, although more numerical

experiments are required to study the extent to which the response computed with 2-D

models are representative of the response in 3-D.
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In general the models proposed here do not yield amplification factors as large as those

reported for observations (up to 30). The largest amplification factor from the 2-D complex

models can be estimated at about 20 from spectral ratios, taking as reference site stations

away from the hill. The factors computed using reference stations close to the hill can be

quite variable. On the other hand, the amplification factors on the basins, or other sites away

from the hill, can be accurately computed from spectral ratios taking as reference a site on the

hill (outcrop), because in all instances studied here and in Part I, the character of the response

of the hill does not appear to be strongly affected by the surrounding geology.
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TABLE I

Homogeneous

Type Angle Component Frequency (Hz) Amax Position (km)

SH 0 V 1.71 8.64 3.5

P 0 Ux 2.25 4.64 3.5

P 0 Uz 1.77 10.78 3.0

SV 0 UX 1.59 8.66 8.0

SV 0 Uz 2.01 4.90 3.0

SV 75 Ux 2.37 11.76 8.5

SV 75 Uz 2.04 12.00 3.0

R 90 Ux 1.74 7.34 3.0

R 90 Uz 1.83 7.26 3.0

Inhomogeneous

SH 0 V 1.80 13.60 3.5

SH 90 V 1.77 20.62 3.5

Table I: The values of maximum amplitude Amax computed for the models of hill and basins in Case 1
(homogeneous) and Case 2 (inhomogeneous); given for the type of incident wave, the angle of incidence with
respect to the vertical, the component of motion, the frequency of occurrence and position. Note the differences
in amplitude of the SH response for both cases, which can be attributed only to the effect of heterogeneity of the
S-wave velocity. In general, the maximum values occur in either of the basins and not always at positions

corresponding to their maximum depth. Note also that no maximum amplitude occurs on the hill.
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Figure 1. The model of a hill flanked by two irregular basins extending over 10 kilometres (Case 1). The shapes
of the hill and basins are determined by cubic-splines fitted at the points marked with blank diamonds, and at
the end points of the geometry, The hill is 2 km wide at its base, and 1 km high, i.e. its shape ratio is 1/2. The

maximum depth of the basins is 250 metres, and both have the same elastic properties.
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Figure 2. Frequency response of the stratigraphy depicted in Figure 1, to a vertically incident SH wave. Values
are divided by a factor of 2, i.e. normalised with respect to the response of the half-space without the
stratigraphy. Each trace corresponds to the spectrum computed at a point on the surface, or station, for 100
frequencies sampled between 0 and 3 Hz. The whole geometry is divided into region 1, between 0 and 4 km;
region 2, between 4 km and 6 km, and region 3, between 6 km and 10 km. The responses are given for
9 stations regularly distributed along the free-surface of region 1, 5 stations in region 2 and 8 stations in
region 3. Only the trace at the top ofthe hill is identified, with a blank square symbol.

AMPLITUDE

AMPLITUDE

64



O-

£ r
C)

3

Al -10 M - lilv V vy«

(D -

SS

2. 3.

-6

L

5.

l$f;

0 1. 4 6. 7. 8. 9. 10.

TIME (x 1 ) sec

Figure 3. Time-domain response (or synthetic seismograms) to a vertically incident SH wave at 21 surface
points along the geometry depicted in Figure 1 between 0 and 10 km. Two additional stations outside the
geometry on each side are included in order to account for the wavefield propagating away from the model. The
seismograms correspond to a Ricker wavelet input source-time function, of 1.5 Hz peak frequency. The arrows
mark the reflections from the basin-bedrock interfaces (SD, and the arrivals at both ends of a phase caused by

scattering at the hill (SL), propagating horizontally throughout the basins.
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Figure 4. Frequency response of the stratigraphy depicted in Figure 1 to a vertically incident P wave;
(a) corresponds to the horizontal component of motion Ux, and (b) to the vertical Ur The set of traces outside
the basin in region 1 is identified.
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that of Figure 3. The apparent non-causal arrivals at points around x = 3 km and x = 7 km are an artifact due to
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Figure 6. Frequency response to a vertically incident SF wave, for regions 1
(a) corresponds to Ux and (b) to Uz components.
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Figure 7. Time-domain response to a vertically incident SF wave, for Ux (a) and Uy (b). The peak frequency of
the Ricker wavelet is 1.04 Hz. First reflected/converted phase is pointed at by an arrow, as well as distinctive
S phases resulting from multiple bouncing within the basins.
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Figure 8. Frequency response to an SF wave incident at 75°, (a) for M , (b) for Uz.
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Figure 10. Frequency response to a Rayleigh wave incident from the left side (90°) of the stratigraphy depicted

in Figure 1, (a) for Ux, (b) for Uz
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Figure 11. Time-domain response for the Rayleigh wave described in Figure 10, (a) for U„ and (b) for Uz. The
Rayleigh wave appears to be strongly attenuated from x = 4.5 km towards the end of the geometry in region 3
(Rr). The large amplitude at the top of the hill and at the basins must be due to constructive interference with

scattered body P waves (Rp).
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Figure 12. The model of a hill flanked by two irregular basins of Case 2. The geometry is identical to that of
Case 1 (Figure 1), but here the velocity of S waves in the bedrock 13, varies in such a way that at x = 5 km 0, is

2 km/s at the top of the hill (z = -1 km) and 3 km/s at a depth z = 2.5 km. The curve that passes through x =
5 km and z = 2.5 km marked with dark diamonds defines an artificial, arbitrary boundary separating the region

where 13, varies, from the region (half-space) where 0, is constant with value 3 km/s. There is no impedance

contrast along this boundary. At the free-surface and along the interfaces of the bedrock with the two basins 13,

has the same value as that on the top of the hill. The S wave velocity of the medium between the free-surface
outside of the basins and the artificial boundary with the half-space is sampled by cubic-splines. The 22 lines

plotted illustrate the overall variation, where each line represents the points of the medium where 13, is constant.
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Figure 13. Frequency response of the stratigraphy depicted in Figure 12 to a vertically incident SH wave. The

regions 1,2 and 3 are defined in Figure 2, and the values are divided by 2, i.e. normalised with respect to the
response of the half-space without the stratigraphy.
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Figure 14. Time-domain response of the stratigraphy depicted in Figure 12 to a vertically incident SH wave.
The traces' distribution is identical to that of Figure 3, and the peak frequency of the Ricker wavelet is 1.5 Hz.
Arrows point at first reflected phases, which appear to arrive at shorter times than those of the homogeneous
case (Figure 3).
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Figure 15. Frequency response of the stratigraphy depicted in Figure 12 to a horizontally incident SH wave
(at 90°),
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Figure 16. Time-domain response to the horizontally incident SH wave described in Figure 15. Apparent non-
causal arrivals are caused by an artifact "wrap-around" periodicity effect of FFT, due to poor frequency
sampling to account for the observed large amplitudes in the basins.
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Figure 17. Stratigraphy for the basin and ridge of Case 3. The model extends from 0 to 2 km. The four layers,
numbered from 1 to 4, are embedded into a half-space, numbered 5. Layers of gravels 3 and 4 are tilted,
forming a ridge that rises 100 metres above the free-surface level (z = 0 m). Layers 1 and 2 are horizontal
deposits of sediments. The interface between the bedrock and both the gravels and sediments are roughly of

triangular shape. All four layers are of inhomogeneous material properties. The values of density p, Sand P

wave velocities 0, a, respectively, and attenuation factor Q (equal for P and S waves) are listed on the sides of
the model. The values of the elastic parameters for each layer are specified at points marked with blank
diamonds inscribed into half-squares. For example, in this figure the values of S wave at those points are
indicated explicitly. The values at intermediate points are sampled by cubic-splines. The values of the elastic
parameters for the half-space are constant, as listed, with no attenuation for either P or S waves (Q = inf).
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Figure 21. Frequency responses to horizontally incident SH waves 0 = *90° at three recording points, or

stations, of the stratigraphy depicted in Figure 17. These stations, labelled as 1,2 and 3 (top right), are located

on the free-surface close to the left edge of the basin, at the center of the basin close to the foot of the ridge, and
on the hill, respectively. The responses are computed for up to 4.78 Hz for each station, shown as dashed line
for station 1, full line with dots for station 2 and dash-dotted line for station 3. Responses are also computed at
six stations outside the basin (three at each side) shown by full lines.
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84



P incidence, 0°

U. U.
04

t
- I

%

&I
3 k f

L 00 - 41 1
/1

2/9- 11 4
6 25 %'A,

44=

V u. N

32

1

. 1- .

0 :. 2. 3. 4. 3. 6. 7. 8. 9. 0. 0 1. 2. 345 6 7. 8

TME (x 2 ) sec TIVIC (X € ) sec

SV - incidence, 0°

lux 1 U.
N

L-.J N

r. £.- & 1£*

1
- €2

.

i i \ \3 7 P i,4.06 I %0. ---11- ..% - . ,1 7 'WrP
1

i. 2. 3. 5. 6. 7. 8. 9. 10. 0 1. 2. 3. 4. 5. 0. 7. 8.

TiME (x 2 ) secTIME (x Z ) sec

a
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Figure 25. Three-dimensional (3-D) view of cosine-shaped topographic features corresponding to canyon (top)
and mountain, or hill (bottom), referred to a Cartesian coordinate system E N and Z (Z positive down). The area
where the 3-D topographic feature is defined is a square of side x = 31 km. The base of the canyon (mountain)
is also a square, of side 5 km, centred at x = 15 km and y = 15 km measured along X and Y, respectively. Its
height is 3 km. The area is sampled by a grid of 100 points along Xx 100 points along K The 3-D P, SF and SH

plane waves incident upon this topography are defined with respect to the coordinate system E N, Z, with
incident angle 0 measured clockwise from Z, and azimuthal angle ¢ measured clockwise from N. The azimuthal
angle defines a plane of incidence (dashed lines) in which the particle motions for P, SF and SH are defined. For

example, if 0=0 and *=0, then the P particle motion is in the z direction, the SF is in the E direction, and the
SH is in the N direction.
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Figure 26. 3-D views of the amplitude distributions of the ground response of the mountain (or hill) described
in Figure 25, to a vertically incident P wave. The motion is computed at each point of the grid, and the
amplitudes are given in the same units of displacement as the incident wave. The top view corresponds to the

horizontal component along X, Ux, the middle to the horizontal component along K 4, and the bottom to the
vertical component Uz. The input wavelength is equal to 5 km, (i.e one-half of the side of the squared base),
corresponding to a non-dimensional frequency n = 2al = 2. Ux and Uy exhibit nodal lines (zero amplitudes) at
x = 15 km and y = 15 km, respectively, showing that both components are equivalent, as expected from the
symmetry of the incident wave.
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Figure 28. 3-D views of the amplitude distributions of the ground response of the mountain described in
Figure 25, to a vertically incident SF wave, with azimuthal angle * = 0.
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Figure 30. 3-D views of the amplitude distributions of the ground response of the mountain described in Figure
25, to a vertically incident SH wave, with azimuthal angle ¢ = 0. Comparing them with those of Figure 28, the
SH vertical incidence in this case is equivalent to the SF vertical incidence with azimuthal angle ¢ = 90°, as it is
expected.
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Figure 31. Amplitude distributions of the ground motion along two 2-D perpendicular profiles (described in
Figure 27) of the 3-D ground motion due to a vertically SH wave, shown in Figure 30. Comparisons with the
corresponding motions for an SF vertically incident in Figure 29 show that this case of SH incidence is
equivalent to the SFvertical incidence with azimuthal angle ¢ = 90°.
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Figure 32. 3-D views of the amplitude distributions of the ground response of the canyon described in Figure
25, to a vertically incident P wave. As in the case of a mountain, here the input wavelength is 5 km (rl = 2). The
top view corresponds to the horizontal component of motion Ux, the middle to the horizontal Uy, and the bottom
to the vertical Uz. UX and Uy exhibit nodal lines (zero amplitudes) at x = 15 km and y = 15 km, respectively,
showing that both components are equivalent, as expected from the symmetry of the incident wave.
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Figure 33. Amplitude distributions of the ground motion along two 2-D perpendicular profiles (described in
Figure 27) of the 3-D ground motion due to a vertically P wave, shown in Figure 32. The nodal lines are
observed for the profile at the center of the canyon. Note the equivalence of the horizontal components for both
profiles.
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Figure 34. 3-D views of the amplitude distributions of the ground response of the canyon described in
Figure 25, to a vertically incident SF wave with azimuthal angle * = 0 (71 = 1.5). No nodal lines are observed for

UX' but Uy cancels out along the perpendicular profiles intersecting at x = 15 km and y = 15 km, and Uz along x
= 15 km.

SV

99



SH

0 UX
S

70

eO

eS

02

0£

Ch

Uy
0

S

7O

2O

JO O

%

ampl
3

02

01

Ez

UZ
0

S

TO

20

Jo o

ampl
Oe

12345 92

0l

Figure 35. 3-D views of the amplitude distributions of the ground response of the canyon described in Figure
25, to a vertically incident SH wave with azimuthal angle *=0 (11 = 1.5). Note that the motions are equivalent
to those corresponding to an SF vertically incident with azimuthal angle = 90°.
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Figure 36. Amplitude distributions of the ground motion along two 2-D perpendicular profiles (described in
Figure 27) of the 3-D ground motion due to a vertically incident SF wave, shown in Figure 34. The profiles

intersecting at the center of the canyon show the cancellation of Uy along the X-Z and cancellation of both Ux
and Uz along Y-Z. In that case, the components (4 and Uz along X-Z resemble the response (computed with 2-D
methods) of a cosine-shaped 2-D canyon with similar dimensions for an incident SF wave (Bouchon 1973).
Similarly, the component Ux along Y-Z resembles the response of a 2-D canyon to an incident SH wave. The
responses along the profiles passing through x = 12 km, y = 12 km do not resemble the 2-D responses at all.
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Figure 38. Amplitude distributions of the ground motion along two 2-D perpendicular profiles (described in
Figure 27) of the 3-D ground motion due to a vertically incident SF wave with azimuthal angle ¢ = 45°, shown

in Figure 37. Note that although the distributions are of identical variability as those of SF with *=0
(Figure 35), the amplitudes are about 50% smaller. The responses are symmetric along profiles X-Z and Y-Z
passing through the center, and non-symmetric along profiles X-Z and Y-Z passing through x = 12 km, y =
12 km, as expected from the type of incidence, since these correspond to the absolute values of amplitude (i.e.
phase of arrivals not included).

103



SV, *=0, e =30' n:

E
e

e
UX

S

70

120

JO O

0 123456789
0l

1.S

0

S Uy
70

20

%

12345 92

#

UZ

70

Figure 39. 3-D views of the amplitude distributions ofthe ground response of the canyon described in Figure
25, to an SFwave incident with anangle 8= 30° and with azimuthal angle 0= 0 (77 = 1.5).

13

104



Canyon, SV, 0= 300,0=0'

-

15, y=1

Uy

10 2

Uy

10 2

12,y=

Uy

0 20

Uy

0 20

x = 15

20 profile X-Z, Ux lIZ

€0,1.,1,1. 1..... 1... 11

0 10 20 30 0 0 30 0 10 20 30

20 profile Y-Z, Ux Uz

1 1 1 1 1 1 . 1 , 1 ' 1 1 ' lili 1 . 1 . 1 1                            , 11.lili.'.1

N -

0- -'- - -

0 10 20 30 0 0 30 0 10 20 30

x = 12

20 profile X-Z, Ux UZ

00 ...... ..1

to- --

--

N- --

0- - -

0 10 20 30 0 U 30 0 10 20 30

20 profile Y-Z, Ux lIZ

0 10 20 30 0 1 30 0 10 20 30

Figure 40. Amplitude distributions of the ground motion along two 2-D perpendicular profiles (described in
Figure 27) of the 3-D ground motion due to an SF wave incident with angle 0 = 30° and azimuthal angle * = 0,
shown in Figure 39. In general, the responses are symmetric along the profiles Y-Z, as expected from the type of
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