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EXECUTIVE SUMMARY

We present the results of a detailed investigation of the Alpine Fault in the area between the
Haast and Okuru Rivers, South Westland. This study builds upon previous investigations in order
to develop a better chronology of large earthquakes generated by ruptures on the Alpine Fault.
Work during the 1990s has established that the Alpine Fault is a major source of potential seismic
hazard and incorporation of data from the fault into seismic hazard maps has greatly changed the
perception of earthquake hazard in the South Island. A number of outstanding problems remain
in regard to the Alpine Fault, two of which are:

e How does the chronology of fault ruptures compare for different sections of the fault,
particularly the northern and southern sections? Is there evidence for the whole fault rupturing
in a single magnitude 8 event or may it break in two or more closely spaced smaller events
affecting different sections of the fault?

e What is the long-term (i.e. several thousand years) chronology of fault ruptures? Is the
behaviour of the fault relatively constant through time and can we use this information to
derive better estimates of future probability of ruptures and the accompanying level of
hazard?

The project involved four principal avenues of investigation:

® Detailed mapping of the fault trace to determine the nature of the fault at the surface, the
number of traces (if more than one), offset features such as channels, river terraces, etc. and
amount of offset where determinable, and the location of suitable sites for detailed
paleoseismic investigations.

e [Excavation of a trench at the Turnbull River, a site identified during the fault mapping, in
order to expose the fault and the sediments accumulated on the downthrown side of the fault.
From these, it was hoped to identify past rupture events and constrain their age using
radiocarbon dating.

® Collection of rounds from stumps of trees along the fault scarp felled during the 1960s and
70s and, using ring-counting techniques, to establish the approximate ages of forest
disturbances possibly associated with ground rupture events.

® A further investigation was carried out on a rapidly subsiding swamp situated between two
strands of the Alpine Fault on the south bank of the Turnbull River. The intention was to see
whether the swamp stratigraphy could be linked to fault displacements and hence be used as a
record of ground ruptures in the area.

All four investigations were successfully carried out and a wealth of detailed information
obtained. Unfortunately, unforeseen problems with obtaining meaningful radiocarbon ages on
some of the trench material and intense weathering of the tree stumps prevented us obtaining the
tight age constraints we had hoped for. Nevertheless, the data obtained substantially improved
knowledge of rupture history of the fault in the south and opened up further possibilities for
addressing the questions raised above.

Results from the four approaches may be summarised as:

® Detailed mapping of the fault trace shows that the fault is essentially a single straight trace
between the Haast and Turnbull Rivers. Slight changes in orientation are associated with en



echelon traces that overlap each other and are offset from a few to a few tens of metres.
Offset channels show displacements that cluster crudely around 8 and 15 m, possibly
reflecting the amount of the last, and combined penultimate and last, ruptures respectively.
South of the Turnbull River, the surface faulting is more complex with multiple parallel traces
in places.

The site selected for the trench at the Turnbull River was the only suitable site identified. A
22 m long and 2-3 m deep trench was excavated across the fault. There was clear evidence for
three fault displacements within the last 1000 years and radiocarbon dating of the lowest
horizon placed a maximum age on the earliest event of 1105 + 85 AD. Unfortunately natural
contamination of organic material faulted by the penultimate event resulted in widely variable
and inconsistent radiocarbon ages and prevented better age constraints being established.
Deposits related to the last event had been highly disturbed during forest clearance and road
construction.

Although over 20 samples of trees (Rimu) were collected and prepared for tree-ring counting,
loss of the sapwood on most of these, due to the long period of exposure in an inclement
climate, prevented their use in establishing well-constrained times of forest disturbance
related to possible fault rupture.

Detailed investigation of the South Turnbull Swamp established a rapid rate of subsidence
over the past 1200 years commensurate with that expected from models of fault controlled
subsidence. Inundations of river-derived silt possibly reflect fault ruptures. A major
inundation shortly before 1260 + 55 AD is almost certainly due to fault displacement. Three
others since then may relate to earthquakes but it is possible to generate additional bands
through other processes. Nevertheless, swamps such as this potentially contain valuable long
records of sedimentation related to fault displacement.

By reviewing our new data in conjunction with existing data, we can conclude:

Three major ground rupturing events have occurred on the Alpine Fault in South Westland
over the last 1000 years. All three had dextral offsets of approximately 8 metres. The first
occurred between 1105 and 1220 AD and may correlate with a similar event in central and
north Westland. The second occurred between 1400 and 1600 AD, but it’s correlation with
northern events, if any, is not established. The last event occurred after 1665 AD and before
1826 AD and may correlate with a fault-wide rupture at 1717 AD.

An earlier event occurred around 880 + 110 AD and may correlate with a widespread event to
the north at around 900 AD.

A major earthquake recorded by sailors in 1826 appears to have no direct fault break in the
present area. The break may have extended onto land or was confined to offshore segments of
the fault. The best approach for dating this and the post 1665 AD event may be
dendrochronological studies on silver beech trees along the fault scarp.

The Alpine Fault is a major potential seismic hazard throughout the South Island. Although this
work has advanced our knowledge of the fault history, the questions raised at the start still
require further research.
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TECHNICAL ABSTRACT

Investigation of the Alpine Fault south of Haast was undertaken to extend and improve the
prehistoric record of ground rupture events. Detailed mapping of the fault trace between the
Haast and Arawhata Rivers was completed (partly funded by PGSF). Excavation of a trench
across the trace at the Turnbull River was undertaken to expose the fault and the related
sediments in order to identify rupture events and constrain their timing by radiocarbon dating. A
collection was made of rounds from stumps of podocarps from along the fault trace which were
felled during the 1960s and 70s. It was hoped that ring-counting of these would enable periods of
growth suppression to be identified and dated. Finally, a small deep swamp situated in a rapidly
subsiding pull-apart between two strands of the fault was investigated to evaluate its use as a
record of fault displacement.

The fault has a relatively straight and single trace from the Haast to Turnbull Rivers but multiple
traces occur to the south. Horizontal offsets of features are consistent with an average slip of c. 8
m for each of the last two events. The trench provides evidence for three ground ruptures in the
last 1000 years. The first is constrained between 1105 + 85 AD and 1220 + 50 AD. This is also
supported by an event shortly before 1260 + 55 AD recorded in the South Turnbull Swamp. The
swamp also provides evidence for an earlier event at c. 880 + 110 AD. The penultimate event is
bracketed between 1400 and 1600 AD and the last event occurred after 1665 AD. Most of these
ages may be correlated with ground ruptures recorded from the northern section of the Alpine
Fault although the age constraints are insufficiently precise to conclude that they represent single
breaks. An earthquake recorded by sailors in 1826 off the Fiordland coast does not appear to have
broken the fault in the present area and appears to be of lower magnitude than the last rupture
recognised in this study. Unknown natural contamination of radiocarbon samples from one
horizon in the trench prevented better age constraints being obtained on the penultimate
earthquake. Excessive degradation of the collected tree rounds since felling prevented
determination of useful tree-ring ages.

The Alpine Fault in the south appears to have broken on average every 250-300 years. This is
consistent with a slip rate of 27 mm/yr and an average slip per event of 8 m. Comparison with the
rupture chronology established on more northern sections of the Alpine Fault strongly suggests
that the fault breaks along its whole length at these times. Whether this occurs in a single M 8
event or whether by two or more smaller events over a short time period cannot be determined
within the time constraints available. Nevertheless, the northern and southern records differ in the
number of events recognised suggesting that, at least on occasions, the two fault sections behave
independently.

iii
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1 INTRODUCTION

1.1 Background

The earliest work on active deformation of the Alpine Fault was carried out by Harold
Wellman over 50 years ago (e.g. Wellman, 1955). This work clearly identified the Alpine
Fault as a major active structure and produced estimates of the rate of slip. The lack of
evidence for fault creep indicated that large earthquakes accompanying ground rupture
were likely along the fault. A small amount of intermittent work followed (e.g. Suggate,
1963) but little on the fault as a seismic hazard. The development of the theory of plate
tectonics resulted in the recognition of the Alpine Fault as a major component of the
Australian/Pacific plate boundary (e.g. Le Pichon, 1968). The lack of major earthquakes
on the fault during the period of instrumental records produced a gap in seismicity along
this part of the plate boundary in the central South Island. The use of seismicity data for
estimates of probabilistic seismic hazard (e.g. Smith & Berryman, 1986) leads to low
values of hazard in the central South Island.

Resurgence of interest in the Alpine Fault was sparked by the publication in 1979 of
Royal Society of New Zealand Bulletin 18 “Origin of the Southern Alps” edited by R. I.
Walcott and M. M. Cresswell. This followed a highly successful workshop which drew
together the majority of New Zealand researchers with an interest in current tectonics.
Detailed fieldwork on the Alpine Fault during the 1980s and 90s (e.g. Hull & Berryman,
1986; Cooper & Norris, 1990; Norris et al., 1990; Berryman et al., 1992; Cooper &
Norris, 1994; Sutherland & Norris, 1995) began to establish the structure of the fault zone
and produce evidence for high slip rates on the fault of between 20 and 30 mm/yr.
Geodetic measurements (Walcott, 1978) also demonstrated high rates of current surface
strain accumulation in the vicinity of the fault. The lack of historical seismicity coupled
with the high rates of slip on the fault, high rates of strain accumulation, and lack of
evidence for fault creep, lead logically to the conclusion that strain must be released in
large fault rupture events at infrequent intervals of at least 100 years or more.

With no historical earthquake record for the Alpine Fault, paleoseismology is the only
approach that can yield directly a chronology of fault rupture events. The first to attempt
to date large prehistoric earthquakes on the fault was Adams (1980) who argued that
major aggradation upstream of the fault would occur following an earthquake and used
clustering of ages from aggradation surfaces to suggest past events at approximately 500
year intervals. Wardle (1980) pointed out that large areas of West Coast forest had been
established at about the same time in the early 18" Century and argued that this followed
widespread forest destruction during a major Alpine Fault earthquake at this time. Cooper
& Norris (1990) used ages from small sagponds along the fault trace at Milford and
estimates of age of tree damage along the fault scarp to suggest that the last major ground
rupture occurred between 1650 and 1720 AD. This conclusion was supported by the work
of Sutherland & Norris (1995) at L. McKerrow who also confirmed the suggestion of
Hull & Berryman (1986) that the last two events here were both of about 8 m horizontal
displacement.
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Fig. 1.1 Map of South Island showing Alpine Fault, some localities referred to and area of current

investigation.

During the mid 1990s, two major projects were initiated on the paleoseismology of the
Alpine Fault. Mark Yetton, funded by EQC, undertook trenching and other investigations
north of Hokitika (Yetton et al., 1998) while our group (Wright, 1998; Wright et al.,
1997, and in preparation; Berryman et al., 1998), funded by PGSF, carried out detailed
investigations including trenching at Waitaha River and at Haast and Okuru (Fig. 1.1). A
fruitful collaboration between Mark Yetton and Andrew Wells, a forest ecologist from
Lincoln, led to the realisation that periods of extensive forest disturbance and re-
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establishment in Westland corresponded to suggested times of ground rupture on the
Alpine Fault (as foreshadowed by Wardle, 1980). Tree-ring counting enabled these times
to be established much more precisely than could be done using radiocarbon dating alone
(Wells et al, 1999). Craig Wright (Wright, 1998), as part of his MSc thesis, studied the
fault in detail at a location in the Waitaha Valley where a series of sag-ponds and blocked
swamps enabled a chronology of events at a single site to be established. He also used
tree-ring counting on recently felled Rimu and Matai trees along the fault trace to
determine times of major trauma effecting these trees. A combined Otago
University/IGNS team excavated four trenches across the fault trace at the Haast and
Okuru rivers (Berryman et al., 1998) and were able to identify three ground ruptures in
the last 1000 years, each with c. 8m horizontal displacement. Independently, Bill Bull
(Bull, 1996) was using lichen growth rates to determine the ages of rock falls east of the
Main Divide. He argued that regional rockfall events may be related to major earthquakes
along the Alpine Fault.

By 1998, a substantial body of evidence had been accumulated to support the claim that
the Alpine Fault ruptures in infrequent but very large earthquakes every 2-300 years. A
meeting of interested parties in Lower Hutt in 1998 drew up a provisional chronology of
ground ruptures on the Alpine Fault for the past 1000 years (Fig. 1.2). The data suggest
that the seismic history of the northern part of the fault may differ from the southern. A
question arises as to whether any of the events recognised broke the whole length of the
fault (some 350-400 km, resulting in a c. M8 event) at one go or whether the data actually
represent clusters of smaller events fairly closely spaced in time. The whole question of
the behaviour of different parts of the fault is critical to assessing its potential hazard.

Another aspect needing attention is the length of paleoseismic record. One thousand
years and three events is not a long chronology on which to base assessments of rupture
probability. It is difficult to obtain a good chronology of earlier events, in part because
evidence is less likely to be preserved and partly because radiocarbon dating uncertainties
make correlation of events problematical. Nevertheless, collection of sufficient data from
a number of localities may allow a pattern to emerge that would enable a much longer
chronology of Alpine Fault events to be developed.
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SUMMARY OF CONCLUSIONS ON PAST EVENTS
AND RATES ON ALPINE FAULT

(Based on discussions at workshop on the paleo-seismology of
the Alpine Fault held at IGNS , Gracefield, 1998).

PAST MAJOR RUPTURES
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Fig. 1.2 Summary of rupture chronology for the Alpine Fault over the last 1000 years as
established at the Alpine fault Workshop held at IGNS Gracefield, Lower Hutt, in 1998. Data are
mainly from work of Berryman, Bull, Cooper, Norris, Wells, Wright, Yetton)

1.2 Project objectives

The original aims of this project were to improve the chronology of fault ruptures in
South Westland by

(1) excavating another trench across the fault trace south of Haast River with the hope of
obtaining a rupture chronology with better radiocarbon age constraints, particularly on
the penultimate event;

(1) examining rounds cut from trees along the fault felled during the 1960s and 70s with
the aim of using a ring-counting approach to identify times of widespread growth
attenuation possibly related to ground rupturing, particularly associated with the last
event. This followed a similar successful approach at the Waitaha River locality (Wright,
1998)
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A grant from the EQC Research Foundation supported an MSc student (Trevor Wright;
note that he is no relation of Craig Wright, an MSc student who worked at the Waitaha
River — see above) to carry out a study of the fault south of Haast River and participate in
trenching and tree-ring studies. This report is partly based on his thesis (Wright, 2000,
which at time of writing, is still undergoing examination) although with considerable
rewriting and editing in order to fulfil the needs of the EQC.

The authors are also involved in a PGSF-funded programme to produce a map of the fault
and some of the work reported in here (particularly Chapter 2) is funded under that
programme. The participation of Norris and Cooper is also partly funded from this
source.

The objectives were carried out successfully in terms of obtaining the field data and
materials. Unfortunately, as detailed later, unforeseen problems occurred both with
radiocarbon dating and with the tree rounds. As a result, the improvement obtained in
detailed rupture chronology was less than hoped for. Such is the nature of research!
Nevertheless, further support for the existing chronology was obtained and some extra
time constraints were able to be placed on events.

A detailed study was made of a swamp situated in a pull-apart zone between two fault
strands south of the Turnbull River. This was discovered during fault mapping and the
investigation concentrated on establishing a model for the swamp evolution linked to
fault displacement. Such sediment repositories (over 7 m of sediment in the swamp)
adjacent to active faults have the potential to record long histories of fault movement.
The difficulty is that the earthquake signal is indirect and hence may contain noise and
ambiguities. The study reported here aims to evaluate the possible use of such sediment
records for paleoseismic purposes.

1.3 Location and logistics

The area under investigation is the section of the Alpine Fault between Haast and
Arawhata Rivers in South Westland (Fig. 1.1 and Appendix 1). The main area of detailed
study was from the Okuru River to a few kilometres south of the Turnbull River
(Appendix 1). The area is bounded on the west by the Jackson Bay Highway. Private
gravel roads extend up either bank of the Turnbull River with a branch over to the Okuru
River. Most of the area is covered in thick bush except for areas of cleared pasture along
the river banks and large areas of impenetrable swamp between the Okuru and Haast
Rivers. Rainfall is high and fieldwork is often disrupted by the weather. Excavation of
trenches invariably penetrates the water table so that an efficient pumping system is
required to prevent the trench from becoming a swimming pool!

Accommodation in the field was provided by the Haast Beach Holiday Park (Motor
Camp) at Okuru. Travel in the field area was by vehicle along roads and by foot
elsewhere. Field locations were established from published maps and air photographs
using standard techniques. Attempts to use GPS methods were unsuccessful due to the
bush cover and the height of the Southern Alps blocking sight lines to low elevation
satellites to the east. Subsurface investigation was carried out using a Russian D-Corer,
capable of penetrating soft mud and peat to about 6 m and retrieving a half core of
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material, and a soil auger able to penetrate and sample coarser material to 7 m.
Radiocarbon dating was carried out on a commercial basis by the Radiocarbon
Laboratory at the University of Waikato for specimens large enough for standard
counting techniques, and at the Rafter Laboratory at IGNS by Accelerator Mass
Spectrometry when only small amounts of material were available. A total of twelve
radiocarbon ages were obtained from material collected.
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2 STRUCTURE OF THE ALPINE FAULT

2.1 Introduction

The Alpine Fault trace can be divided into three sections between Haast River and Arawhata
River (Fig. 2.1). Section 1, from Haast River to Turnbull River was mapped in detail. In section
two, the lengths between South Turnbull Swamp and Debris Creek and between Drizzle Creek
and Macpherson Gully, were mapped in detail. The remainder of section two and all of section
three are based on aerial photograph interpretation (SN C5386 D6-D22, E1-E8 and 3976/7 —
3976/9).

From Haast River to Arawhata River, a fault trace overlay was produced using aerial
photographs. The overlay was then assigned topographic co-ordinates using Mapinfo, a GIS
system, and incorporated into a 1:25000 scale map (see appendix 1). The registration of
topographic maps to ground features in the Mapinfo package has an accuracy of better than 50
m. An estimated error of up to 100 m may occur when relating the fault trace to topographic
features. The fault trace as mapped could therefore have a cumulative positional error of up to
150m, although generally it will be much less than this.

2.2 Methods

Five types of measurements were made along the fault trace. These include scarp orientation,
scarp height, stream offsets, lengths of individual fault trace segments and east or west offsets
between segments. Ground mapping of the fault trace in the bush was carried out on foot using
tape and compass. Having no landmarks with which to accurately verify locations made this
procedure necessary. GPS measurements to give exact locations were attempted over a number of
days but proved unsuccessful due to a dense forest canopy and the height of the adjacent
Southern Alps restricting the sky spectrum for receiving satellite signals. Calibration of tape and
compass distance measurements have been made by comparison with known points on the map.

Many problems were encountered while undertaking this work, leading to lengthy delays. By far
the greatest problem faced was the actual travelling through bush and subsequently getting lost.
Another difficulty was the vast amount of swamp mostly on the down-thrown side of the fault
trace, but sometimes overlying and therefore obscuring the trace. Travelling through these
swamps was nearly impossible.
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Figure 2.1: Location map of the Alpine Fault divided into three distinct sections from Haast River to Arawhata River. This map is
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Figure 2.2: Detailed mapping of the Alpine Fault trace between Haast and Turnbull Rivers was conducted in five parts based on
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offsets above zero on the Y - axis.
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2.3 Section 1: Alpine Fault trace between Turnbull River and Haast River

The active fault trace, down-thrown to the west, forms a near linear feature oriented between
052° and 057° through low-lying swamp and forest. The fault trace lies 1.5-2.0 km west of the
range front between Haast and Okuru Rivers. From the Okuru River to the Turnbull River, the
trace occurs 0.5 km west from, and trends parallel to, the range front.

Mapping of the Alpine Fault trace from Turnbull River to Haast River was conducted in five
parts (Fig 2.2), with the starting points of each part based on the identification of the fault trace at
a particular location from aerial photographs. Mapping of part 1 north of Turnbull River follows
the trace north-east for 350 m until it enters a swamp and disappears. Parts 2 and 3 together form
a continuous section of the fault trace heading southwest from Okuru River until it too disappears
into the same swamp as part 1. North of Okuru River, part 4 of the fault trace is often ill-defined
and disappears completely for hundreds of metres in places, before finally disappearing
altogether approximately 3 km north of Okuru. From here northwards, it runs through a large
pond then swamp and regenerating bush with no trace observable until the southern side of Haast
River, where a scarp trends southwest through a paddock for 300 m (part 5).

2.3.1 Alpine Fault trace location and orientation

Between Turnbull and Haast Rivers, the Alpine Fault forms a single trace, downthrown to the
west, locally discontinuous and with scarp heights ranging form 0.5 — 16 m. On the north bank of
Turnbull River, the fault trace trends north-east for 200 m striking 055° before disappearing in
swamp. 300 m further north-east the fault trace was relocated and mapped to Red Hut Road. Here
the fault trace is parallel with and northwest of the road, trending 055° with a scarp up to 16 m in
height. Immediately south of Okuru River, the fault trace is located 40 m west of Red Hut,
trending at 054° with an average height of 2 m. Between Okuru River and Swampy Creek, the
fault trace forms a well-defined scarp trending 052°and averaging 3 — 4 m and up to 6 m in
height. Two kilometres north-east of Swampy Creek the fault trace is a poorly defined linear
scarp trending 057° and between 2 - 3 m in height before disappearing for a further 3 km along
strike. The fault trace is relocated on the south bank of Haast River, forming a 2 m scarp oriented
at 054°.

2.3.2 Relationship of fault traces and stepovers

Examination of the fault trace between Turnbull River and Haast River by aerial photographs
indicates that it forms a single linear feature. The detailed ground survey of the fault trace reveals
it is split into twenty-three individual traces (A-W, Table 2.1), varying in length from 9 m to
2539 m. Except at Okuru River and south of Haast River, where the fault trace is not located for
>3 km, sections where the fault trace disappears and reappears are assumed continuous, thus
giving maximum possible trace lengths. The two longest traces are A and B totalling ¢.3800 m
from South Turnbull Swamp to just north of the Red Hut Road gate. Northward from Red Hut
gate toward Okuru River, eleven individual segments occur (C — L, Table 2.1), generally
decreasing in length to the north-east. North of Okuru River, trace lengths vary but are on
average between 100 m and 300 m long. Traces R — S, from 1.5 km north of the Okuru River are
greater than 600 m in length.
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Fault Distance from north bank of | Trace Trace
trace Turnbull River length stepover
From (m)  [To (m) (m) (m)
A -800 597 1397 12 West
B 597 3136 2539 11 East
C 3140 3375 235 14 East
D 3379 3609 444 8 West
E 3625 3856 230 8 West
F 3875 4026 151 5 West
G 4026 4116 90 3 East
H 4116 4342 226 5 West
I 4342 4369 26 5 West
J 4369 4377 9 4 West
K 4377 4432 55 3 East
L 4432 4500 68 4 East
Okuru River
M 4850 4972 122 10 West
N 4955 5433 478 6 West
(0] 5392 5515 122 9 East
P 5516 5606 90 11 West
Q 5591 5639 48 6 West
R 5639 6260 621 20 West
S 6260 6880 620 23 West
T 6880 7159 279 8 East
U 7159 7417 258 9 West
vV 7414 7591 173
W 7804 7906 102

Table 2.1: Trace lengths and stepover distances between Haast and Turnbull Rivers. Note a negative value is given for the start of trace

A as it is interpreted to extend to South Turnbull Swamp, south of the Turnbull River.

Stepovers between two traces are less than 25 m and are present in three types (Fig. 2.4). These
are under-lapping, perpendicular and overlapping. Of the twenty-one stepovers, fifteen step to the
left (i.e. west relative to the southern trace) and seven to the right (east relative to the southern
trace).

_ _— — o
Offset
—_— — S
traces

Overlapping Perpendicular Underlapping
Figure 2.4: Types of stepovers along the fault trace berween Turnbull and Haast Rivers.

A non-spatial graph (Fig. 2.3) details the relationship between fault traces and stepovers in
sequential order from Turnbull River (left) to Haast River (right). The graph indicates that for
approximately 2 km either side of Okuru River, there is a positive relationship between the length
of a trace and the size of a stepover. It is possible that subtle changes in the trend of the fault trace
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account for the observed fault trace segment lengths and stepovers in this area. (i.e. from 055°
along Red Hut Road to 052° north-east of Red Hut Gate, to 054° on either side of Okuru River, to
052° immediately north of Okuru River, to 057° 3 km north of Okuru River (Fig. 2.5)).

Small changes in fault orientation within a couple of kilometres of Okuru River are compensated
for by either left or right steps and shorter segment lengths. Right-stepping segments relate to a
more northerly strike of the fault trace; for example right-stepping segments C and D coincide
with a rotation of the fault trend from 055° to 052°. Similarly, north of Okuru River, segments N
and O exhibit a right-step where a change of orientation from 054° to 052° occurs. Left-stepping
accommodates an eastward rotation in the trend of the fault trace, as shown for segments E — M,
where a change from 052° - 055° occurs and also P — T which changes from 052° to 057°. Fig.
2.5, therefore illustrates that segment lengths, and the size of both right and left steps, can be
correlated to small orientation changes along the Alpine Fault trace in the vicinity of Okuru
River. Here the fault trace is at least 2 km away from the Southern Alps range front and strikes
through relatively flat alluvial outwash plain composed of unconsolidated sediment. An
exception to this relationship are the two segments A and B, which show no change in the fault
trace orientation between Turnbull River and Red Hut gate. Due to a lack of data immediately
south of Haast (including segments V and U), no relationship in this vicinity has been
determined. -

Southem Alps range front

Southem Alps
range front
Okuru River
exaggerated
segment offsets \
-‘-_-_"‘-'-——._"“--_.____‘:________—__‘-

Alpine Fault Red Hut Gate

trace orientations
step direction West [ Eost] West West
P-T N-O E-M B

Individual fault traces

NOT TO SCALE

Figure 2.5: Exaggerated cartoon showing that subtle changes in fault trace orientations is reflected in individual trace lengths and east

or west stepping offsets.

2.3.3 Channel offsets

Offset channels have been used extensively to determine individual horizontal displacements on
faults in many parts of the world. This technique is most successful in arid climates where
channels are easily identifiable due to a lack of vegetation on the surface and are not so




CHAPTER TWO: STRUCTURE OF THE ALPINE FAULT 2-6

susceptible to morphological change compared to channels in a perhumid and mesothermal
climate such as is found on the West Coast.

Nineteen apparent offset channels were measured along the trace of the Alpine Fault by
determining the location and orientation of related channels above and below the fault scarp and
then measuring the horizontal offset. Although many more channels cut through the fault trace
than are documented here, channels evanescing in swamp on the downthrown side hampered
determination of channel offsets. In these cases, swamp effectively obscures offsets and accurate
measurements could not be made. Four channel offsets from the south terrace of Okuru River are
taken from data collected by Berryman et al. (1986), as this portion of the fault trace has been
destroyed and the data are no longer obtainable in the field.

Lengths and direction of channel offsets are plotted on a histogram (Fig. 2.6) to determine any
groupings that may indicate the amount of displacement along the Alpine Fault trace for an
earthquake event. Of the twenty-three offset channels, sixteen are dextral and seven sinistral. The
fact that over 25% of offsets determined were sinistral indicates that many apparent offsets are
not due to direct fault displacement. In many cases, apparent sinistral offsets on a dextral fault
can occur when a creek switches to an approaching channel on the downthrown side.

3

o
Northeast
offsets

I

0 10 20 30 40 50 60 70

Channel offsets (m)
Figure 2.6: Histogram for lengths and direction of channel offsets. Three concentrations are indicated at 4 =5 m, 7 — 11 m and 15— 18

m.

If we ignore the sinistral offsets as clearly being due to processes other than direct fault
displacement, the dextral offsets range from 4 to 60 m with the bulk of measurements being
in the range 7-22 m. We cannot assume that the dextral offsets are purely the result of fault
displacement either, as these could also be due to channel switching along the fault trace. In
addition, offset values may be modified by subsequent lateral erosion by the creek. If we
assume that offsets can be measured in the field to £1.5 m (allowing for taping errors,
uncertainty in determination of equivalent points on offset features, etc.), then the data for
dextral displacements may be plotted as a running mean with a 3 m window. Two maxima
appear, one at 8m and one at 15 m (Fig.2.7). These maxima could be interpreted to represent
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one and two offsets, respectively, with the spread being due to variation in actual surface
displacement and/or channel modification. The values are consistent with similar, better
quality data from Haast (Berryman et al, 1998) and Lake McKerrow (Sutherland and

Norris, 1995). However, the data are insufficient to draw firm conclusions.

running mean {3m window)

0 5 10 15 20 25 30
offset (m)

Fig. 2.7: Channel offset data (dextral only) shown as a running mean with a2 3 m window to allow for uncertainties in measurement.

Two peaks, at 8 m and 15 m may represent one and two events respectively.

2.3.4 Scarp heights

Scarp height is variable along the length of the section. Between Haast and Okuru Rivers, the
scarp is between 1 - 6 m high and is generally poorly defined or covered by recent accumulation
of sediment.

The fault scarp between Okuru and Turnbull Rivers is 2 — 4 m high, except for where Red Hut
Road runs parallel with the fault scarp. Along this portion of the fault, scarp heights are on
average 15 — 16 m high. It is also interesting to note that here the scarp-face dips around 60 — 80°
W, whereas the remainder of the fault trace had scarp faces usually dipping ~45°W.

Based on the relationship of scarp heights to their position on topographic maps (Fig. 2.8), it
appears scarp heights from Turnbull River to Haast River are directly related to local
morphological features extending out from the Southern Alps range front. A large area of alluvial
outwash is situated over the 4 km missing section of the fault south of Haast River, obliterating
any scarp that may have formed. Along Red Hut Road, the high scarp heights and steep scarp
angle occur directly below a large promontory of the Southern Alps range front, and represent a
greater amount of preserved cumulative offset unaffected by the Okuru and Turnbull River
systems.

" _. 3
l e
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Figure 2.8: Scarp height along the Alpine Fault trace between Haast and Turnbull Rivers is directly related to morphology as seen in
the relating topographic maps.
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Section 1 Section 2

a Shutter ridge named Drizzle Creek Spur. Continual lines indicate ground mapping, dashed lines indicate aerial photograph
interpretation.
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2.4 Section 2: Turnbull River — Compass Creek.

South of Turnbull River, the Alpine Fault trace strikes through the foot-hills of the Southern Alps
(Fig. 2.9). Immediately south of Turnbull River, a 047°-linear feature interpreted to be a trace of
the Alpine Fault, intersects the 054°-striking trace. The fault splay produced forms a tectonically
controlled swamp described in detail in Chapter 4. Further south, a dilational jog trending 075° is
interpreted before the fault becomes a single trace striking 043° on the south side of Murdoch
Stream. On this part of the fault, between Drizzle Creek and Macpherson Gully, a shutter ridge is
identified.

The fault trace was not identified on the ground between Debris Creek and Macpherson Gully.
Aerial photographs, however, indicate that the 047° fault trace disappears at Debris Creek. Two
lineaments, 250 m apart, trend west 255° from Debris Creek for 1.2 km, where they intersect the
interpreted north-eastern extent of the 043° striking trace at Murdoch Stream. The set of
lineaments described is interpreted as a dilational jog (Fig. 2.9).

&3 i 100 200 =
S '.SCGIBI {'M]}' ‘j
| | __\,__,_Mx Drizzle Creek \@“

Macpherson ol “*-x\_‘\\ ‘
Gl:l]y ///Southern Alpsk,_nge front \\ - /

/"‘_ PR » / i
- = |

\\\

)

k e I‘.
‘\\\" 7\ ~“\\ / \
‘)A!pine Fault \ ™
R \ B
W W
1) 12500 - 20000 B.P
Present "\\ /' 2)<17500 B.P
~—

Drizzle Creek Spur
Figure 2.10: Drizzle Creek Spur has a likely offset of 415 m, initiated between 12500-20000 B.P based on displacement rates by 1)

Sutherland and Norris, (1995), and 2) Cooper and Norris, (1995).

At GR F37/812838, between McPherson Gully and Drizzle Creek, the Alpine Fault is mapped in
detail and is defined by a 5 — 10 m wide, 043° trending gully, bound to the east by the Southern
Alps. On the west side of the gully, a 2 — 5 m high scarp is present, defining the edge of the 400
m Drizzle Creek Spur. Aerial photograph interpretation indicates Drizzle Creek Spur is an offset
shutter ridge. Dextral movement of the Alpine Fault would require the shutter ridge to be
displaced to the north-east and the most likely place for its original position is approximately 415
m southwest along fault strike (Fig. 2.10). Horizontal displacement rates have been calculated for
the Alpine Fault at Lake McKerrow of 2746 mm/yr (Sutherland and Norris, 1995) to the south of
Drizzle Creek Spur and a minimum rate of 23.5mm/yr (Cooper and Norris, 1995), immediately
north of Haast River to the north. Using these displacement rates, the likely age of the onset of
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movement of Drizzle Creek Spur is 12500 — 19800 B.P (according to the calculation of
Sutherland and Norris, 1995) and a maximum age of 17500 B.P (based on Cooper and Norris,
1995). These age estimates are consistent with topography being essentially post-glacial.

Section 3: Compass Creek — Arawhata River

At Compass Creek, the lineament interpreted to be the Alpine Fault splits into two traces.
Heading south, the traces move away from the Southern Alps foot-hills forming two sub-parallel
features through the Waiatoto River and at least as far south as the south side of Arawhata River.
Between these two rivers, the eastern trace trends at 060° and the western trace 064°. Field
evidence from Berryman et al. (1986), in an unpublished reconnaissance report and current work
by Heather Campbell (Geology Department, University of Otago, pers. comm) on the Alpine
Fault south of Arawhata River support the aerial photograph interpretation. The eastern trace is
verified at two locations. On the north bank of Waiatoto River (GR F38/792774), Berryman et al.
(1986), describe the occurrence of 300m of the fault trace, as a series of right stepping en-echelon
scarps. The fault trace varies in strike from 047° to 066° and is upthrown on the southeastern
side. On the eastern side of Jackson River at the confluence with Arawhata River (GR
E38/682742), both Berryman et al (1986) and Heather Campbell found the fault trace consists of
a 1.5 m high scarp upthrown on the southeast side and striking at approximately 070°. Heather
Campbell has found a zone of deformed fault rocks on the southwest side of Jackson River (GR
E38/753683) in agreement with the strike of the interpreted western trace.

2.5 Conclusions

1. Between Haast and Turnbull Rivers:

e A positive relationship exists between fault trace segment lengths and size of
stepovers in the vicinity of Okuru River as a reflection of small changes in strike of
the Alpine Fault.

e Channel offsets are variable and processes other than fault displacement must
contribute to their development. Assuming dextrally displaced channels are due to
fault movement, peaks at 8 and 15 m, with considerable variation, may represent one
and two displacements respectively on the Alpine Fault.

e Preservation of scarp heights along the fault trace are controlled by local
geomorphological processes.

2. Likely age of initial offset of a shutter ridge (Drizzle Creek Spur) is 12000 — 17500 B.P.
consistent with it being post-glacial.

3. Aerial photo interpretation between Compass Creek and Arawhata River, combined with
field observations, suggests the fault splits into two traces.
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3 TURNBULL TRENCH

3.1 Introduction

Suitable sites for trenching across the recent trace of the Alpine Fault are difficult to find in
Westland. Sites need to be on young surfaces, where the scarp is the result of only two or three
events, and where sediment accumulation has occurred, for instance in a swamp on the
downthrown side. Most importantly, access for a mechanical digger is required that does not
result in wholesale destruction of Westcoast forest. Such sites are largely restricted to terraces on
either side of major rivers (see Chapter 2). Previously, we had dug trenches across the fault trace
at Haast and Okuru Rivers, with some degree of success, and we hoped that a further trench
would provide better datable material with which to determine the age particularly of the
penultimate event. From the detailed mapping of the fault trace reported in Chapter 2, the only
site that fulfilled all the criteria listed above was along the access road to the Powerhouse up the
north bank of the Turnbull River.

Turnbull River is a major river system draining out of the Southern Alps. The Alpine Fault
intersects Turnbull Road 1.5 km northwest of the powerhouse (GR F37:8428578) marking the
change in the Turnbull River from a steeply confined, to a single braid river system. Trenching
across the Alpine Fault was undertaken 100 m north-east of the current Turnbull River channel,
adjacent to Turnbull Road (Fig. 3.1).

The Alpine Fault scarp here is defined by a 1.5 m high linear scarp trending 055° with a 30° slope
angle. The scarp defines a boundary between a mature podocarp stand above the scarp and
grassed flood plain below. Above the scarp, the surface is underlain by well-rounded boulders,
while below, it is boggy silty/sand.

Building of the Turnbull Road to the powerhouse involved bulldozing a 25 m wide strip across
the Alpine Fault scarp. Material from the up-thrown side was pushed onto the down-thrown
portion. Nevertheless, this site provided the only practical location for trenching, as it was clear
of forest, accessible and far enough away from Turnbull River for the down-thrown side not to be
influenced by periodic flooding episodes.

Trenching occupied two days and one night of fieldwork. A Komatsu excavator with a 2 m wide
bucket was employed to dig a 22 m long trench up to 3 m deep, 13 m southwest of Turnbull
Road, perpendicular to the fault trace (Fig. 3.2A). At the fault scarp a permeable zone of gravel
on the up-thrown side was breached, allowing water to pool in the trench. A suction pump was
utilised for the duration of trenching to remove water. Minor problems with wall stability
occurred at the lower end of the trench, particularly in sand layers where water had access to
erode the trench wall base. On completion of excavation a Im grid was installed along the
southern wall and datable material collected and catalogued. On day 2, a combined effort of
IGNS and Otago University personnel logged the trench (Fig. 3.2B), surveyed the fault surface
and cored a 106 m transect from the fault scarp perpendicular to the fault trace on the down
thrown side to establish total down-throw accommodation (Fig. 3.3). On completion of this work,
the trench was filled in.
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Trench

Grassland

Figure 3.1: Turnbull trench is located 100 m northeast of Turnbull River in a cleared area adjacent to and southeast of

Powerhouse Road.

Figure 3.2: A) Excavation of a 22 m long and up to 3 m deep trench on the down thrown side of the Alpine Fault. B) Logging

of the southwest wall. The Fault trace intersects at the top of the photo.
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3.2 Stratigraphy and interpretation of units

The trench log is presented in appendix 2. Ten stratigraphic units are recognised and interpreted
as three periods of soil development, two of which (units 2 and 5) are overlain by alluvial sand
deposition (units 4 and 6), and a modern soil (unit 8) partially disturbed by road excavation, all of
which overlie a terrace surface (unit 1).

A basal unit of coarse sand/pebble-supported coarse boulder alluvium (unit 1) identified as an old
river terrace, is overlain by a non-bedded, medium to dark yellow/brown sandy silt (unit 2). In
grid squares 0,4-3,4 , unit 2 is a mottled grey /blue clay containing abundant detrital wood. Unit 2
is interpreted as a paleosol that developed on the terrace surface, part of which was a swampy
channel of impermeable clay under reducing conditions and thus able to preserve wood samples.
In grid squares 2,4, a small packet of brown clay (unit 3) overlies stratigraphic unit 2. Unit 3 is
most probably the remnants of a slack-water flood deposit or an oxidized equivalent of unit 2.
Unit 4 is a weakly bedded, medium to coarse sand with clayey lenses at the base, interpreted as
an alluvial sand deposit. Initial stages of unit 4, alluvial sand deposition, probably eroded most of
the original unit 3 slack-water deposit. Unit 5 is a medium to dark tan, sandy silt with a
gradational lower contact, interpreted as a paleosol that developed at the top of unit 4. Unit 6 is a
channelised, moderately well-bedded, medium to coarse sand. Coarser components are grey-
brown, whilst yellow-brown when finer. A number of lenses of coarse to pebbly sand occur. Unit
6 is interpreted as an alluvial sand deposit and channels indicate scarp-parallel flow. A sharp
lower contact defines the base of unit 7, identified as a rich organic brown, coarse sand with clay
lenses. This unit may be the modern topsoil or alternatively, and more likely, it represents a back-
water flood deposit. Unlike most of the other units on the down-thrown side of the fault that
terminate at the fault trace, the eastern margin of unit 7 terminates at the 11 m vertical marker.
Deposition of unit 7 possibly occurred in a depression at a lower level than the base of the fault
scarp. Near the fault scarp, unit 8 is an organic grey silty sand with abundant carbonaceous
horizons of roots and woody material. Also included are rare clasts up to 3cm. Away from the
fault scarp and above the interpreted back-water deposit of unit 7, unit 8 is the uppermost unit
before the surface and is composed of mottled grey/brown, unbedded clay and reworked sand.
Unit 8 is interpreted as a modern soil. Unit 9 is a mixed, structureless, matrix-supported, gravelly
sand with abundant roots and broken woody material. Clasts are subrounded, with an average
size of 6cm and consist of 10 % of unit 9 composition. Unit 9 is interpreted as fill from
bulldozing of the scarp during the formation of Powerhouse Road. Unit 10 rests on unit 1 on the
up-thrown side of the fault scarp and is a grey-brown to yellow-brown matrix supported, cobbly
sand with fine roots. Clasts comprise 30% of the rock type and are on average 4 cm in size, with
a maximum of 10 cm. Like unit 9, unit 10 is interpreted as bulldozed material.

By combining trench stratigraphy (appendix 2) and core logs from holes at 20 m intervals away
from the fault scarp, the extent of individual units above the terrace surface and perpendicular to
the fault trace may be reconstructed (Fig. 3.3). The cross section in Figure 3.3 clearly defines the
terrace surface (unitl) underlying modern soil 100 m from the fault trace. It appears that within
this 100 m section, accommodation has been created by faulting and subsequent infilling by
alluvial sand, presumably from the Turnbull River, resulting in the covering and preservation of
soil profiles (for example units 2 and 5). Soil horizons are established over time on a base of
alluvial sand. Subsequent accommodation space, created by faulting, allows the process of
alluvial sand influx, followed by soil development, to be repeated. Although the upper level of
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the interpreted cross-section in Fig. 3.3 is consistent with the upper level of stratigraphy in the
trench, some offsets related to the most recent rupture on the fault scarp may be missing through
truncation of the faulted section by the bulldozed deposit unit 9.

3.3 Number of events identified in stratigraphy

Three events are recognised based on four fault planes either cross-cutting or offsetting
stratigraphy at the fault trace (black lines in Fig. 3.4A) and a sediment injection (Fig. 3.5). Event
1 is identified by 2 east-dipping planes, offsetting unit 2 paleosol and the overlying alluvial sand
(unit 4) (Fig. 3.4B). Event 2 is indicated by an east-dipping plane displacing unit 5, the next
paleosol above unit 2 (Fig. 3.4B). Alluvial sand of unit 6 that overlies the unit 5 paleosol, is not
offset at the fault trace, and therefore post-dates the second event. In grid 0,3, a sediment column
from unit 5 has injected into unit 6 alluvial sand (Fig. 3.5). The most likely cause of the injection
is from liquefaction, a phenomenon commonly associated with earthquakes (e.g. North Ridge
earthquake of January 1 1994 (Hithcock et al, 1999)). As unit 6 was deposited post-event 2,
intrusion of the underlying unit 5 into unit 6 is interpreted as representing a third event.

Trench Hole 1 Hole 2 Hole 3 Hole 4

Depth (m)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 S0 95 100 105 110
Distance from start of Trench (m)
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Figure 3.3: Cross section of sediment accumulation on the down-thrown side of the fault based on Turnbull trench and cored holes at

20 m intervals. Accommodation space is created by faulting up to 100 m from the fault trace. Key as for Fig. 5.3.
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;\) SR ia) Event 1 - Offset of units 2 (base palecsol)
P ond 4 (alluvial sand)

Event 2 - Offset of post event 1 developed
Paleosol (unit 5)
Figure 3.4: A) Events 1 and 2 are recognized from offsets at the fault trace, B) based on offsets of units 2,4 and 5. Key as for

Fig. 5.3.

Figure 3.5: A sediment pl injection of unit 5 into post-event 2 alluvial sand of unit 6. This pheoenon is commonly

associated with earthquakes and is evidence for a third event. Key as for Fig. 5.3.
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Figure 3.6: Age constraints for the 3 trench sites show 3 event s over the last 1000 years. Event 1 was between 1155235 A.D, event 2

has a maximum age of 1540+105 A.D and event 3 is post 1655220 A.D.

3.4 Radiocarbon dating of events

Radiocarbon ages for Turnbull Trench were obtained from 8 samples collected from the two
paleosols, units 2 and 5 (Table 3.1). Ages of wood fragments were measured using conventional
radiocarbon analysis whereas AMS dating was used for carbonaceous clay samples. Four
samples each were dated from the lower (unit 2) and upper (unit 5) paleosols.

Of the samples dated, only Wk8122, Wk8123, and Wk8301 are considered valid. These are all
from the blue/grey clay of unit 2 and give an age range between 1000+50 — 1410+50 B.P. The
modern age for Wk8302 in unit 2 is inconsistent with other samples from the same unit
suggesting probable contamination. Although found at the base of the trench-in mud, it is
possible Wk8302 fell into the trench and was embedded into the side-wall before being retrieved.
Whether Wk8121 from unit 5 was a relict wood fragment or a tree root was questioned when
collected in the field. The modern age given suggests it is a tree root.

The results of the three AMS ages from carbonaceous clay samples in unit 5 give grossly
inconsistent ages ranging from 1083 — 12982 B.P. Not only are they inconsistent with each other,
but also inconsistent with the dated wood samples from unit 2 below. Whereas contamination by
modern material is a common problem in radiocarbon dating, this is not the case here. The ages
are all too high, and in the case of AMS 1 and AMS 3, impossibly high. This inconsistency of
ages from carbonaceous clay displays similarities with the study by Shore et al. (1995), who
found from a study of four columns of peat using 127 radiocarbon samples, that the results were
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highly variable and mutually inconsistent. All three AMS ages for carbonaceous clay samples are
therefore considered invalid. The cause of the excess ages is difficult to understand, since the
amount of old carbon required to contaminate AMS 1 is very large. A source of such carbon is
unknown, as organic material does not survive very long on the West Coast unless it is enclosed
in a relatively impermeable material such as clay. No independent evidence for recycling of older
organic deposits during formation of unit 5 is apparent.

Sample Unit Material dated Location Age

Wk8302 |2 Wood (contaminated) Grid 13,2 Moderm
Wk8123 | 2 Wood Grid 3,4 1000 + 50 B.P
Wk8122 |2 Wood Grid 1,4 1410 + 50 B.P
Wk8301 |2 Wood Grid 1 4 1390 + 60 B.P
AMS 1 5 Carbonaceous clay Grid 8,2 12982 B.P
AMS 2 5 Ponga bark Grid 9,3 1083 B.P
Wk8121 |5 ‘Wood (tree root) Grid 9,3 Modern

AMS 3 5 Carbonaceous clay Grid 3,3 4725 B.P

Table 3.1: Radiocarbon ages for material collected in Turnbull Trench. Only Wk8122, Wk8123 and Wk8301 from unit 2 are
considered valid.

Because of these problems in radiocarbon dating, the only data that can be used to constrain the
age of the sequence are the ages on the wood samples from the blue/grey clay-filled channel at
the top of the gravels (unit 2). This channel could have been in existence for a period of time so
the range in ages obtained (1410-1000 BP) is understandable. The large sample sizes and well-
preserved wood lends confidence to the results. The youngest sample at 1000+50 BP represents a
maximum age for cessation of accumulation of material in the channel and coeval soil formation
on the old terrace surface, prior to burial by the sands of unit 4. This is the only age constraint
that can be obtained as all datable material has been processed. Unfortunately, the younger part
of the sequence remains a problem.

3.5 Interpretation of trench sequence

Uplift and stabilisation of the gravel terrace surface occurred sometime prior to 1400 BP,
possibly in response to a rupture event on the fault. A soil developed on the terrace although
small channels remained and were filled with swampy clay deposits and wood fragments. At
sometime after 1000 BP, the terrace surface was inundated with sand and silt from the river,
burying the soil and channel deposit. The sand is not present on the upthrown side of the fault,
suggesting that a scarp existed at this time. Faults visible in the trench wall cut unit 2 but not unit
5. We interpret the sands of unit 4 to have been deposited in the accommodation space formed on
the downthrown side of the fault immediately following a surface rupture. A soil horizon (unit 5)
subsequently developed above unit 4 as the terrace once again stabilised. The sequence of events
was then repeated following a further surface rupture on the fault, with unit 6 sands being
deposited. A further surface rupture is interpreted to have occurred, based on the thickness of the
overlying deposits and the occurrence of an injection structure of unit 5 material into the
overlying unit 6, but most of the evidence has been destroyed during bulldozing of the road. The
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ratio of vertical to horizontal displacement here is quite low (<0.1) so that the amount of
accommodation space created during a rupture is small. The fact that a visible scarp is clearly
evident indicates that infilling on the downthrown side is not complete following the last rupture.
Most of the last colluvial wedge along the fault scarp is highly disrupted by forest clearance and
so the relationships are obscured. Nevertheless, we consider that clear evidence exists for at least
three surface rupture events subsequent to accumulation of wood in the clay-filled channel at
1000 BP.

3.6 Comparison of Turnbull trench with Okuru and Haast trenches

Within the field area, four trenches, two on the south bank of Okuru River and two at Snapshot
Creek south of Haast River, have previously been excavated (Berryman et al., 1998).

At the Okuru River site, three events are recognised. The first event occurred immediately prior
to accumulation of fine grained deposits above a gravel terrace surface with an average age of
850+50 B.P. Two later events are recognised from liquefaction and stratigraphy, although ages
obtained from seeds in accumulated sediments show evidence of recycling. The possible mixing
of older and younger seeds places an uncertainty on radiocarbon ages for these samples, so that
ages must be considered a maximum. Radiocarbon data constraining the age of the penultimate
event (event 2) are an age of 520+160 B.P, from the associated colluvial wedge and an age of
400+120 B.P, in slackwater sediments preceding and associated with event 2. Seeds in the last
colluvial wedge have a radiocarbon age of 262+56 B.P. which is likely to represent a maximum
for event 3.

At Haast River site, a total of 25+1 m of dextral offset has occurred in three events, the first of
which was immediately prior to 850+50 B.P (average age of ages for Haast event 1). Seeds from
colluvial wedges attributed to the two subsequent events give radiocarbon ages similar to the first
event, suggesting the seeds were reworked during the last two events (as would be expected in a
colluvial wedge).

Comparing these results with the Turnbull trench, it is likely that the first event recognised at all
three sites is the same one. It post-dates a channel with a maximum age of 1000+50 BP at
Turnbull and predates sediments with an average age of 850+50 BP at Haast and Okuru.
Converting the ages to calendric ages (Stuiver and Reimer 1993), the event occurred between
1105 + 85 AD and 1220 + 50 AD, i.e. sometime in the late 12" century. All sites have evidence
for a further two events, but the dating is poor. From Okuru, the penultimate event probably
occurred sometime between 1400 and 1600 AD and the last event after 1650 AD. The other two
sites unfortunately provide no further constraints.
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3.7 Conclusions

Excavations of a 22 m long trench across the recent trace of the Alpine Fault at Turnbull
River successfully exposed the fault zone and a sequence of buried soil horizons on the
downthrown side.

On the basis of fault traces and stratigraphy, a total of three rupture events are inferred.
Unfortunately, most of the record of the most recent event has been destroyed by forest
clearance activities.

Radiocarbon ages on wood samples from a silt-filled channel at the base of trench provide a
maximum age of 1105+85 AD for the earliest event recognised. Combined with data from
trenches at Haast and Okuru, this brackets the event to between 1105+85 AD and 1220+50
AD.

Due to major natural contamination of samples from the younger buried soil, radiocarbon
ages are inconsistent, impossibly old and cannot be used.

The trench data add further support to the rupture chronology of the Alpine Fault for the last
1000 years and place constraints on the earliest event.
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4 SOUTH TURNBULL SWAMP - Development of a tectonically

controlled swamp and implications for Alpine Fault events.

4.1 Introduction

South Turnbull Swamp (herein called ‘the swamp’) is situated south of the Turnbull River.
The swamp is approximately 150m in length and has a maximum width of 60 m in the
northeast tapering at the southwest to a small gully. Bounded by the foothills of the Southern
Alps to the southeast and to the northwest by a low ridge (Fig. 4.1), this swamp is hemmed in
on three sides opening northeast toward the Turnbull River. A fluvial sediment buttress ¢.50
m wide and 3 m vertical height, relative to the normal level of an adjacent channel of the
Turnbull River, has been deposited across the northeastern margin of the swamp. The swamp
surface is therefore, above the normal river level and is controlled by the height of the
sediment barrier. The elevated swamp surface and its distance (50 m) from the nearest
Turnbull River channel provides partial protection from minor flooding.
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Figure 4.1: Location of South Turnbull Swamp.

The sediment buttress provides a mechanism for filtering of sediment, as any sands and gravel
entrained in floodwater are deposited onto the buttress due to a decrease in flow velocity,
allowing fine-grained suspended sediment to pass into the swamp. Except for young tree
stands at the swamp margins and the southwest where a gully enters the swamp, the majority
of the swamp is covered with a raft of flax and cyrix growing in 0.5 — 1.5 m of water (Fig.
4.3). Typical of many organic-rich swamps, most plant material regenerates on the fringes,
building out stable organic mat platforms toward the centre.
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4.2 Structural Setting at South Turnbull Swamp

The swamp is situated in an area defined by the intersection of two fault traces with a 7°
difference in trend. Aerial photographs and ground mapping indicate a 054° trending linear
scarp along the eastern boundary of the swamp, interpreted to be a trace of the Alpine Fault
and co-linear with the trace on the north side of the river. The trace is cut off in the gully at
the southern end of the swamp by a linear feature defining the boundary between the western
side of the swamp and the low ridge, also interpreted as an Alpine Fault trace, trending at
047° (Fig. 4.1). South of Haast, the Alpine Fault has predominantly dextral displacement.
Assuming both traces here are dominantly dextral, displacement will increase the distance
between them at any one point, producing a truncated pull-apart basin. The resulting
subsidence creates the area now occupied by the swamp and the offset forms a shutter ridge
defined by the present low ridge on the west (Fig. 4.1). Long term (c.1000 years)
accumulation rates in the basin should equal subsidence rates.

4.3 South Turnbull Swamp as a record of seismic events

The history of swamp formation is linked to the inferred development of a pull-apart structure
on the Alpine Fault (Fig. 4.1). A number of mechanisms may contribute to the formation of a
swamp stratigraphy containing several swamp-wide sediment accumulations overlying
organic layers. One possibility is catastrophic flooding of the Turnbull River resulting from
the formation and breaching of natural dams from landslides. A major discharge of water
could erode the north-east sand barrier, thus exposing the swamp and allowing inundation of
fluvial sediment. Although individual landslides are commonly associated with large
earthquake events (Keefer, 1984), it is difficult to associate one landslide to a specific
earthquake. Another possibility is sudden subsidence of the swamp accompanying
displacement on the Alpine Fault. Both the river and swamp subside, but rapid aggradation of
the river to a pre-displacement level exposes the subsided sediment buttress making it more
prone to breaching and sediment influx into the swamp (see Fig. 4.15). A feedback cycle
follows in which the sediment buttress filters out all but fine silt and clay sediment, building
up the buttress over time to a pre-displacement level and preventing further fluvially derived
sediment accumulating in the swamp. Fine silt and clay suspended sediment would infiltrate
the vegetation on the swamp surface. As the vegetative swamp mat becomes denser due to an
increased weight of infiltrating sediment, the vegetative swamp mat will ultimately sink,
killing much of the vegetative cover and forming a layer of organic material underlying fine
clay at the base of the swamp.

During investigation and interpretation of swamp stratigraphy, the following principles for the
evolution of a periodically subsiding swamp on the Alpine Fault were developed.

1) Although catastrophic flooding unrelated to fault movement may produce sediment pulses,
significant accumulation of clastic sediment requires subsidence of the swamp to provide
accommodation space. This is most likely to accompany displacement on the boundary faults.

2) Due to faulting, average rates of accumulation in the swamp equal average rates of
subsidence produced through volume change in the pull apart.
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4.4 Core Recovery and Logistics

Access and core recovery from the swamp proved difficult (Fig. 4.4A). Initially three
traverses of the swamp were made with a tape and compass to determine 10 m intervals for
coring sites (Fig. 4.2). A custom-made plywood platform was constructed to use as a drilling
base and decrease the chance of sinking into the swamp. Two tools were used for coring, a
50mm diameter Russian D-corer (Fig.4.4B) allowing for recovery of 50 cm long cores and a
soil auger able to retrieve 40 cm barrels. For the D-corer, after initial logging, samples were
placed in PVC half tubes and covered in plastic wrap to preserve them for detailed logging in
the laboratory. Logging of the auger barrels necessarily occurred on site (Fig. 4.4C). Twelve
holes were cored along traverses X, Z and hole Y1, totaling 62 meters (Fig. 4.2) Additionally,
a longitudinal traverse with no core recovery along traverse Y was undertaken to determine
the depth to a thick swamp-wide layer of sand. For initial core recovery and depths to sand
along traverse Y, the Russian D-corer was utilised with success. The D-corer was unable to
penetrate the sand layer and augering was employed to reach maximum depth. Problems were
encountered with augering (eg. losing hole entrances towards the centre of the swamp, and
only having enough rods to auger for 7 m and for later holes only 6 m, due to rod breakage).
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Fig_l;e 4.2: X,Y and Z core traverses for South Turnbull Swamp. Crosses indicate cored holes and dots are sites

where depth to sand layer was determined.
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Figure 4.3: Looking Southeast over South Turnbull Swamp. Note the linear eastern margin of the swamp, defining the Alpine

Fault trace.

' c
Figure 4.4: A: Core recovery. B: Retrieving the Russian D-corer from a hole. C: On site logging of auger cores.
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4.5 Stratigraphy

The main purpose of examining the swamp was to determine rates of sedimentation and
identify periods of swamp-wide rapid accumulation possibly related to seismic events. This
has dictated the style of logging which entails the documentation of periods of clastic
sedimentation relative to organic accumulation within the swamp. Details of logged profiles
of the swamp are presented in appendix 3 (A & B), with the main features of the interpreted
stratigraphy presented in Fig. 4.14.

4.5.1 Clastic Sediment

Micaceous clay: Clay is either intermingled with vegetation or occurs as distinct 1-15cm
bands of very well sorted, grey to light brown, micaceous clay. These clay layers form
swamp-wide homogeneous layers, commonly overlying preserved vegetation (Fig. 4.5) and
are the basis for correlation between sections of logged cores above and below the thick fine
sandy silt unit.

Micaceous fine sandy silt: Micaceous fine sandy silt occurs as a clearly defined stratigraphic
horizon within the swamp (Fig. 4.6). Although a number of irregular layers of wood
fragments, organic pulp and preserved vegetation are present within the unit, sandy silt
dominates as a laterally persistent horizon. Some cores indicate a minor decrease in particle
size in the upper portion of the unit. Thickness of the unit ranges from >3m in the centre of
the swamp to tens of centimetres at the edges. Traverse Y running parallel with the swamp
(Fig. 4.12) indicates this sediment is deposited as a packet shallowing to the north-east.
Together with the similar sediment characteristics of homogeneous micaceous fine sandy silt
of the sediment buttress, the shape and distribution of the packet suggests the sandy silt within
the swamp is the same unit as that which forms the sediment buttress.

Poorly sorted coarse gravelly sand: Consisting predominantly of coarse sand with between
10 and 30% angular schist gravels, these highly irregular units are deposited within 10 m of
the edge of the swamp (Appendix 3) and sourced from small channels running across the
fringe of the swamp from the adjacent hillsides.

Coarse sandy gravel: Penetration of the swamp was halted at many hole sites when a layer of
coarse angular sandy gravel was hit seen in (Appendix 3A). This layer marks a change in
sediment type not apparently related to the swamp sequence. It has therefore been inferred to
represent the base of the swamp.
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Figure 4.7: Core showing decomposed matter of brown and green ‘pulp’.
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Figure 4.8: Preserved organic matter under a clay layer.
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4.5.2 Sources for clastic sediment

Distal Sources: Minerals forming the well-sorted micaceous silt/sand and clay are dominated
by biotite, muscovite, chlorite and quartz, with minor albite and epidote, strongly suggesting a
Haast Schist origin from uplifted Southern Alps, east of the Alpine Fault. Abundant micas
within very well sorted sand and clay are consistent with fluvial deposition suggesting
sediment transport occurred via the adjacent Turnbull River.

Proximal Sources: Poorly sorted angular gravelly sands commonly found within cores at the
edge of the swamp (for example X0.4 and X6 in Appendix 3A) are most likely derived from
the adjacent slopes and deposited by small stream channels close to the edge of the swamp.

A major alluvial fan abutting the shutter ridge southwest of the swamp, is currently
accumulating sediment (Fig. 4.1). There was no evidence in the swamp from cores recovered
(e.g. in hole Y1, appendix 3B) for deposition of large quantities of alluvial fan-derived
sediment via flow down the gully at the southern end, although the base was not reached.

4.5.3 Organic Components

Dr Kath Dickinson (University of Otago, Department of Botany) was unable to identify
individual plant species within cores and therefore organic components have been divided
into two categories based on the degree of decomposition.

Decomposed Organic Matter: Physically, decomposed organic matter within the swamp has
the consistency of fine pulp (Fig. 4.7). It constitutes the largest component of accumulation
within the swamp and overwhelmingly dominates accumulation above the micaceous fine
sandy silt layer. This component can be divided into two types, ‘green-pulp’ and ‘brown-
pulp’. Dr Marc Schallenberg (University of Otago, Department of Zoology) examined a
sample of ‘green-pulp’ and concluded that it was composed of nearly 100% skeletal
fragments of fresh-water diatoms common in many New Zealand open fresh water systems.
Significant deposition of diatomaceous layers in the swamp stratigraphy suggests that at the
time of deposition, the swamp surface was devoid of a swamp mat. A detailed analysis of
species was not carried out for this study as it gives little indication of accumulation rates.
Accumulation of ‘brown pulp’ is from a uniform supply of dead vegetative particles of the
overlying swamp mat falling out as part of normal swamp vegetation growth cycles.

Deposition and compaction of accumulated swamp sediment is slow (see Table 4.2) and
individual particles may remain in suspension until further deposition occurs, as
seen in the upper sections of logged holes X2 and X3 (Appendix 3A).

Preserved Organic Matter: Solid wood fragments, preserved root structures and flax layers
comprise this group. Wood fragments are common in the sandy silt unit and more rarely in
clay layers. Distinguishing between flax and root mesh in cores was very difficult so they
were grouped together. Individual layers are usually preserved below a clay band and above
brown pulp or intermixed in clay.
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4.6 Types of accumulation at South Turnbull Swamp.

South Turnbull swamp exhibits two very different types of accumulation. One type is
predominantly fine sandy silt, the other is cyclic deposition of decomposed organic matter and
clay lenses, although these two end members are commonly discontinuously interbedded.

4.6.1 Fluvial sand inundation

The fine sandy silt is interpreted to result from fluvial sand inundation of the swamp area
from the adjacent river channel of the Turnbull River. Initial deposition was probably rapid
but slowed during the later part of deposition. This reduction in accumulation rate is indicated
by an increase in organic components present, requiring time for colonisation of the sediment
surface by plants.

4.6.2 Closed swamp accumulation

Stratigraphically above and below the thick unit of sandy silt lies sediment dominated by the
accumulation of organic matter. Accumulation of major amounts of ‘pulp’ (Fig. 4.7)
comprising skeletal diatoms and decomposed vegetative matter requires a quiet freshwater
body with or without a vegetative cover, suggesting a closed swamp environment.
Homogeneous swamp-wide layers of micaceous clay generally overlie preserved organic
matter (Fig. 4.5), which itself overlies decomposed organic matter. These micaceous clay
layers within the closed swamp are interpreted as deposition from the suspended load of a
current overtopping the sediment buttress at the northern end of the swamp. When the swamp
is covered by a vegetative mat, micaceous clay sediment infiltrates the mat causing it to sink
to the bottom, thus preserving the killed off portion as organic matter.

4.7 Ash analysis

Ash provides a quantitative estimate of the proportion of accumulated sediment in the swamp
that is organic or clastic.

4.7.1 Sampling method

Five cores (X1 —X5) were sampled for ash analysis. As samples were collected using the D-
corer, very few samples are from below the micaceous sandy silt horizon as the corer was
unable to penetrate it. In addition, the upper 1.5 meters of core for X1, X2 and X3

were not sampled due to missing or poor sample recovery.
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Figure 4.9: Clastic sediment percentage of selected cores of X-profile. Three anomalous sediment layers exist within ~ stage 3.

Samples were collected adjacent to stratigraphic boundaries within cores or at regular
intervals where little visible change was apparent. After heating samples overnight at 105°C
to release free water, samples were weighed, placed in air at 1100°C for one hour, cooled and
weighed again to determine volatile loss on ignition (LOI). The Turnbull catchment lies
within Haast Schist and LOIs for clastic sediment from the Turnbull River are expected to be
similar to nearby hard rock. To account for loss of bound water in micas, a 1.6% correction
was made by averaging LOI values for samples from Big Bluff along the Haast valley (Roser
and Cooper, 1990) and Debris Creek (Wright, 2000). A 1.6% difference assumes all sediment
core is schist-derived. If there is a significant organic content, the mica content will be lower
and presumably LOI contribution would be less than 1.6%. In determining sediment-
dominated or organic-dominated accumulation, a 1.6% LOI does not greatly affect the
outcome of results. Results were plotted and graphed (Fig. 4.9) to identify dominant sediment
types during swamp accumulation.

4.7.2 Results

Ash analysis highlights the deposition of silty sediment above the sandy silt unit
contemporaneously with organic swamp vegetation. Sediment rates in the centre of the
swamp are much greater than at the fringes. Three anomalous increases in amount of clastic
sediment occur above the sand unit corresponding to swamp-wide clay bands in Appendix 3,
(A & B).
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4.8 Environmental Reconstruction of South Turnbull Swamp

Determination of clastic and organic sediment components, their source and percentages,
accumulation processes and logged core stratigraphy enable a broad environmental
reconstruction to be made (Figs 4.10, 4.11 and 4.13). Three major stages of sediment
accumulation are interpreted within the swamp history.

4.8.1 Stage 1: Closed swamp accumulation

The base of logged cores X0.6, X1, X5, Z3 and Z4 (Appendix 3, A&B) indicate cycles of
micaceous clay overlying decomposed and preserved organic matter. At hole site Y1, clay
layers are intermixed with organic components. The base of core X5 is rich in diatoms. These
observations are consistent with closed swamp sedimentation over the entire swamp (Fig.
4.10). This would require the emplacement of a protective barrier (similar to present), to
prohibit fluvial sand from entering. Layers of silty clay suggest the swamp was disturbed
periodically by deposition of suspended sediment. Onset of organic accumulation was before
880+110 A.D as constrained by "“C ages from a layer of organic matter immediately overlying
the coarse gravelly sand at the inferred swamp base in hole X1. A major packet of fluvial sand
dominates in stratigraphic mid-swamp as indicated by the basal material of cores X2, X3 and
X4 (Appendix 3A).

4.8.2 Stage 2: Fluvial Sand Inundation

A major change marking the onset of stage 2 deposition is a swamp-wide fluvial sand wedge
dipping to the south (Fig. 4.12) and at least 3.5 m thick in mid swamp (Appendix 3A).

Deposition of the sandy-silt had commenced by 1261£55 A.D as indicated by "“C ages on
wood fragments at the base of the unit in core X1. It is likely that much of the Stage 1 closed
swamp sequence was eroded away prior to, or more probably during, deposition of the fluvial
sand (Fig. 4.11). Exposure of the swamp to inundation by a large volume of fluvial sand
requires the removal of the protective sand buttress at the northern end. Two possibly linked
mechanisms to account for this include coseismic subsidence of the swamp basin relative to
the river channel and catastrophic flooding of the Turnbull River, eroding away the barrier
and thus exposing the swamp to the nearby river channel. After replacement of the eroded
Stage 1 swamp accumulation by fluvial sediment, continued net aggradation of fluvial
sediment, concentrated at the north end reformed the barrier, restricting further encroachment
of the river into the swamp basin.

4.8.3 Stage 3: Closed Swamp

Accumulation of fluvial sand at the north end of the swamp developed a stable sediment
buttress. Following this, the only mechanism for clastic sedimentation was fallout from
suspension after overtopping of the sediment buttress. Larger clasts would therefore fall out of
entrainment first, being deposited on the sediment buttress due to a decrease in velocity as the
sediment-carrying flow enters the swamp basin. Subsidence of the basin countered by
periodic deposition onto the sediment buttress from the river channel meant a protected closed
swamp developed (Fig. 4.13). Ash percentages for stage three deposition decrease with height
in analysed cores (Fig. 4.9). A vegetation mat has formed a swamp cover since the onset of
Stage 3, suggesting a decrease in influx of clastic sediment through time.
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Figure 4.10: Stage 1 closed swamp development.
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Figure 4.11: Stage 2 fluvial inundation.
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Figure 4.12: Y-traverse, depth to sand layer marking the top of stage 2 deposition. Y1 is at the right.
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Figure 4.13: Stage 3 closed swamp.
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4.9 Sediment pulses

A sediment pulse is defined here as a swamp-wide, clastic sediment depositional event
recorded in stratigraphic traverses X and Z (appendix 3, A & B) and where possible,
identified by anomalously high values in the ash analysis.

Two types of sediment pulse are recognised in the swamp. In Stages 1 and 3, sediment pulses
are identified by swamp-wide clay bands with associated underlying preserved organic matter,
interpreted as suspended sediment encroaching onto the swamp from flooding of the Turnbull
River.

The second type of sediment pulse recognised is at the boundary of Stage 1 and 2 deposition,
marking a major change in depositional character from closed swamp environment to fluvial
inundation. Onset of this major swamp-wide change is interpreted as a sediment pulse.

Radiocarbon ages were obtained for the base of core X1 in preserved organic matter under
clay at 4.9 m depth, the oldest stratigraphic layer recognised in the swamp (Wk8176, 880110
A.D). Wood fragments in core X1 at the base of depositional Stage 2 from 3.95 m depth gave
1261+55 A.D (Wk8175). Wood fragments within a clay band at the base of Stage 3
deposition in core X1, 2.75 m depth, give an age of 1350+50 A.D (Wk8624) and at 2.45 m
depth, carbonaceous mud has an age of 1325+60 A.D (Wk8623). Below the upper-most clay
layer in Stage 3 from core X4 at 0.95 cm depth, a modern age was obtained.

Six sediment pulses are identified in the swamp since 880+110 A.D (summarised in Table 4.1
and illustrated in Fig. 4.14). Pulses A, B, D, E and F all exhibit similar depositional
characteristics of clay layers in a closed swamp. Pulse C is at the base of Stage 2 defining a
major change of depositional character in the swamp. Pulse A is the oldest pulse recognized,
resting on the inferred base with a minimum age of deposition at 880+110 A.D. Cores from
the centre of the swamp (holes X2, X3 and X4) did not reach sandy gravel at the inferred base
of the swamp and therefore it is not known if there are any pulses preceding pulse A in this
deep part of the swamp. A poorly constrained age for pulse B is between a maximum of
880+110 A.D and a minimum of 1261+55 A.D. Maximum age of onset and minimum age of
cessation for deposition of pulse C was between 1261+55 A.D and 1350+50 A.D. Age
constraints for pulse D, 1350+£50A.D and pulse E, 1325£60 A.D although indistinguishable
from each other, are consistent relative to other ages in the swamp. A modern result for pulse
F could still indicate an age as old as 1690 A.D as all ages less than 200 years B.P are
returned as modern. Ages relating to the last displacement on the Alpine Fault at 1717 A.D
are commonly returned as modern (Yetton et al., 1998; pers. comm., Cooper and Norris,
unpublished data).
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Figure 4.14: Interpretation of the main swamp stratigraphy features in X and Z profiles showing three depositional stages and 6
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DEPOSITIONAL | SEDIMENT | DESCRIPTION CALIBRATED RADIOCARBON
STAGE PULSE AGES FOR TIMING OF PULSES
Stage 3 F Upper pulse - Within stage 3 - Modern Radiocarbon age
stratigraphy
Middle pulse - Within stage 3
E stratigraphy - 1325+60 A.D
Lower pulse —-Immediately above
the boundary of
D stage 2 and 3 - Immediately post 1350+50
deposition AD
Stage 2 (& Boundary of stage 1 and 2 - Immediately prior to 126155
A.D
Stage 1 B Upper pulse -Within stage 1 - Between 880+110 A.D and
stratigraphy 1261+£55 A.D
Lower pulse - Immediately above | - Immediately post 880+110 A.D
A inferred swamp base

Table 4.1: Summary and timing of sediment pulses within depositional stages.

4.10 Relationship of swamp stratigraphy to ruptures on the Alpine Fault.

Wright (1998), has produced an up-to-date revised provisional chronology consisting of 6
Alpine Fault rupture events since 940£50 AD. There is agreement between this chronology
and both the number and time constraints of sediment pulses identified in the swamp. This is
consistent with an interpretation of sediment pulses caused by overtopping of a subsided
sediment barrier following rupture on the Alpine Fault. A model is presented in Fig. 4.15 to
demonstrate a cycle of swamp deposition for a post rupture sediment pulse, followed by
organic sediment accumulation. Initially, subsidence of the riverbed, sediment buttress and
swamp occurs following an Alpine Fault rupture (2). Relatively rapid aggradation of the
riverbed to a pre-earthquake steady-state level occurs (3). The swamp and sediment buttress
remain subsided and, therefore, vulnerable to overtopping from normal flooding of the river.
Sediment particles larger than fine silt are filtered out of floodwater overtopping the sediment
buttress, thus aggrading the buttress (4).



CHAPTER FOUR: SOUTH TURNBULL SWAMP 4-15

Building of sediment butiress

restricts clastic sediment into

the swamp. Organic sediment ‘ I
accumulation dominates

River channel

\ Sediment butiress

Relative height of:

River bed
Sediment butiress
Swamp surface
A s S 8

Sediment buttress aggrades
and swamp accumulates
clastic sediment

Alpine Fault l
earthquake

Sediment
pulse
cycle

Rivgr bed, sediQ?dnf buthress Sediment butiress is over topped
OnELawWanp SLERnS during periodic flooding

Rapid
aggradation
ralses river bed v

A

Figure 4.15: A model to demonstrate deposition of pulses A, B, D, E, F in stage 1 and 3 closed swamp environment due to an

Alpine Fault earthquake.



CHAPTER FOUR: SOUTH TURNBULL SWAMP 4-16

The remaining sediment is deposited as clay bands in the swamp. As the sediment buttress
builds up towards a pre-earthquake level, it is more difficult for floodwater to overtop the
sediment buttress (5). This in turn has the effect of protecting the swamp from clastic
sediment input and enables organic sediment to dominate accumulation (1). However, it
remains uncertain if all sediment pulses are coseismic even though their number and ages are
consistent with the inferred paleoseismic record further north.

For pulse C, the only process that could comprehensively remove the barrier protecting stage
1 closed swamp, is catastrophic flooding. The timing of this event, shortly before 1261 + 55
AD, is within error of dates suggested for a major rupture of the Alpine Fault based on
trenching and forest disturbances (Wright, 1998; Berryman et al., 1998; Yetton et al., 1998;
this report, Chapter 3).

4.11 Determination of accumulation rates

Minimum average accumulation rates are determined by the maximum depth of the two oldest
radiocarbon ages obtained. Discrimination between types of sediment deposition within

the swamp is not considered when calculating overall accumulation rates. Extrapolation to the
centre of the swamp, where subsidence is greatest, of radiocarbon ages Wk8175 at the base of
Stage 1 deposition and Wk8176 at the base of Stage 2 deposition, suggest very fast rates of
accumulation. Minimum subsidence rates of 5.9mm/yr occurred over the past c.1200 years
and 6.3 mm/yr in the last c.750 years (Table 4.2).

Sample Minimum Rate Maximum Rate
Sponge Swamp (Wk7407) 0.6mm/yr 0.9mm/yr
Sth Turnbull Swamp (Wk8175) | 6.3mm/yr 7.3mm/yr
Sth Turnbull Swamp (Wk8176) | 5.9mm/yr 6.9mm/yr

Table 4.2: Comparison of maximum and minimum time averaged accumulation rates at Sponge Swamp and South

Turnbull Swamp based on radiocarbon ages.

An unpublished report (Tim Moore, Coal Research Ltd, pers. comm.), describes accumulation
at Sponge Swamp, a large closed swamp west of the Alpine Fault north of Arawhata River.
The swamp is unaffected by the present river, as it is located well above the present channel
and drains away to the north-east. Aerial photo interpretation suggests the swamp is located
in a tectonic depression. Radiocarbon dates at 2.6 m depth give an age of 3340 + 550 B.P
(Wk7407, Tim Moore pers. comm.). Therefore, even though the swamp is susceptible to
tectonic subsidence, maximum rates of accumulation are on the order of 0.9mm/yr (Table
4.2). Since Sponge Swamp is a relatively closed system for accumulation and is close to the
South Turnbull Swamp, it is used as a control on likely rates of swamp accumulation away
from the fault trace. The difference in accumulation rates between the two swamps is
significant, with those at South Turnbull swamp nearly an order of magnitude higher than
Sponge Swamp.
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4.12 Block modeling of South Turnbull Swamp

A simple block model of faulting around the swamp is developed to examine subsidence at
South Turnbull Swamp (Figs 4.16 and 4.17). The aim is to see if predicted subsidence of the
swamp during fault displacement is of the right order to explain rates of swamp accumulation.

Horizontal Constraints

| -
Swamp i&,f——f”" *
i Vv
Pre displacement
Vv v

Post displacement

Figure 4.16: Horizontal constraints of the simple block model. &= 7°, Ay is displacement during a single event.

Individual horizontal displacements on the southern section of the Alpine Fault are on the
order of 8 m as derived from trenching at Haast (Berryman et al., 1998), and displaced river
channels at Hokuri Creek (Sutherland and Norris, 1995). If the displacement during a single
event (Av) is assumed to be 8 m, the displacement of the junction of the two faults would also
be c. 8 m in a dextral sense (Fig 4.16). Let the angle between the two fault traces be 7° (based
on aerial photo interpretation). The difference (An) between swamp width before
displacement (n,) and after displacement (r,), can be calculated from

Equation 1: An = Avsino.

For Av=8m, An=0.975 m.

The dips of the two fault planes are represented by (90 - B) and (90 — 7) (Fig. 4.19). Vertical
subsidence As accompanying a single event is given by:
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Equation 2: As = An ;

(tanf + tany)

A major drawback is that As is dependent on B and v, which we don’t know. The model
becomes unrealistic if B and y both approach zero (as As y— 0).

Vertical Constraints

Cross section ¢-o'

Figure 4.17: Vertical constraints of the simple block model. Plan view of cross section ¢ — @’ is in Fig. 4.18. Values for § and 7y
(dip — 90°) are derived from assigned dips of the two fault planes bounding the swamp.

The fault trace defining the eastern boundary of the swamp (dip 90 — B) is characterised by a
linear trace, with small en-echelon steps, extending from South Turnbull Swamp to at least
Haast River in the North. Recent seismic monitoring of the Alpine Fault at Okuru suggests the
fault is near vertical (Bradley Eales, University of Otago, pers. comm.) and paleoseismic
evidence from Haast and Okuru suggests a predominantly strike-slip sense of movement.
These observations are consistent with a near vertical fault plane. Reasonable dips are

between 70°- 90°, converting to 3 values of 0°- 20°.

The southern trace defining the western boundary of the swamp, dip (90 — ¥), runs oblique to
the northern trace, suggesting an increased reverse-slip component. Reasonable dips are

assigned to be 50° - 70°, corresponding to 7y values of 20°- 40° for this transpressional fault
plane.

Subsidence from an Alpine Fault displacement for end members of the spectrum of
reasonable dip values are calculated from Equation 2 (Table 4.3).

By |20°7 400 Y
0° B 268m 1.38m

20°8 | 1.34m  0.61
Table 4.3: Subsidence from an Alpine Fault displacement.
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This simple block model suggests South Turnbull swamp subsidence (As) is on the order of
0.69 to 2.68 m per displacement on the Alpine Fault for a range of fault plane dips. From a
probable chronology of 6 Alpine Fault events over the past ¢.1200 years, total time average
subsidence rates are calculated in Table 4.4.

B v | 200 40°Y
0°B 8.45 mm/yr 3.4 mm/yr
20°B 52mm/yr 3.1 mm/yr

Table 4.4: Total average subsidence rates over the past ¢.1200 yr.

Time averaged rates of accumulation, determined from stratigraphy, are between 5.9 - 7.3
mm/yr. Long term rates of subsidence, based on modelling, give numbers from 3.1 - 8.45
mm/yr. Predicted subsidence and measured accumulation rates are of the same order of
magnitude in South Turnbull Swamp and are consistent with a fault-controlled subsidence
model for the swamp.

4.13 Summary of South Turnbull Swamp

Stage 1 and 3 Stage 2
Type of accumulation Closed swamp Fluvial sand inundation
Stratigraphy Micaceous clay Micaceous fine sandy silt

Preserved organic matter
Decomposed organic matter

Clastic sediment source Haast Schist - distal Haast Schist - distal

Identification of sediment | Swamp-wide clay bands | Thick swamp-wide unit of

pulses overlying preserved organic | fluvial fine sand
matter

Pulse numbers ABDEF <

Range for accumulation rates 5.9 mm/yr — 7.3 mm/yr

Range for subsidence rates 3.1 mm/yr - 8.45 mm/yr

Table 4.5: Summary of South Turnbull Swamp.
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4.14 Conclusions

There is some evidence for up to six subsidence events, possibly related to Alpine Fault
ruptures, since 880 AD based on sediment pulses at South Turnbull Swamp.

Pulse C is the strongest candidate for an earthquake-related sediment pulse. The age of
deposition is consistent with ages suggested for a major rupture inferred at several
localities along the whole fault (the Muriel Creek event of Yetton et al., 1998) at around
1200+£50 A.D.

Fast accumulation rates within South Turnbull Swamp are consistent with calculated
subsidence rates resulting from six Alpine Fault displacements over the past 1200 years.
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S TREE RING ANALYSIS

Large earthquakes often cause severe physical damage to trees growing near the fault trace (Page,
1970; Meisling & Sieh, 1980). If the surface is ruptured, displacement and accelerations of
substrate can physically affect trees by crushing or ripping apart root systems, snapping off major
limbs or tops of trees, causing internal stress. Older trees may be toppled over. These effects can
disrupt growing sites and induce a change in the normal growth ring patterns (Table 5.1). While
mature trees may show a drastic reduction in tree ring growth, due to a greater inertia, younger
trees that are more resilient may not show any sign of damage. In the years immediately
following an earthquake, these young trees can experience tree ring growth acceleration due to a
loss of competitors (e.g. Van Arsdale et al., 1998). An example of this is older trees falling over
and opening the canopy, allowing younger trees to become established. Major earthquake-
induced changes in land surfaces can disturb tree growth sites by causing tilting, burial, damming
of rivers to flood forests, uplift to create, improve, or damage growth environments, subsidence
to cause drowning or deterioration of growth environments, scarring of trees by rockfall or
landslide debris and other physical damage by earthquake-activated geological materials (Jacoby,
1997). These changes essentially affect hydrological and nutrient supply conditions that have
marked effects on tree-ring pattern growth.

Possible cause

Change in trees

Physical change

Physical change
(Unusually narrow or missing
rings, abnormal cells)

Top, major limb, or root system broken off

Scaring

Violent shaking and/or local earth movement

Seismically activated material impacting tree
(e.g., landslide, seiche, tsunami)

Growth rate change

Increase (wider rings)
Decrease (narrower rings)

Variation increase (ring widths
change inconsistently)

Improved growth environment, nutrient
supply, or site hydrology

Poorer growth environment, nutrient
supply, or site hydrology

Some damage, some competitors felled,
surface disrupted

Change of site into more favourable conditions,
loss of competitors
Change of site into less favourable conditions

Disturbance overrides normal growth

Reaction wood

Ground surface tilted or tree pushed over

Surface rupture, landslide, tilting minor
subsidence

Traumatic resin canals

Partial flooding

Minor subsidence

Tree growth initiated
(date of first tree ring)

Barren surface stabilized or newly available

Uplift change in base level, landslide or other
catastrophic event

Tree growth terminated
(date of terminal ring)

Surface covered, burying trees

Surface inundated

Rapid sedimentation, landslide, or other
catastrophic event
Subsidence

Table 5.1: Trees as indicators of seismic disturbance. From Jacoby (1997).

5.1 Requirements for tree ring analysis

For tree ring analysis in relation to paleoseismicity, three fundamental requirements need to be
met (Jacoby, 1997).

1) Identification of the exact year in which each ring was formed.

Simple counting of rings is not a reliable method of determining the true date of a tree, due to the
fact that in some tree species, there can be false, missing or locally absent rings due to unusual
growth conditions or trauma. Determining a climatic signal expressed in tree ring patterns by
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cross-matching is, therefore, essential if precise dating is to be achieved. It can be a difficult task,
especially on the West Coast, due to the types of, and competition among, trees, changes in stand
dynamics, disease, fire or storm damage and seismic disturbance itself making cross-dating more
difficult. The major podocarp species that grow along the fault zone, in particular Rimu
(Dacrydium cupressinum), are highly unsuitable for producing accurate, cross-matched
chronologies and, to date, all attempts have failed (W. B. Bull, pers. comm.; C. Wright, pers.
comm.).

2) Dating is absolute.
A sample is dated only when the date can be given with certainty.

3) Establishment of a control tree ring growth population.

After a climatic signal has been established, a control population is then identified far enough
from an inferred rupture zone, so as not to be seismically affected. This population is then
compared to samples immediately adjacent to the rupture zone that are considered within range to
be damaged by an earthquake. Non-seismic noise can then be eliminated, allowing for the
identification of a seismic disturbance in tree ring patterns.

5.2 Recent Alpine Fault tree-ring analysis

Tree-ring analysis has been applied on the West Coast of the South Island for determining
prehistoric earthquakes on the Alpine Fault by Wells et al. (1999) and Wright (1998). Wells et
al., (1999) examined cedars from the western side of the Southern Alps using a control from east
of the main divide. They concluded an Alpine Fault event occurred at 1717 A.D and another
event at 1620+10 A.D. Wright (1998) examined 25 podocarp slabs immediately adjacent to the
Alpine Fault at Waitaha River. Wright (1998) was restricted to using a ring counting approach for
podocarps adjacent to the Alpine Fault, due to the problems of cross-matching mentioned above.
The results of this study, however, were in agreement with Yetton et al. (1998).

5.3 Disturbances along the Alpine Fault south of Haast

5.3.1 Podocarp evidence

Fifteen Rimu (Dacrydium cupressinum) specimens were collected at three locations adjacent to
the Alpine Fault. At Drizzle Creek, living tree specimens OU67707-OU67712, had two cores
extracted at breast height from prominent tree buttresses. Along Red Hut Road, between Okuru
and Turnbull Rivers, Rimu trees were selectively felled between 1964 and 1970. The tree stumps
remaining are in an advanced state of decay. 5 slabs (OU67713 — OU67717) were sawn off what
remained of these stumps and removed from the bush. Slabs from specimens OU67718 and
OU67719 were from trees felled around 1995+1yr. It was later learned that that these two trees
could have been dead for up to 30 years before this. Specimens OU67720 and OU67721 are
from stumps located 400 m northwest of the Alpine Fault, from trees felled in 1998. Slabs were
dried for three months, and sanded to a polished finish. Tree cores were sanded along a side
where the rings were perpendicular to the core surface.
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Rimu growth: Growth rings in conifers consist of layers of early wood and late wood. Early
wood is formed in the early part of the growing season. In temperate regions, such as the West
Coast, one growth ring is formed corresponding to one growing season a year. Franklin (1969)
found that for Rimu trees, there is only circumstantial evidence that growth rings are consistently
formed annually. It is also possible for two rings to occur in one year as well as an abundance of
discontinuous rings in mature or slowly grown trees. Mature Rimu grow by buttressing, causing
growth to be confined to one sector for a number of decades and then growth will stop and move
to another sector (Fig. 5.1). These factors make cross-matching of trees very difficult and, for
slowly grown trees with extremely fine ring-widths (Fig. 5.2), accurate counting is impossible.
The very best that can be achieved by ring counting alone is an age estimate within a decade.

Specimen Samples taken | Eligibility of samples for analysis

number

QuU67707 2 Cores 1 core rotten, 1 core useable

0uU67708 2 Cores 1 core rotten, 1 core useable

ouU67709 2 Cores 1 core with no visible rings, 1 core useable

0ou67710 2 Cores 2 cores useable

0U67711 2 Cores 2 cores rotten

ouU67712 2 Cores 2 cores useable

0ouU67713 - 5 Slabs Last growth rings cannot be determined in most cases, due to
oue67717 complete decay of sapwood. Accurate ring counts are not possible
0ouU67718 2 Slabs Buttressing is severe in places. Already dead when felled. Cannot
0ou67719 determine the youngest rings. Accurate ring counts are not possible
ouU67720 2 Slabs Slowly grown, therefore large errors occurred in ring counting. Slab
0uU67721 not suitable for analysis.

Table 5.2: 12 cores from 6 trees and 9 slabs were extracted and polished. None of the slabs and only 7 cores from 5 of the trees were

useable.

5.3.2 Ring-width analysis

The inherent problems with ring growth in Rimu means that cross matching is nearly impossible.
Wright’s (1998) method of tree-ring counting was used for the study of these Rimu samples.
Slabs and cores were studied with a Zeiss binocular microscope, using between 40x and 250x
magnification. Each growth ring was counted and assigned one of six semi-quantitative width
classifications: 1: very wide (c. 3 - 8 mm), 2: wide (c¢. 1.5 — 3 mm), 3: medium (c. 0.8 — 1.5 mm),
4. fine (c¢. 0.4 — 0.8 mm), 5: very fine (c¢. 0.2 — 0.4 mm), 6: extremely fine (c. 1 mm) (the
quantitative values are only approximate; where a marked change in growth rate occurs, a change
in width classification was always recorded). A greater margin of error in counting is expected
for smaller ring growths.
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Figure 5.1: One of the inherent problems of Rimu for dendrochronology is buttressing, as seen here, making it difficult to

determine the number of individual rings.

Figure 5.2: Specimen 7720; closely spaced growth rings and buttressing has resulted in a 12 growth ring relative error
between 2 transects.
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Figure 5.3: A typical edge representative of samples OU67713 — OU67717. In all cases the last gro ring canno_t“bc determined.

ity

Figure 5.4: Specimen OU67714; 30 years of exposure to the West Coast climate has resulted in most of the sapwood having

rotted away.
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5.3.3 Cores

Seven cores have been analysed from 5 of the trees, from a total data set of 12 cores from
QU67707 — OU67712 (Fig. 5.5), for reasons summarised in Table 5.2. Tree specimens OU67710
and OU67712 each had 2 cores analysed. Trees OU67707, OU67708 and OU67709 had only one
core analysed and for tree OU67711, no cores were analysed. The age of the oldest tree-ring is
known and it is possible for tree-ring data from cores to be plotted and directly compared (Fig.
5.5). Tree-rings show little consistency between cores, even from cores within the same tree, and
there is no evidence of a major disturbance for this set of data.

5.3.4 Slabs

Advanced decay of sapwood on slabs OU67713 — OU67717 (as seen in Figures 5.3 and 5.4) and
partial decay of sapwood, with uncertain dates of death for trees pertaining to slabs OU67718 and
OU67719, meant the last years of growth could not be determined. Although the last year of
growth in slabs OU67720 and OU67721 could be determined, the rate of growth was very slow,
indicated by small ring widths (Fig. 5.2). For these samples, an inaccurate ring count is likely
(error may be as high as 10%) due to false or missing rings, buttressing and counting errors. Slab
OU67720 highlights this problem (Fig. 5.2), where 2 transects from the same slab would be
expected to have the same number of growth rings. After careful analysis, there was still a 12 ring
difference. Even if this discrepancy in the two transects could be resolved, a significant error is
probable due to highly concentrated ring spacing from slow growth. It is concluded that none of
the slabs are of a quality fit for tree ring analysis. The uncertainties are simply too great to make
any conclusions possible.
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Core number

Calendric 0OU&7707 Oub67708 Ous7709 OU67710a QOU67710b OU67712a Oué67712b
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Fig 5.5: Plot of analysed ring growth from cores of 5 tree specimens at Drizzle Creek Spur. No tree disturbances have been identified

in this set of data.
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5.3.5 Evidence from silver beech (Nothofagus menziesii) and red beech (Nothofagus
solandri)

Cross-matched chronologies have been developed by Norton (1983a, 1983b) for silver and red
beech. This set of data is useful in terms of Alpine Fault paleoseismicity, as it meets the
requirements outlined in section 5.1, enabling the identification of the exact year in which each
growth-ring was formed, absolute dating and the establishment of a control growth-ring
population back to 1750 A.D. The control group is located east of the main divide along the
Craigieburn Range. Yetton (1998) used these data sets and another control chronology as a major
component in a broader tree-ring chronology study for inferring an Alpine Fault earthquake at
1717 A.D. A major earthquake was observed in Fiordland in 1826, accompanied by abundant
landsliding north of the coast from Cascade Point (Taylor, 1855). There is also evidence for this
from Drizzle Creek Slip. Norton’s tree-ring chronologies for six Fiordland sites (Kea Flat, Upper
Hollyford Valley, and West of Lake Te Anau (Takahe Valley, Upper Takahe Valley, Lake Orbell
and Lake Eyles) and near the present field area are displayed in Fig. 5.6 to see if any anomalous
tree-ring growth occurred in the third or fourth decades of the 19" century in relation to the 1826
earthquake. Sites were all on stable slopes of <20° between 950 and 1100 m and located 25 to 75
km from the Alpine Fault.

A marked decrease in tree-ring growth occurs in 1832 A.D in all but the Upper Hollyford Valley
tree-ring chronologies. The five other chronologies match well with the control chronologies for
Craigieburn. If the 1832 A.D decrease in growth was caused by an Alpine Fault event, a greater
growth suppression would be expected from the Upper Hollyford Valley site that is
geographically closer to the Alpine Fault. As this hasn’t been observed and the data set matches
up with the control, tree disturbance from an Alpine Fault event is unlikely as a possibility for the
decrease in growth. Therefore, there is no evidence in these data showing a signal for the 1826
A.D earthquake in the western Fiordland area. It is interesting to note that Yetton et al (1998)
infer a seismic cause (1717 A.D Alpine Fault earthquake) for a major growth suppression in this
same set of data. If their inference is accepted, then another growth suppression should occur
around 1826 A.D. A number of possibilities arise as to why this is not the case. Either the 1826
earthquake was a large event around west Fiordland, but of a lesser magnitude relative to the
inferred 1717 A.D event, thus not recorded at these distant sites, or alternatively and probably
less likely, the growth suppression inferred for the 1717 A.D earthquake was not seismically
related.

Taylor’s (1855) written account of an 1826 A.D event strongly suggests disturbance and uplift,
geographically consistent with the Alpine Fault. Wells et al. (1999) have consistent suppressions
at 1717 A.D, with a control chronology that suggests these suppressions were from a widespread
major disturbance. Modified Mercalli intensity levels for tree disturbances from earthquakes are
as follows; trees are shaken lightly at intensity V, moderately at VI and strongly at VII. Branches
and trunks may be broken off during intensity VIII+ earthquakes (Wood and Neumann, 1931).

Wells et al., (1999) use MM VIII at the tree sites in their calculation of a provisional Modified
Mercalli isoseismal map for the 1717 earthquake. The lack of evidence for a seismic event at
1826 from these tree-ring chronologies at these sites at least 25 km from the Alpine Fault, is
interpreted to be consistent with a localized West Fiordland earthquake. It is inferred that these
tree sites experienced Modified Mercalli intensity levels < 7; insufficient to traumatise trees.
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Inferred 1717A.D Date of a major earthquake
Alpine Faultr Earthquake in Western Flordiand
(Yetton et al, 1998) [Taylor, 1855)
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Figure 5.6: Available cross-matched tree chronologies along the strike of the Alpine Fault from Lake Te Anau to Kea Flat. There is no
evidence for a major earthquake at 1826 A.D, in Western Fiordland. The Y-axis on all the graphs is the ring-width index. After Yetton
etal. 1998 and Norton 1983a,b.

5.4 Conclusions

e Tree-ring chronologies were not established for Rimu adjacent to the Alpine Fault. Despite
the expenditure of a large amount of time and effort, attempts to use felled Rimu trees to
determine times of forest disturbance were unsuccessful. Wright (1998) achieved some
success using a similar approach at Waitaha River, but those trees had been felled only a year
or two prior to sampling. The widespread decay of the sapwood, as seen in the Okuru trees,
had not yet occurred at Waitaha River. Also, the time of death was known to a single year,
whereas at Okuru, this uncertainty in itself may introduce a 10 year error or more. A round
from a recently felled Matai tree at Okuru was collected by the authors in 1998 and proved a
potentially valuable source of data, with a major growth suppression between 1710 and 1720
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AD (Berryman et al., 1998). It was partly on the basis of this sample that this further study
was undertaken. Unfortunately, it has proved to be the only useful sample in the area!

« Tree ring chronologies for silver and red beech, from selected sites in the Fiordland and South
Westland area showed no evidence of disturbance from a possible Alpine Fault earthquake
around 1826 A.D. The lack of evidence, however, does not mean no earthquake occurred, but
rather that the 1826 event was of lower magnitude than the 1717A.D event, did not rupture on
a regional scale and did not traumatise trees in the East Fiordland and South Westland areas.
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6 DISCUSSION

The work reported in this volume had the initial aims of providing better constraints on the
timing of the last few ruptures on the Alpine Fault in the Haast-Okuru area. The approach was
initially two-fold: (i) excavating a trench across the fault trace in order to find datable material
to supplement the results from previous trenching; (ii) collecting sawn rounds off stumps of
trees close to the fault trace that were felled during the 1960s and 1970s in order to measure
variations in growth rate and, by ring-counting back from the sapwood, estimate the age of
any major disturbances.

Both these approaches were carried out, but due to unforeseen problems discussed earlier, the
results were not as useful as hoped for. Nevertheless, significant conclusions can be drawn
from the data. Placed in a context of the paleoseismic history of the whole Alpine Fault, these
add further evidence for repeated major ruptures along the southern section of the fault.

6.1 Paleoseismology

The Turnbull trench provides evidence for three rupture events in the last 1000 years. This is
consistent with data from the trenches previously excavated at Haast and Okuru (Berryman et
al., 1998). Age constraints, unfortunately, can only be placed on the earliest of the three,
which is post 1105 + 85 AD. This event is undoubtedly the same as the first of the three
events recorded in the Haast and Okuru trenches as occurring shortly before 1220 = 50 AD
(Berryman et al., 1998). It also corresponds to a major influx of silty sand to the South
Turnbull Swamp that occurred shortly before 1260 + 55 AD. South of the Haast River, the
fault slip in this event reached 8 m dextral (Sutherland and Norris, 1995; Berryman et al.,
1998). Yetton et al. (1998) provide evidence for a major Alpine Fault rupture on the northern
section of the Alpine Fault (Fig. 6.1) at around 1220 AD (the “Muriel Creek Event” of their
chronology), and evidence for a rupture at this time was also found at Waitaha River in
central Westland by Wright (1998). The data are insufficiently precise to conclude that these
observations all refer to a single rupture along the length of the Alpine Fault, but this remains
a clear possibility. In any case, it appears that the whole length of the Alpine Fault ruptured in
either a single event or a series of events in the late 12" or early 13™ centuries.

While the Turnbull trench provides evidence for two further events after 1200 AD, it
unfortunately failed to add to the age constraints for these events. The best estimates are still
those from the trenches at Okuru (Berryman et al., 1998) which place the penultimate event
between 1400 and 1600 AD and the last event after 1665 AD. The last silty clay influx to the
South Turnbull Swamp is also consistent with the latter date. Data from further south (Cooper
and Norris, 1990; Sutherland and Norris, 1995) also place the last event after 1650 AD. These
data are consistent with a date of 1717 AD suggested by Wells et al. (1999), based on
dendrochronology, for a surface rupture on the Alpine Fault over much of Westland. A
closely similar age was determined by tree-ring counting and radiocarbon dating by Wright
(1998) at Waitaha River. Once again, however, the dating constraints are insufficient to
conclude that a single fault length rupture is responsible, rather than a series of two or more
ruptures over a short time period. A consistent displacement of 8 m dextral for the last event
from Haast River to Lake McKerrow (Berryman et al., 1998; Sutherland and Norris, 1995;
Chapter 2) is strong evidence that a single rupture is represented south of Haast River.
Disturbance in growth of trees at 1717 A.D. in northern Fiordland near Te Anau is reported by
Wells et al. (1999) as evidence for a single fault-length rupture and a single Matai tree
growing on the fault trace at Okuru showed strong growth suppression for 5 years following
an event between 1710 and 1720 (Berryman et al., 1998). Unfortunately, all trees sampled in
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this study had lost their outer rims from post-felling weathering and could not be used with
any confidence to support these observations. We feel the best approach in future would be to
core large silver beech trees close to the fault, as a cross-matched chronology of silver beech
in this region is available. A major problem here is likely to be the scarcity of sufficiently old
beech trees along the fault trace.

A major earthquake occurred somewhere off the Fiordland coast in 1826 (Taylor, 1855) and
the effects were reported by sailors in the area at the time. Extensive landsliding was noted
extending north from Milford Sound as far as the Cascade River. We do not know of any
evidence of Alpine Fault rupture onland in this event although an offshore rupture of the fault
is quite possible. It is even possible that a small amount of slip occurred onland and is
amalgamated with the early 18" Century event. Dating movement of this age would be
impossible by radiocarbon methods as it is too young, and dendrochronology on beech trees is
probably the only way to pick up traces of this event. From the contemporary reports, the
1826 event was of a sizeable magnitude — rough estimates based on the area of effects noted
would give it a magnitude of c. 7-7.5. Beech trees away from the fault, studied by Norton
(1983a, b), show no evidence of growth suppression at this time, consistent with a magnitude
no larger than this.

6.2 Radiocarbon dating

Attempts to date material from the upper soil horizon in the Turnbull trench proved to be a
problem. Ages obtained from carbonaceous clays were grossly inconsistent with each other
and up to an order of magnitude older than ages obtained on the lower horizon. Clearly they
have been contaminated with an unknown source of old carbon. In general, we have had few
problems with radiocarbon ages on the West Coast. Most are consistent both with other ages
from the same horizon and with their position in the local sequence. Where problems have
arisen, they are usually for readily determinable reasons. For instance, ages on small seeds
from colluvial wedges in the trenches at Haast are much older than they should be, due to
recycling of readily transportable carbonaceous material the earliest deposits into later
colluvial wedges. The ages of the younger wedges are similar to the ages from the oldest
deposit, which displays a highly consistent set of dates. Given that colluvial wedges, by their
very nature, are formed by recycling of older sediment from the fault scarp, such
“contaminated” ages are both logical and to be expected.

In the case of the ages from the upper soil horizon in the Turnbull trench, however, the origin
of the contamination is both unknown and perplexing. The oldest “age” obtained, c. 12000 yr
BP, is an order of magnitude older than the ages obtained from wood samples just above the
basal gravel terrace, and much older than the terrace itself (based on regional correlation). In
order for the spurious age to be caused by contamination, around 75% of total carbon in the
sample would need to be ancient carbon (i.e. free of any '“C). Where this came from is
unclear. It is possible that erosion of older deposits upstream released wood fragments which
floated down and were deposited during a flood which covered the terrace. The fragments
subsequently decayed and formed the basis for the carbonaceous clay lenses. This is the only
feasible possibility we can conceive of, although of course the truth may be quite different!

It may be significant that all three spurious ages from the upper horizon were measured on
very small samples using Accelerator Mass Spectrometry (AMS) at GNS whereas the ages on
the lower horizon were obtained from large wood samples using conventional counting
techniques at the University of Waikato. Small samples are more likely to be susceptible to
contamination since only a small total amount of contaminant is required. The large
differences between the three ages suggest highly variable amounts of older carbon
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contaminant. One approach might be to analyse a large number of small samples or splits
from the clay lenses. The pattern of ages obtained may give some idea of the degree of
contamination and provide a better estimate of the maximum age of the deposit. An
alternative, and scientifically sounder, approach would be to separate out all the various
organic components of the clay and analyse these separately using AMS methods. Similar
studies on New Zealand carbonaceous soils have shown that the different components may
indeed have slightly different ages, although not normally of the degree required here (Prior,
2000 and pers. comm.). Unfortunately, for the present study, time and financial constraints
ruled out either of these detailed investigations.

6.3 South Turnbull Swamp

Although not part of the original proposal, the detailed study of the South Turnbull swamp
was carried out to see whether a record of fault rupture events was decipherable from the
swamp infill sequence. The setting of the swamp is clearly controlled by subsidence induced
by fault displacement and the calculated rate of subsidence is an order of magnitude faster
than would be expected for a similar swamp that was not directly fault-controlled. Swamp-
wide incursions of river sediment occur which may readily be incorporated into a model
linking fault displacement and subsidence. Unfortunately, these indirect signals of fault
rupture are always subject to a degree of ambiguity as causes other than faulting may also be
responsible. The major incursion of silty sand prior to 1260 AD observed in the swamp infill
is the most compelling signal of fault rupturing. The catastrophic nature of the event and the
large amount of subsidence required make such an interpretation robust. The five other
swamp-wide layers of silty clay recorded since 880 AD may also reflect ground ruptures.
However, a major flood event some time after an earthquake could conceivably create an
extra layer in addition to those forming in response to the displacement-induced subsidence. It
is also possible that a ground rupture may not be large enough to generate an observable
signal by not creating sufficient subsidence to cause flooding.

In the model, the deposition of swamp-wide silty-clay layers is be related to the increased
vulnerability of the swamp to overbank flooding by the Turnbull River during floods
following fault rupture. This vulnerability to inundation decreases with time as the sand
barrier is built up at the swamp margin. Since the barrier to flooding, the sand bar, is itself
built up by flooding, it follows that rare large flood events may still inundate the swamp long
after a fault rupture has occurred. Hence it is likely that some of the sediment layers may
result from events other than fault displacement. Only by careful documentation and age
bracketing of different sites may a chronology of fault movement be built up. Thus all five
layers may record ground ruptures but the actual number could be less than this. Since the
trenches only record two events after ¢.1200 AD whereas the swamp has three silty-clay
layers, it is likely that at least one silt inundation has been generated other than by ground
rupture.

Although the South Turnbull swamp does not therefore provide an unambiguous record of all
fault rupture events since its inception, it does provide valuable data which may be used in
conjunction with trench-based data. Its great advantage is that it provides a long and
continuous record. Its disadvantage is the indirect nature of the signal with the resulting
uncertainty. Nevertheless, we consider that investigation of similar swamps elsewhere is well
worthwhile.
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Fig. 6.1 Map of South Island showing locations of direct paleoseismological data reported by Cooper
& Norris (Milford, 1990), Sutherland & Norris (L. McKerrow, 1995), Yetton et al. (Crane Ck.,
Haupiri, Toaroha, 1998), Wright (Waitaha, 1998), Berryman et al. (Haast, Okuru, 1998) and this

report.

6.4 Regional correlation of rupture events on the Alpine Fault.

Yetton et al. (1998) have combined data from their own and other research to produce a
composite chronology of Alpine Fault ruptures, to which they have given names (Table 6.1).
Wright (1998) and Wright et al. (in preparation) have completed a detailed study at a single
site at the Waitaha River (Fig. 6.1) where they have established an event chronology largely
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consistent with that of Yetton et al. (1998) (Table 6.1). A major question is whether these
“events” are ruptures extending the whole length of the fault or represent breaks on only a
limited section of the fault. Thus the fault may rupture its whole length in a series of, say,
magnitude 7.5 events within a limited time period rather than in a single magnitude 8 event.
Radiocarbon ages are generally too imprecise to distinguish these possibilities. Tree-ring ages,
and in particular dendrochronology, have the potential to narrow down the time-slot to a few
years but, with the possible exception of the last event, have not yet achieved this.

Earthquake Chronology Comparison

Event Name | Age (Yettonet | Age— Waitaha Age (Bull, Ages, south
al, 1998) (Wright 1998) revised)§ of Haast
Toaroha River 1717 AD 1720+ 10 AD 1718 £ 10 AD | post 1665 AD
71717 AD
Crane Creek 1620 + 10 AD - 1615+ 10 AD
Macgregor - 1580+ 10 AD 1578 £ 10 AD
Creek*

Geologists 1425+ 15 AD 1440 £ 15 AD 1428 + 10 AD 1400-1600
Creek AD
Muriel Creek 1220 + 50 AD 1210+ 30 AD 1224 + 10 AD 1105-1220

AD
Roundtop 940 + 50 AD 900 £ 100 AD 961 £ 10 AD 880+ 110 AD
Waitaha River 595+ 60 AD 550 £ 100 AD -
John O’Groats 25+ 90 BC - -
Waitaha 2* - 300+ 100 BC -

Table 6.1

Comparison of earthquake chronologies from three sources, together with age ranges for events on the

southern section of the fault from this study. There is no implication that the southern events are
necessarily the same as the named events to the north.

§ Bull’s revised lichenometric dates are pers. comm. to C Wright 1998, based on Bull 1996.

* new events proposed by Wright, 1998.

Comparing the paleoseismic data from the Haast-Turnbull area discussed above, the last event
(Toaroha River event) is compatible with the last event in the south. The Crane Creek —
Macgregor Creek events (which could conceivably be the same event — Wright et al., in
preparation) are more difficult to correlate with events recorded south of Haast although the
penultimate event here has such poor age constraints it could conceivably represent one or
both of these northern events (depending on whether they are separate events or not) . The
Geologists Creek rupture is another possible correlative of the penultimate event in the south.
Alternatively, the southern event may be a completely separate rupture and not correlate with
either of these northern events.
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The Muriel Creek event at around 1200 AD may be the same event as the earliest event
recorded in the trenches south of Haast and represented by a major inundation of the South
Turnbull Swamp. Unfortunately, the error bars on the radiocarbon ages are too large to rule
out separate events in the north and south. The Roundtop event at c. 900 AD is compatible
with the inception of subsidence in the South Turnbull Swamp at around 880 + 110 AD. It is
also possibly consistent with stabilisation of the gravel terrace surfaces at the Turnbull and
their removal from the main river channel deposition. Once again, however, the age
constraints are too broad to demonstrate exact contemporaneity of these events. The
investigated record in South Westland does not go back any earlier so that the earlier events in
Table 6.1 are not represented.

The data are tantalizing, as a case could be made for fault-length ruptures occurring every 300
years or so. In the south, this would be consistent with a slip rate of 27 mm/year (Norris &
Cooper, in press) and a slip per event of 8 m (Berryman et al., 1998; Chapter 2). An extra
event is required in the north during the last 800 years. Paleoseismological studies are more
likely to miss events as a signal may be absent or too weak at a site to be recognised. This is
particularly the case with strike-slip faults where sediment accumulation on the downthrown
side may be small. Nevertheless, some degree of consistency is developing regarding ruptures
on the Alpine Fault.

We conclude by outlining two outstanding problems relating to Alpine Fault-related seismic
hazard.

Firstly, the imprecision of radiocarbon ages means that it is impossible to distinguish between
a full length, magnitude 8 rupture on the fault and a series of smaller events spaced closely in
time. The amount of movement on the fault south of Haast (8m in each of the last three
events) strongly suggests that a reasonable length of fault broke in a single event (c. 200 km;
Wells & Coppersmith, 1994), but this section could still rupture separately from the northern
part studied by Yetton et al. (1998) and Wright et al. (in preparation). Of the methods used to
date, only the use of properly cross-matched dendrochronology can resolve this problem, and
even then, two events within a year would remain a possibility. The “worst-case” scenario of
a magnitude 8 rupture from Hokitika to Milford Sound must be emphasized, but the
alternative of two or more smaller events within a few years breaking the whole fault must
also be considered when estimating hazards. Further dendrochronological work may help
resolve this problem but our experience shows that such undertakings are difficult with New
Zealand tree species.

Secondly, the total record of events on the Alpine Fault is still rather short, spanning about
1200 years. A longer record would assist in calculating probabilities, hazard levels and long-
term behaviour of the fault. Investigations of long-term recorders of subsidence or
displacement, such as the South Turnbull Swamp and similar features, may assist in extending
the record backwards in time.

Clearly, the two problems are interlinked since, even at best, dendrochronology is unlikely to
be usable prior to 1200 AD. Nevertheless, a longer chronology would be a valuable asset in
understanding the fault behaviour.
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Appendix 1

Alpine Fault Trace Map
Haast River — Arawhata River
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Appendix 2

Turnbull Trench Log



Appendix 2
Stratigraphy of Turnbull Trench with photograph mosaic
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Appendix 3

South Turnbull Swamp Stratigraphy
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