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NON-TECHNICAL ABSTRACT

As a result of an earthquake and its aftershocks built infrastructure may sustain damage. One

of the major challenges for quick and efficient recovery in the aftermath of a hazardous event

is rapid estimation of the damage. I f the state o f buildings, bridges, dams and other structures

could be quickly and reliably assessed healthy, undamaged structures could be immediately

re-opened for continuous, uninterrupted service, while damaged structures would be closed

and prioritised for later detailed evaluation, repair, demolition or replacement. Doing so will

minimize casualties and economic loses and will aid quick recovery of an affected area.

Accurate estimation of seismic damage is, however, a time and resource consuming task.

Traditionally, it can be achieved by visual inspection of infrastructure following an

earthquake. However, given the usually large stocks of structures to inspect and limited

number of qualified personnel damage assessment is a slow process. The fact that damage

can often be inconspicuous adds to the difficulty.

An alternative to visual inspection can be using measurements of structural responses during

strong motion events taken by sensors located in the structure. This approach becomes

feasible with the development of continuous seismic monitoring arrays. In New Zealand, the

EQC and FRST funded GeoNet monitoring project that is currently expanding its coverage to

buildings and bridges, can be used for structural damage detection. However, raw data from

seismic sensors are of limited value. The challenge is to analyse the measured structural

responses so that structural damage can be detected and quantified. This research studies

several techniques that enable such purposeful data analyses.

Damage detection by analysis of structural responses is based on the premise that it is

possible to choose certain response signal features that are different for responses of healthy

and damaged structures. Once the features are selected another analytical tool is required to

actually tell the difference between the features corresponding to different structural states. In

this research, we modelled structural accelerations using autoregressive time series models in

order to find suitable damage sensitive features, and used pattern recognition techniques for

feature classification. The approach was thoroughly investigated through several

experimental studies and results of damage detection and quantification are promising.

1



TECHNICAL ABSTRACT

The ability to estimate seismic induced damage to civil infrastructure is undoubtedly one of

the most important challenges faced by structural engineers. In this research, structural

damage was detected and assessed by analysing the structural response.

Autoregressive (AR) time series models were used to fit the acceleration time histories

obtained when the structure was in both undamaged and damaged states. The AR coefficients

were selected as damage sensitive features and statistical pattern recognition techniques were

investigated for interpreting changes in the values of these features caused by damage.

Initially, an offline damage detection method was developed in which Back-Propagation

Artificial Neural Networks (BP ANNs) were used for both classification and quantification

tasks where the damage states were recognized or percentage of remaining stiffness at a

specific location was estimated, respectively. The method was applied to three experimental

structures: a 3-storey bookshelf structure, the ASCE SHM Phase II Experimental Benchmark

Structure and a RC column. In addition, for damage classification tasks, two supervised

classification techniques of Nearest Neighbour Classification (NNC) and Learning Vector

Quantisation (LVQ), and an unsupervised method of Self-Organising Maps were studied.

Damage classification and/or quantification using BP ANNs, NNC and LVQ techniques was

achieved with very good results confirming the usefulness of AR coefficients as damage

sensitive feature and the studied pattern recognition techniques as damage classifiers.

An online damage detection method was also developed based on recursive identification of

the AR models using the forgetting factor and Kalman filter approaches and BP ANNs. An

analytical linear 3-DOF model with time varying stiffness was investigated and the results

showed that damage could be detected and quantified as it occurred. Damage detection in

nonlinear systems was addressed with the investigation of an analytical 1-DOF elastoplastic

oscillator and a 3-DOF Bouc-Wen hysteretic model. In both cases the on-set of nonlinearity

was detected with good accuracy.
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NOTATION

The following notation is used throughout this report:

0 null matrix

A state matrix

a AR coefficient

B input matrix

B backshift operator

b exogenous coefficient

C damping matrix, output matrix

c MA coefficient, damping coefficient

D feedthrough matrix

D distance between vectors

d vector of desired ANN outputs

E selection matrix

E error, expectation operator

e error vector

e error

F discrete Fourier transform of input, frequency

f frequency

H Hankel matrix, covariance matrix of noise

H frequency response function

1 identity matrix

1 imaginary unit

Im imaginary part

J Jacobian matrix

K stiffness matrix

k stiffness

L gain matrix

M mass matrix

111 codebook vector

m mass

na AR order
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nb exogenousorder

nc MA order

o vector of ANN outputs

P covariance matrix

Q covariance matrix of noise

R matrix of singular vectors

R autocorrelation function, cross-correlation function

Re real part

S matrix of singular vectors, sensitivity matrix

S auto-spectral density, cross-spectral density

T transition matrix

T natural period

t time

u state-space input vector

u weighted sum of inputs, displacement, input

V matrix of singular vectors

w ANN weights vector

X discrete Fourier transform o f response

x state vector, feature vector

x input, excitation

Y matrix of previous time series output

y state-space output vector, vector of current time series outputs

y time series, output

Z measurement matrix

z principal component

A interval, increment

77 learning rate

0 vector o f time series model coefficients, vector o f updating parameters

A matrix of singular values

2 iteration parameter, eigenvalue, forgetting factor

damping ratio

I covariance matrix, matrix of singular values
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{}

Subscripts:

AR

a

accel

C

crit

E

e

i

r

S

X

€ 8 0 9
standard deviation

mode shape

mode shape

vector o f previous time series values

radial frequency

time series

absolute value

AR coefficients

analytical

accelerometers

continuous time system, closest codebook vector, complex number

critical

Euclidean metric

experimental

index, iteration step

index

input

time step, index, iteration step

Mahalanobis metric

measurements

real part, input

sampling frequency

output

Superscripts:

T matrix transpose

A estimated quantity

mean value

+ pseudoinverse
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CHAPTER 1

INTRODUCTION

1.1. Background and motivation for research

In seismically active regions, such as New Zealand, the ability to detect and quantify seismic

induced damage to civil infrastructure is undoubtedly one of the most important challenges

faced by structural engineers. In the aftermath of a major earthquake, an efficient and reliable

method for assessing the extent of damage to civil infrastructure would enable the immediate

reoccupation of structures identified as having sustaining only minor damage and informed

decisions to be made on the repair or demolition of structures identified as sustaining major

damage. This research develops methods for damage detection and quantification from

analysis o f vibration data recorded on structures under dynamic excitations.

Various structural monitoring programmes have already begun abroad and are now being

implemented in New Zealand with the GeoNet programme (Gledhill et al. 2006). Subsequent

analysis of the vibration data gathered by monitoring systems could reveal changes in the

structural response and identi fy the presence of damage. Such studies are commonly referred

to as Structural Health Monitoring (SHM) which can be broadly defined as a process

involving firstly, tracking any aspect of structural performance or health by measuring data

and secondly, interpreting changes in these data so that structural condition and reliability can

be quantified objectively (Aktan et al. 2002). During the past decade research into SHM has

received considerable attention. This can be partly attributed to the recent advances in

electronic, sensor and wireless technologies together with the development of analytical

tools. Despite this interest, a robust and reliable SHM system capable of detecting, locating,

and quantifying damage while remaining unaffected by changes in environmental and

operating conditions has yet to be agreed upon.
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Chapter 1

SHM methods can be broadly divided into several paradigms. Amongst these, vibration

based methods appear to be the most promising. These methods use damage sensitive

features extracted from the structure's dynamic response to identify damage. Various

techniques have been proposed either in the frequency domain (Wu et al. 1992; Zang and

Imregun 2001; Ni et al. 2006) or time domain (Nakamura et al. 1998; Nichols et at. 2003;

Yang et al. 2007). Motivated by the relatively unexplored, although promising use of time

series analysis techniques in SHM, this research attempts to develop a health monitoring

methodology using these techniques.

1.2. Objective, contribution and scope of research

The objective of this research is to apply the tools of statistical pattern recognition, in

particular Artificial Neural Networks (ANNs), to develop methods of damage detection and

quantification for civil infrastructure that may be affected by seismic induced damage. The

contribution and scope of the research is outlined below.

Methods for damage detection and assessment using Autoregressive (AR) time series models

and statistical pattern recognition techniques were investigated. AR models were used to fit

the acceleration response of structures with varying degrees of damage. The AR coefficients

were selected as damage sensitive features and statistical pattern recognition techniques were

applied to interpret changes in the values of these coefficients caused by damage. The

contribution of this research was the development of an offline method for detecting, locating

and quantifying damage in civil infrastructure using AR coefficients and BP ANNs. The AR

coefficients were used as inputs into the BP ANN and the ANN was trained to recognise

changes in the patterns of coefficients and relate these to either a specific damage state

(damage classification) or a reduction in stiffness (damage quantification). This methodology

allowed for both the location of damage to be identified and extent of damage to be

quantified. The method was applied to three experimental structures: a 3-storey bookshelf

structure, the ASCE Phase II SHM Experimental Benchmark Structure and a RC column.

The results showed the combination of AR models and ANNs were effective at damage

classification and quantification tasks. The use of data reduction techniques was investigated

for systems in which the number of sensors and/or AR coefficients proved to be too large for

practical application of BP ANNs. Principal Component Analysis (PCA) was used to reduce

the dimensionality of the feature and allowed BP ANNs to continue to be practical for these

systems.
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In addition, research contributions were made with novel application of Nearest Neighbour

Classification (NNC), Learning Vector Quantisation (LVQ) and Self-Organising Maps

(SOM) techniques in the civil infrastructure field. The basic idea behind these methods is to

establish a database of baseline damage features corresponding to various damage states, and

later, when a new feature becomes available, assign it to the damage state with the closest

distance between the new feature and the reference feature clusters. For damage classification

tasks, NNC and LVQ supervised learning methods were found to be effective damage

classifiers. SOM, an unsupervised method, showed promising results. Visualisation of

damage data was attempted using 2D projections of the AR coefficients obtained using PCA

and Sammon mapping. For the ASCE Phase II SHM Experimental Benchmark Structure

these projections showed distinct clusters corresponding to various damage states.

Previously outlined methods used AR coefficients estimated using an offline identification

technique allowing for an intermittent damage prognosis. Another contribution of this

research was the development of an online method for detecting and assessing damage in

real-time using recursive identification of AR coefficients and BP ANNs. The forgetting

factor and Kalman filter approaches were investigated for the identification of AR

coefficients. Applied to an analytical model of a 3-DOF linear elastic oscillator with time-

dependent stiffness, the results showed that damage could effectively be tracked as it

accumulated. The concept of damage detection in nonlinear systems was investigated on

analytical models o f a 1 -DOF elastoplastic oscillator and a 3 -DOF Bouc-Wen hysteretic

system. Damage could no longer be regarded as a simple reduction in stiffness and instead

the presence of nonlinearity was successfully detected by observing sudden changes in the

values ofAR coefficients.

1.3. Report layout

The layout of this report is as follows:

Chapter 2-A review of contemporary approaches to damage detection is given. A brief

outline of the historical development of ANNs and applications to engineering and

specifically structural engineering is also presented.
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Chapter 3-A description of the three experimental structures used in this study: a 3-storey

bookshelf structure, the ASCE Phase II SHM Experimental Benchmark Structure, and a RC

column are given and the results of dynamic testing on these structures are presented.

Chapter 4 - An offline damage detection method using AR models and BP ANNs is

developed and experimentally verified on the three experimental structures.

Chapter 5 - Three statistical pattern recognition techniques: NNC, LVQ and SOM are studied

and compared against BP ANNs for damage classifications tasks. Reduction and visualisation

of damage data is investigated using PCA and Sammon mapping.

Chapter 6 - An online damage detection method is developed which uses recursive

identification of the AR models. Online damage detection in linear and nonlinear systems is

investigated.

Chapter 7 - Conclusions and recommendations for further research are provided.
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CHAPTER 2

LITERATURE REVIEW

This literature review consists of two parts. Firstly, an introduction to Artificial Neural

Networks (ANNs), the main tool used for damage detection and quantification in this

research, with key historical developments and applications is given. Secondly, current trends

in Structural Health Monitoring (SHM) methods are reviewed emphasising civil

infrastructure applications.

2.1. Artificial Neural Networks

ANNs are data processing structures deliberately designed to utilise the organisational

principles found in the brain (Anderson and Rosenfeld 1988). Consisting of sel f-organising,

interconnected layers of simple computational units or neurons, their parallel architecture

allows for a powerful information processing system capable of classification, pattern

recognition and functional mapping tasks. Over 60 years of research has lead to several

different types of neural networks including the Boltzmann machine (Hinton and Sejnowski

1986), Back-Propagation (BP) (Rumelhart et al. 1986), competitive learning (Rumelhart and

Zipser 1986), Central-Propagation (CP) (Hecht-Nielsen 1987), Hopfield (Hopfield 1982),

Kohonen (Kohonen 1984), Learning Vector Quantization (LVQ) (Kohonen 1988), and

Radial Basis Function (RBF) (Poggio and Girosi 1989) neural networks. These networks vary

in topology and method of learning, which can be supervised or unsupervised. Rumelhart and

McClelland (1986) gives a comprehensive overview of the basic anatomy of ANNs. A more

recent review of the major types o f ANNs, with an emphasis on computation, can be found in

Freeman and Skapura (1992).
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2.1.1. Historical development

Early research into mathematical models of brain function was for the primary purpose of

scientific discovery into areas of neurobiology, cognition, psychology and human behaviour.

A compilation of major discoveries in neural networks can be found in Anderson and

Rosenfeld (1988). A collection of these founding articles in the development of artificial

neural networks is presented below.

The origins of ANNs stem from a paper written by McCulloch and Pitts (1943) in which they

theorised a computational model of a neuron. They considered the neuron to be a binary

device activated when the input exceeded a certain threshold. Arranging these neurons into

nets with the correct thresholds allowed simple logic operations to be made. Although

McCulloch and Pitts did not explicitly state that the computational power of these simple

neurons was due to their interconnectivity, it was obvious to them (Anderson and Rosenfeld

1988). McCulloch and Pitts concluded that the brain was a large logic computational device.

The first physiological learning rule was theorised by Hebb (1949) who introduced the idea

of synaptic modification, a inethod o f learning by adjustment of neuron weights. Rochester et

al. (1956) simulated this learning rule and the accompanying theory of Hebb on a computer.

Further developments were made by Rosenblatt (1958) when the first computationally

oriented neural network, the perceptron (Anderson and Rosenfeld 1988) was introduced. The

perceptron architecture consisted of a connected sensory, association and response layer.

Widrow and Hoff (1960) introduced the adaptive neuron and the least mean squares

algorithm for supervised learning. They demonstrated the results on the purpose built

ADALINE (ADAptive Linear NEuron) machine, an adaptive pattern classification machine.

Minsky and Papert (1969) placed computational limits on the perceptron with a detailed

mathematical analysis. This excellent piece of research almost stopped the development of

neural networks entirely (Anderson and Rosenfeld 1988; Freeman and Skapura 1992).

Over two decades passed before neural networks made a full recovery from the findings of

Minsky and Papert (1969). During this intermediary period only a small amount of research

continued into neural networks and improvements were made on the perceptron with the

simultaneous discoveries of Kohonen (1972) and Anderson (1972). Both of these studies

presented a model of associative memory, a structure that mapped a set of input patterns to a

set of output patterns. The model is now referred to as the linear associator.
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Kohonen (1982) introduced the Self-Organising Map (SOM), an unsupervised learning

technique in which neurons through a process of self-organisation formed a topology-

preserving map. The maps were used to create two-dimensional projections of higher

dimensional data, in which the topology of the input space was preserved.

The resurgence of ANNs can be partly attributed to the discoveries of Hopfield who moved

neural networks into the modern era of research (Freeman and Skapura 1992). Hopfield

(1982) and Hopfield (1984) presented two models of associative memory, discrete Hopfield

memory and continuous Hopfield memory using binary and continuous neurons,

respectively. Both models featured recurrent networks that allowed the stable states of the

network to be found under a process of parallel relaxation using an energy function

minimisation rule. These stable states were related to the memory stored by the network.

Another method used the Boltzmann distribution to find energy minima; the network was

known as the Boltzmann machine and was a binary device. Ackley et al. (1985) described a

learning rule for the Boltzmann machine.

The popular error BP learning algorithm was independently discovered by a number of

researchers. First by Werbos (1974) and then almost simultaneously by Parker (1985), Le

Cun (1986) and Rumelhart et al. (1986). Rumelhart et al. (1986) describes the generalised

delta rule for learning in networks with hidden layers. This was a major development and

allowed networks to increase in complexity beyond the perceptron with the addition of

hidden layers.

LVQ networks were developed by Kohonen (1988) and are closely related to SOM. The

networks attempt to define clear class borders for efficient classification.

RBF neural networks were developed by Poggio and Girosi (1989; 1990) from the

mathematical framework of regularisation theory, which seeks to find a smooth

approximating function.

Since these early articles there have been many other important developments in the field that

it is perhaps impossible to choose which is still ground breaking research. There are now

entire journals devoted to neural networks. Many articles published after the above papers
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have modified and optimised the basic ideas contained in them. Much of the research in

neural networks is now being conducted by computer scientists and has hence moved away

from attempting to understand neurobiology and cognition towards refining their use as a

computational tool.

The application of ANNs can be found in a diverse range of fields. Their ability to learn from

examples is a major advantage for problems that have no clearly defined set of rules. An

exponential increase in computer power has also affected the use of neural networks,

allowing more parameters and large networks to be used. The first real-world applications of

neural networks were most probably for image and speech recognition; Fukushima et al.

(1983) used a neural network for recognising hand written numerals. Lippman (1989) and

Trentin and Gori (2003) both investigated the use of neural networks for speech recognition.

Neural networks can be used for financial analysis. Kim and Lee (2004) described using an

incorporated genetic algorithm and neural network approach to predict the stock market. Jasic

and Wood (2004) tested the predictive abilities of neural networks to forecast changes of

major stock markets for profitability. ANNs can be applied to seemingly chaotic large scale

dynamic systems. Maqsood et al. (2004) investigated the applicability of using an ensemble

of neural networks to predict the weather. In the field of aerospace, Suresh et at. (2003) used

a recurrent neural network to predict the lift coefficient of rotor blades at high angles of

attack to investigate the dynamic stall effect. Reddy and Ganguli (2003) applied RBF neural

networks to detect structural damage in a helicopter rotor blade. Breke et al. (1993) found

optimal designs for aircraft wings under different dynamic and static constraints using neural

networks trained with optimised design data. Civil engineering applications of neural

networks include the forecasting of tloods (Thirumalaiah and Deo 1998) and the flow for

hydropower plants (Coulibaly et al. 2000). Basheer (2000) used neural networks to model the

stress-strain behaviour of soils. Alsugair and At-Qudrah (1998) developed neural network to

assist inspectors assessing pavement maintenance. Lee and Lee (2004) classified crack types

in digital pavement images with the use o f several neural networks.

2.1.2. Applications in structural engineering

The first reported application of ANNs in the structural engineering field was made by Adeli

and Yeh (1989) in which a perceptron network was used to design steel beams. Since then

their use has grown extensively into a range of structural applications including analysis,

design, optimisation, control, damage prediction and St-IM. An comprehensive review of the
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use of neural networks in civil engineering from 1989-2000 can be found in Adeli (2001).

Although focusing mainly on the structural engineering and construction management fields

the review also includes uses in environmental, water resources, traffic and geotechnical

engineering.

Neural networks have been used in structural design for optimisation problems and

computerisation of the design process. Unlike other artificial intelligence systems, neural

networks learn from examples and design rules therefore do not need to be explicitly stated.

Mukherjee and Deshpande (1995a) used a BP neural network to predict the optimal design of

an RC beam, useful in the initial design phase. They stated that Rule-Based Expert Systems

(RBES) lack learning and generalisation abilities and therefore their use was limited in

design, unlike neural networks that can store expert knowledge and are able to generalise.

Mukherjee and Deshpande (1995b) described using a combination of RBES and ANNs as a

method of computerising the design process. The authors saw such a combination is suited to

the design process that requires not only calculations but also engineering judgement,

intuition, experience and creative abilities. The approach required the ANN to do the

preliminary and detailed design, while the RBES did further processing and calculations.

Adeli and Park (1995b) introduced a neural dynamics model for the optimal design of

structures by using a stability function and introducing constraints on the solution. Adeli and

Park (19954 applied the optimisation method presented in Adeli and Park (1995b) to a

minimum weight design of a space truss under various loads and constraints. Although a

majority of research has used BP neural networks there are alternatives. Adeli and Park

(1995a) outlined the applicability of CP neural networks in structural design whilst stating

that BP algorithm was not suited for large networks due to its slow learning rate.

Mukherjee et al. (1996) predicted the buckling load of slender columns using a BP neural

network trained from experimental data. Chuang et al. (1998) predicted the capacity of

slender pin-ended reinforced concrete columns using neural networks trained from

experimental data, an application useful in checking designs. Biedermann (1997) showed that

neural networks could represent heuristic design knowledge and used a BP neural network to

group structural members in 2D steel frames into design groups as an example. An insight

into some of the issues with using neural networks was also given: the effects of network

topology, data representation, distribution of training data and overtraining on the predictive

ability of the network were discussed. Jenkins (2002) described a neural network based
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iterative method for structural reanalysis using a plane truss and space truss as examples. The

network was capable of dealing with a number of design changes including material, cross-

section and load changes.

Structural control often involves complex nonlinear relationships and hence is suited to the

application of neural networks. Bani-Hani and Ghaboussi (1998) investigated using a BP

ANN to replace conventional control system theory in the control of an active tendon system.

The authors concluded that neural networks were effective nonlinear controllers. Madan

(2006) used BP ANNs for active control of a 8-DOF model with either an active mass

damper or two active braces under earthquake excitation. Bani-Hani (2007) applied neural

networks to control wind-induced vibration in an analytical model of a 72-storey building

proposed for construction. The ANN was used to control an active tuned mass damper.

Other applications of ANNs directly related to the research presented in this report have been

included in the relevant sections.

2.2. Structural Health Monitoring

This review of SHM literature has an emphasis placed on methods applied to civil

infrastructure, although methods applied to aerospace, composite and non-destructive

materials testing fields that are of particular interest have also been included. SHM methods

can be broadly divided into several paradigms: vibration methods, visual inspection, and

localised tests (Aktan et al. 2002). Vibration based methods appear to be the most promising

and widely researched. Such methods rely on changes in the physical properties of structure

i.e. stiffness, boundary conditions, damping and mass caused by damage to be represented in

the dynamic response of the structure. Typically, vibration data, e.g. strains, displacements,

velocities and accelerations, are transformed using various mathematical techniques in order

to find a damage sensitive feature. Many methods employ a second mathematical tool,

usually a statistical technique, to interpret changes in the value of this feature, providing

damage classification into states or giving a quantitative measure of damage.

A comprehensive review of vibration based methods prior to 1996 can be found in Doebling

et al. (1996). A companion study by Sohn et al. (2003) reviewed literature between 1996 and

2001. The review presented in this report has been divided into frequency domain methods,

time domain methods, studies on the effects of environmental and operating conditions on
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SHM and methods specifically using time series analysis techniques. The division of SHM

methods into the frequency and time domain was broad and in some cases a degree of

ambiguity may exist.

2.2.1. Frequency domain

Wu et al. (1992) used Fourier spectra of acceleration time histories and a BP ANN to detect

damage in a simple linear 3-storey building model. The Fourier spectra were used as the

ANN input while the output was the damage at each storey.

Worden (1997) introduced the concept of novelty detection, a unsupervised damage detection

methodology. Transmissibility data obtained in the undamaged condition was used as input

into an Auto-Associative ANN. When damage was present the ANN was no longer able to

reproduce the input at the output layer and this error indicated the presence of damage.

Doyle and Fernando (1998) classified acoustic frequency data obtained from a composite

panel using BP ANNs and LVQ into four different states. Performance of both network types

was found to be similar.

Zang and Imregun (2001) used Frequency Response Functions (FRFs) reduced by Principle

Component Analysis (PCA) as inputs into a BP ANN. Without the reduction using PCA the

use of ANNs would be impractical, as ANN training would require a large computational

effort. The authors applied the method to detecting damage in a railway wheel.

Sohn and Law (2001) investigated the use of Ritz vectors in detecting damage in a bridge

structure. The Ritz vectors were extracted from a flexibility matrix constructed from vibration

data. The authors showed that by selecting appropriate load patterns, Ritz vectors were more

sensitive to damage than modal vectors.

Demetriou and Hou (2003) investigated two damage detection methods, a wavelet based and

RBF based approach, applied to a 1 and 3-DOF mechanical system. Damage was simulated

by a broken spring, causing an abrupt loss in stiffness. Although both approaches could

detect a change in the system caused by the loss in stiffness, only the RBF approach could

estimate the stiffness.
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Ni et al. (2006) investigated seismic damage detection in a 1:20 scale model of a 38-storey

building. The building was subjected to several levels of excitation by a shake table. These

different levels of excitation corresponded to the damaged states of the building. FRFs were

obtained from ambient vibration tests when the building was in its healthy and damaged

states and subsequently compressed by PCA. The authors stated that this served two

purposes, dimensionality reduction and noise elimination. The principal components were

used as ANN inputs and prediction error was used as a damage sensitive feature.

Identification of damage location was achieved by using multiple ANNs, each monitoring

several stories.

Hou et al. (2006) proposed a wavelet-based method for detecting damage in structures

subjected to seismic excitation. Wavelet analysis and the Hilbert Transform were used to

identify modal parameters online from vibration response data. Changes in mode shapes were

used to detect damage.

2.2.2. Time domain

Non-parametric system identification methods using ANNs have been widely researched for

SHM. Nakamura et al. (1998) studied a 23m high 7-storey steel frame damaged in the 1995

Japanese Kobe earthquake. Although the building was not instrumented during the

earthquake, the authors carried out ambient vibration measurements of the building in its

damaged and repaired states. The repairs were considered to return the structure to its original

undamaged or healthy state. An ANN was used to relate the interstorey displacement to the

interstorey restoring force when the building was undamaged. Prediction errors between the

ANN and measurements were used to identify damage in the structure. Due to its non-

parametric nature the method was not capable of determining which particular member(s)

were damaged and the extent o f this damage.

Wu et al. (2002) extended the study of Nakamura et al. (1998) and described a decentralised

parametric identification method using ANNs for the detection of damage in MDOF

structures. The MDOF structure was broken into substructures with a smaller number of

DOF. An ANN was trained for each substructure to predict the restoring force given the

interstorey displacement and velocity as inputs. The prediction error between the ANN and

measurements was used as an input into a second ANN. This network quantified damage as a

change in stiffness.
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Huang et al. (2003) used an ANN to identify changes in the buildings dynamic response and

corresponding structural damage. The authors trained the network to predict undamaged

response o f the structure in minor earthquakes, in which the structure behaved linearly. Errors

between the prediction of the network and the measured response occurred when the structure

behaved non-linearly.

A recent study by Jiang and Adeli (2007) used a fuzzy Wavelet Neural Network (WNN) to

detect damage in a 3 8-storey concrete model caused by seismic excitation. The structure was

divided into smaller substructures and the responses of each substructure and ground

excitation were formulated as a state-space model. The state vector was used as input into the

WNN, while the output was the estimated response for each substructure. Prediction error

was used as a feature to estimate damage from a pseudospectrum.

Godin et al. (2004) investigated the use of a supervised and two unsupervised pattern

recognition techniques, k-Nearest Neighbour, k-means and SOM, for classification of

different damage mechanisms in composites. The authors used several properties of acoustic

emission signal as damage sensitive features. Results showed similar performance for k-

Nearest Neighbour and SOM.

Alvandi and Cremona (2006) reviewed and evaluated the performance of several vibration

based SHM methods. These were the mode shape curvature, changes in flexibility matrix,

flexibility curvature and strain energy methods. The authors concluded that the strain energy

method was the most efficient technique reviewed.

Methods have also been developed that use attractor analysis and chaotic excitation to detect

damage. Nichols et al. (2003a) developed an attractor based nonlinear damage detection

method. By exciting the structure, in this case a beam, with a tuned chaotic signal, the

structural response was ensured to be low dimensional. Low dimensionality is very important

condition for attractor methods. Attractors were obtained from the undamaged structure and

used to predict the response of the structure. Prediction error indicated the presence of

damage.
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Nichols et al. (2003b) investigated two different measures of the attractor dimension as a

damage feature: the Takens estimator and correlation dimension. A hypothesis test on the

means of these features was used to determine if the response was from a damaged or

undamaged structure. Experiments on a beam excited by a chaotic signal showed that the

Takens estimator was a better choice than the correlation dimension.

Casciati and Casciati (2006) investigated the use of Lyapounov exponents and the

Lyapounov dimension for damage detection in nonlinear systems. Changes in the values of

these parameters were used to detect damage in an arch structure. Damage localisation was

achieved by analysing subsets of the data.

Nichols et al. (2006a) investigated the concepts of information theory for nonlinear damage

detection. Two information metrics were chosen: time-delayed mutual information and time-

delayed transfer entropy. When the structure, a 5-DOF model, changed from linear to

nonlinear behaviour, analysis of the two metrics allowed the degree of nonlinearity to be

assessed.

Nichols et al. (2006b) developed a method for detecting non-stationarities in time series data

using multivariate Recurrence Quantification Analysis (RQA). The approached was applied

to a FEM model of a plate with damage introduced by a cut. Extracted RQA features were

found in some cases to be more sensitive to damage than natural frequencies.

Instead of employing various mathematical transformations of vibration data to obtain

damage sensitive features, some studies have attempted to track structural properties e.g.

stiffness, damping and hysteretic properties, online. Smyth et al. (1999) used a adaptive least-

squares approach to identify the hysteretic properties in MDOF models.

Cooper and Worden (2000) developed an online method for tracking stiffness, damping and

mass of a structure based on the dynamic equation of motion. The forgetting factor and

adaptive forgetting factor recursive algorithms were investigated. The authors used the

proposed method to track the parameters of various SDOF models.
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Chase et al. (2005) used an adaptive recursive least-squares filter to identify changes in

stiffness in 4-DOF and 12-DOF analytical models of the ASCE Phase Il Experimental SHM

Benchmark Structure (ASCE Structural Health Monitoring Committee).

Yang et al. (2006) used an extended Kalman filter with adaptive tracking to identify stiffness,

damping and hysteretic parameters in linear 1 -DOF and nonlinear 2-DOF structures. Yang

and Lin (2005) proposed a recursive least-squares adaptive tracking technique for time

varying systems. The authors stated that this adaptive method was suited to systems in which

the parameters changed abruptly. The approach was applied to identifying and tracking

stiffness and damping in several linear and nonlinear structures. Yang et al. (2007) extended

the previous work to include the case of unknown input. Stiffness, damping and hysteretic

properties where identified in a 12-DOF analytical model of the ASCE Phase 11 Experimental

SHM Benchmark Structure and a nonlinear hysteretic 2-DOF structure.

Sohn et al. (2007) applied the concept of time reversal using Lamb waves for damage

detection in thin composite plates. Time reversibility is based on linear reciprocity of elastic

waves. Damage causes defects in the medium and these nonlinearities violate time

reversibility. A damage feature quantifying the degree of reversibility violation was used to

detect the presence of damage with the use of extreme value statistics.

2.2.3. Environment effects and operating conditions

One of the most problematic aspects of implementing a SHM system in practice is the effect

of changing environmental and operating conditions. Very few researchers have successfully

incorporated or researched the consequences of these effects on their proposed SHM

methodology. Such an investigation requires long term monitoring of a built structure and

hence lies outside the scope of this research. The results of this study should be viewed with

this in mind.

Environment effects, e.g. temperature, wind, humidity, etc., cause differences in the response

of a structure. Sohn et al. (1999) showed that the changes in modal parameters caused by

environmental factors can in fact be larger than the changes caused by noticeable damage.

The authors presented an adaptive filter approach in which damage was detected from

changes in natural frequencies. The proposed approach incorporated the changes in natural

frequencies due to changes in temperature. Peeters et al. (2001) used an Autoregressive
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eXogeneous input (ARX) model to relate natural frequencies to temperature. Prediction error

was used to detect damage.

Farrar et al. (2000) measured the change in the natural frequencies of the Alamosa Canyon

Bridge over a 24-hour time period. The changes were assumed to be mainly due to changes in

the temperature. A 5% variation in the first mode frequency was observed over this time

period. Operating conditions can also affect the response of a structure. In the same study,

tests were conducted to evaluate the changes in natural frequencies caused by vehicle weight.

Four cars were parked on the bridge, adding a total of 99kN to the concrete span weight of

703kN. The results were not in agreement with theory and the authors concluded that some

complex interaction with the car suspension must have occurred.

Kullaa (2002; 2004) used factor analysis to detect damage in structures such as a wooden

truss and a crane under different temperature and moistures, and loads and configurations,

respectively. Factor analysis is a statistical technique used to attribute variability amongst a

large set of observed random variables to a smaller set of unobserved variables. The author

later considered using the missing data concept to achieve separation of feature changes

resulting form damage from those caused by the operating environment (Kullaa 2005).

Sohn (2007) reviewed studies on the effects of changing environmental and operating

conditions on real structures. Data normalisation techniques were presented as an effective

approach for removing the contributions of environmental and operating variations.

2.2.4. Time series methods

The use of time series analysis techniques for SHM has so far received limited attention from

researchers. However, these methods arc promising and may overcome some of the

difficulties faced by other SHM methods, e.g. sensitivity to environmental effects and

operating conditions. Time series techniques, originally developed for analysing long

sequences of regularly sampled data are inherently suited to SHM. Also, time series methods

are immediately applicable to the online detection of damage using recursive identification

techniques.

In a pioneering study by Sohn et al. (2000), Autoregressive (AR) models were used to fit the

dynamic response of a concrete bridge pier. By performing statistical control chart analysis
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on the AR coefficients the authors were able to distinguish the responses from damaged and

undamaged systems. However, no attempt was made to locate and quantify damage. In a later

study by Sohn et al. (2001) a similar methodology was applied to detecting damage in a fast

surface-effect naval patrol boat.

Several studies have used the residual error of time series models as damage sensitive

features. Sohn and Farrar (2001) used a AR-ARX modelling approach to detect damage in an

8-DOF system. By modelling a sampled signal with an AR model and comparing the

coefficients to a reference database of known AR coefficients, the authors were able to

reproduce the sample signal using closest AR coefficients in the database. A ratio of the

standard deviations of the residual error obtained from using ARX model for the sample and

reference signal was used as a damage sensitive feature.

Fugate et al. (2001) used AR models to fit the response of a concrete bridge pier, same

structure as in Sohn et al. (2000). Residual errors between the response predicted by the AR

model and the actual measured response were used as damage sensitive feature. Control chart

analysis was used to monitor changes in the mean and variance of the feature and indicate the

presence of damage.

Manson et al. (2001) created two-dimensional projections of AR coefficient data using PCA

and Sammon mapping. AR coefficients were obtained from fitting acoustic emission signal

time series of a box girder. The authors attempted to identify clusters in the projections

corresponding to different emissions.

Moyo and Brownjohn (2002) studied continuous strain data from a monitoring system

installed on the Singapore-Malaysia Second Link Bridge. They applied intervention analysis

to assess the effects of sudden strain changes on the subsequent strain state in the bridge.

Omenzetter et al. (2004) studied multi-channel strain data collected from the Singapore-

Malaysia Second Link Bridge. The authors developed a method of detecting and locating

abrupt events in the strain data. A vector ARMA model was used to fit wavelet coefficients

from earlier wavelet analysis of the strain time histories. Multivariate outlier analysis was

used to identify and locate the events causing the abrupt changes in the strain data.
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In a subsequent study, Omenzetter and Brownjohn (2006) investigated the use of a vector

seasonal Autoregressive Integrated Moving Average (ARIMA) model for the same data. The

seasonal time series model was used to account for periodic strain variation caused by the

temperature cycle. The coefficients of the ARIMA model were identified online using the

extended Kalman filter. Changes in these coefficients were used to detect sudden events

experienced by the structure.

Nair et al. (2006) used an Autoregressive Moving Average (ARMA) time series to model the

vibration signal from the ASCE Phase II Experimental SHM Benchmark Structure (ASCE

Structural Health Monitoring Committee). The authors defined a damage sensitive feature

used to discriminate between the damaged and undamaged states o f the structure based on the

first three AR coefficients. It was found that statistical mean of this feature was different for

damaged and undamaged structures. A t-test was used to determine if the structure was

damaged. Location of damage was achieved by introducing another set of features found to

increase from a baseline value when damage had occurred near to the sensor location.

Nair and Kiremidjian (2007) investigated Gaussian Mixture Modelling, an unsupervised

pattern recognition technique to model the feature vector. ARMA models were fitted to

acceleration data obtained from a 12-DOF analytical model of the ASCE Phase II

Experimental SHM Benchmark Structure. Selecting the first three AR coefficients for

analysis only, damage detection was achieved by determining the number of patterns in the

data set using a statistical measure. The extent of damage was shown to correlate well with

the Mahalanobis distance between undamaged and damaged patterns.

Gul et al. (2007) used AR coefficients obtained from a laboratory steel beam to classify

varying support conditions using a clustering algorithm or a multivariate statistical technique.
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CHAPTER 3

EXPERIMENTAL STRUCTURES, THEIR
TESTING AND IDENTIFICATION OF MODAL

PROPERTIES

The damage detection methods investigated in this research project were applied to, and

verified on, experimental data collected from three laboratory structures: a 3-storey bookshelf

structure, a RC column, and the ASCE Phase II Experimental SHM Benchmark Structure.

The first two structures were specially built and tested for this project, while data from the

third one is freely available to researchers from the ASCE SHM Committee via Internet

(ASCII Structural Health Monitoring Committee). Iii this chapter, a description of the three

experimental structures is given. A full modal testing programme determining natural

frequencies, damping ratios and mode shapes in the healthy or undainaged state was

conducted on the 3-storey bookshelf structure and RC column as part of the project in order

to understand the dynamics of these systems and the results are presented herein.

Experimental modal analysis techniques underpin system identification and a description of

the methods used is also given. Two good reference texts on inodal testing for the interested

reader are Heylen et al. (1997) and Ewins (2000).

3.1.3-storey bookshelf structure

1 he 3-storey bookshelf structure was approximately 2.1 m high and constructed from

aluminiuin angles and stainless steel floor plates joined together with bolted aluminium

brackets as shown in Figure 3.la,b. Design of the structure followed guidelines in the New

Zealand Aluminium Structures Code (Standards New Zealand 1997) and design loads were

detennined from computer simulations. A nuinber of factors were considered in the design of

the structure. One critical factor was the ability to change the lateral sti ffness of each storey
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independently without permanently damaging the structure. This was achieved by allowing

the columns to be easily replaceable using brackets. The limitations of the performance of the

shake table were also considered as an important factor. Consequently, the natural

frequencies ofthe structure were kept low to ensure that all modes could be excited.

700mm

700mm

m --1 700mm

W

W

(a)

650mm
1/ 11

3 1- Accelerometer

1/<

Stainless steel

4mm plate

1- Aluminium angles

1 Brackets

1--

0

1*- Shaketable -*

(b)

(C)

Figure 3.1.3-storey bookshelf structure mounted on shake table: (a) general view, (b) diagram
of accelerometer locations and external dimensions, and (c) detail of column-plate joint.
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The stainless steel plates were 4.()mm thick and 650mm x 650mrn square. Two equal angles

sizes were used as columns, 30mrn x 3()min with a thickness of either 3.()mm or 4.5mm for

the damaged and undamaged columns, respectively. The columns were 0.7111 long and

fastened with two bolts at each end to aluminium brackets. These brackets were attached with

two 6.Omin bolts to the floor plates, see Figure 3.le. The brackets were 3()mill wide and

4.5mm thick. At the base, additional brackets in the direction orthogonal to motion provided

extra restraint. The whole structure was mounted on a 20mm plywood sheet bolted with

10mm bolts to the shake table.

The shake table used in the experiinents is located in the Test Hall of the Department of Civil

and Environmental Engineering, the University of Auckland. The shake table is capable of

producing motion in one direction only. An actuator and servo valves use hydraulic pressure

provided by a pump (Figure 3.2a) to move the table. A Proportional Integral Derivative (PID)

controller (Figure 3.2b) is used to control the motion of the table and receives feedback froin

the Direct Current Displacement Transducer (DCDT) on the displacement of the table. An

acquisition box (Figure 3.2b) provides the physical interface between the sensors and the

data-logging card in the computer. A computer program converts acceleration records to

displacement commands and simultaneously issues and records measurements froin the table.

f. 1 ICI-71. =

.U
0

SHYDRACARE

(a) (b)

Figure 3.2. Shake table equipment: (a) pump, and (b) PID controller (below) and acquisition
box (above).

The structure was instrumented with four 2.5Vg-' uniaxial accelerometers, one for measuring

the table acceleration and one for each storey as shown in Figure 3.1 b. Accelerations were

measured in the direction of ground motion at a sampling rate of 40()Ilz using a computer
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fitted with a data-logging card. MATLAB was used to both write and filter the data. All data

was filtered with a zero phase shift 50Hz low pass filter. Afterwards the data was decimated

by a factor of four. This reduced the original 400Hz signal down to 100Hz. The decimate

procedure implemented in MATLAB uses an eight order Chebyshev Type I low pass filter

with cut-off frequency (0.8/R)*Fs/2), where F< is the initial sampling frequency and R is the

decimate factor, before resampling the data. The decimate process iinproved the quality of

the data by further removing high frequency noise.

3.1.1. Modal analysis

The primary purpose of the test program was to find the natural frequencies, modal damping

ratios and mode shapes of the structure in an undamaged state from forced vibration tests.

These tests were conducted over approximately a 2-week period in July 2006. The forced

vibration tests consisted of frequency sweep tests, free vibration decay tests and Gaussian

white noise ground excitation.

Frequency sweep tests using a sine forcing function at different forcing frequencies allowed

acceleration response curves to be plotted, natural frequencies estimated and the modal

damping ratios estimated using the half-power bandwidth method. Mode shapes were also

extracted from the acceleration data. Free vibration decay tests were conducted to estimate

the modal damping ratios using the popular logarithmic decrement method. Gaussian white

noise excitation was used to construct Frequency Response Functions (FRF) and a state-space

model of the structure. From the state-space model, natural frequencies, modal damping

ratios and mode shapes were estimated. A description of these methods and a discussion of

the results are given below.

3.1.1.1. Frequency Response Functions

rd

To get an initial estimate o f the natural frequencies, the FRF for the 3 storey of the structure

was calculated using Welch's method with a Hanning window and no overlapping. Input into

the shake-table was 20s of white noise. Following the development in (Ewins 2000), for a

random discrete time signal the FRF can be computed using

H (00 =
X(ro)

F(m)
(3.1)
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where X(co) and F(co) are the Discrete Fourier Transforms (DFT) of the response and input

excitation, respectively. When both the response and input excitation are random processes,

an alternative form must be used. Considering the input excitation ./(t). the autocorrelation

function Rfr at time r can be calculated using

R(r) = E[.f (t).f (t + r)] (3.2)

where E is the expectation operator. The Power Spectral Density (PSD) is the Fourier

transform of the autocorrelation function and is defiiied as

rK)

Sn (co)=_1_ f R.(rk-imrdr (3.3)
17[ 3 b

-00

Given the structural response x(t), the cross-correlation function can be calculated using

R , (r) = E [x(t).f (t + r)] (3.4)

The Cross-Spectral Density (CSD) is the Fourier transform of the cross-correlation function

and can be calculated using

1 j
S,(m)=- 1 Rjr)e urdz (3.5)

llc L

The CSD is generally a complex function and has the following conjugate property:

Sq (CO) = S; (CO) (3.6)

Two alternative formulations of FRF be can proposed:

HI (co) =
St (co)

(3.7)

Sn (m)

S,1 (co)
(3.8)

H i is most commonly used. The DFT assumes that the signal is periodic or complete over the

finite length of the observation time. If this assumption is false. which is often the case for
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random signals. spectral leakage occurs and energy at frequencies actually contained in the

signal will leak' into the spectral lines surrounding these frequencies. This problem can be

mitigated by the application of windowing functions. Windowing involves iinposing a

profile, usually a time domain function w(t), on the signal prior to the DFT:

X'(t)=Xct) M'(t) (3.9)

A commonly used windowing function is the Hanning window:

r 2,rt Vu·(t)= 0.51+cosl - IC T 7/
(3.10)

where t is the time step and T is the length of the record. In some cases rescaling is required

to compensate for changes caused by the application of the windowing function. However. if

both the input and response are subjected to the same window, calculation of the FRF curve

does not require rescaling.

The FRF obtained from the 3d storey of the 3-storey bookshelf structure shows three definite

peaks at 1.95Hz, 5.46Hz and 8.59Hz corresponding to the three modes of the structure. see

Figure 3.3.

I

10
4

103

10' r

0

10'-

10
3

0 1 2 3

C

: 10

4 5 6 7 8 9 10

Frequency (Hz)

Figure 3.3. Acceleration FRF for the 3rd storey of 3-storey bookshelf structure.
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3.1.1.2. Frequency sweep tests

Another method for identifying natural frequencies is to record the maximum steady state

acceleration when the structure is excited by a periodic forcing function with a known

frequency and amplitude. From these results an acceleration frequency response curve can be

plotted. The peak responses in the curve are the natural frequencies of the structure.

Frequency sweep tests from 1.5-2.5Hz, 5-6Hz and 8-9Hz with amplitudes of ground motion

of 0.01 g, ().()5g and 0.25g, respectively, were conducted using a sine forcing function over

20s intervals. The maximum acceleration was measured at the 3rd storey and taken as an

average of 10 maximum peaks once the transient response had decayed. Figure 3.4 shows the

acceleration response curve for the frequencies between 1.5 and 2.5Hz; at 1.87Hz there is a

definite peak that corresponds to the 1 St natural frequency. Similar graphs were obtained for
4 4

the 2 and 3 natural frequencies and are shown in Figures 3.5 and 3.6. The graphs show that

the 2"d and 3rd frequencies are 5.42Hz and 8.43Hz. respectively. These results are similar to

the values obtained previously from the FRF determined via white noise excitation.

·-- 0.019

E

f
E

4

3.5 -

3-

2.5 -

2

1.5 -

1-

0.5 -

0
15 1.6 17 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Frequency (Hz)

Figure 3.4. Acceleration response curve for 3-storey bookshelf structure at the 3rd storey
showing the 1St natural frequency.
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Figure 3.5. Acceleration response curve for 3-storey bookshelf structure at the 3rd storey
showing the 2nd natural frequency.
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Figure 3.6. Acceleration response curve for 3-storey bookshelf structure at the 3rd storey
showing the 3rd natural frequency.
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State-space system identification

The natural frequencies, damping ratios and mode shapes can also be identified from

identification of a discrete-time state-space model. A discrete state-space model at an

arbitrary tillie step k can be written as

xk+1 == Axk. + Bu A (3.11)

yk - CXA + Duk (3.12)

where xi·. UA and yA are respectively the state. input and output vectors at time k. The matrices

in Equations (3.11) and (3.12) are referred to as follows: A is the state matrix. B is the input

matrix, C is the output matrix, and D is the feedthrough matrix. These system matrices need

to be determined in the identification process. In this case. the output vector was the three

floor accelerations and the input vector was the table acceleration. The Prediction Error

Method (PEM) identification algorithm implemented in the system identification toolbox in

MATLAB C L.jung 2006) was used to estiinate the system matrices A.B. C and D. where A

denotes that the matrices are estimated quantities. This method attempts find the state-space

matrices such that the responses predicted via Equations (3.11) and (3.12) have the smallest

overall error when compared to actual, measured responses. In Figure 3.7, the identified

structural response has been plotted with the actual response obtained from measured

acceleration data for a 20s record. The responses are very similar for the 2nd and 3 stories,rd ·

while the 1 st storey shows some discrepancy.

The natural frequencies and damping ratios can be extracted from the iinaginary and real

parts of the eigenvalues ofAc, the continuous time counterpart of matrix A. Conversion to a

continuous- time matrix can be achieved using

in I A
(3.13)

At

where 111 is the natural logarithm and At is the sampling interval. The natural frequency 04 and

th

damping ratio & for the./ mode can be extracted from eigenvalue decomposition:

A = TAT-' (3.14)
C
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where the diagonal matrix A stores the eigenvalues or system poles 4 related to natural

frequencies and damping rations as follows:

4 = -Goi· 1 imi· 1 - 42 (3.15)

where i is the imaginary unit. Mode shapes at the measureinent locations can be calculated

from

CDC = OF (3.16)

The mode shapes (D£· obtained in Equation (3.16) are in general complex and the following

transformation (Friswell and Mottershead 1995) can be applied to convert them to real mode

shapes (D,.:

cD,= Re (cD )+Im (cD,) Re (cD,) Im (® ) (3.17)

where Re and Im are the real and imaginary parts, respectively, and  denotes the

pseudoinverse.

0.5
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0.5

Accel. (mi )
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(b) 0 2 4 6 8 10 12 14 16 18 20

A 4 . A.9 -- Actual

i - Identified
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Figure 3.7. Actual and identified state-space response for 3-storey bookshelf structure: (a) 1 St
storey, (b) 2nd storey, and (c) 3rd storey.

3-10



Chapter 3

The modal parameters were estimated from five records, four 10s long and one 20s long. In

all cases, the excitation or input was Gaussian white noise. Table 3.1 shows the estimated

natural frequencies f and damping ratios 4 obtained from the five intervals. The lower and

upper bounds correspond to two standard deviations or 95% confidence levels. The damping

ratios were much harder to estimate and had greater uncertainty than the natural frequencies.

The modes shapes were estimated from the 20s record only. Table 3.2 gives the normalised

mode shapes for a maximum of 1.

3.1.1.4. Free vibration decay method

To estimate the damping ratio at each natural frequency, the logarithmic decrement method

(Ewins 2000) was applied to free vibration decay tests when the structure was initially

excited by a sine forcing function for 25s at one of the natural frequencies. The free vibration

decay was recorded over a 25s interval after the initial excitation had ceased. Figure 3.8

shows the free vibration decay of the 3rd storey when excited in the lst mode.

The damping ratio J can be calculated from the ratio of two positive or negative peaks of the

displacement time history ut separated by n vibration cycles:

4= -l_lln F-
C 2nm j lu

Ut
(3.18)

where T is the period. In this case the displacement was taken at the 3rd storey, n was set at 20

and the average of the results for the positive and negative peaks was taken as 4.

Alternatively, an exponential curve of the form

y = aexp (-bt)
(3.19)

where a is a constant and b is the damping ratio, can be fitted to the positive or negative

peaks of the displacement record using the least squares method. As before, the displacement

was taken at the 3rd storey, the exponential function was fitted over 20 cycles and an average

o f the exponential curve parameters for the positive and negative peaks was taken.

The two methods gave identical values of damping for the 1St and 2nd modes of 1.1% and
0.9%, respectively. There was a small difference for the 3rd mode with the damping ratio
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identified as 1.3% from the amplitudes of response peaks and 1.5% from the exponential

curve fit.

Table 3.1.3-storey bookshelf structure frequencies and damping ratios obtained from state-
space model.

Mode f(Hz) 4 (0%)

1.928*0.006 0.610.2

2nd 5.5210.02 0.610.2

3 8.5510.04 0.810.4

Table 3.2.3-storey bookshelf structure normalised mode shapes obtained from state-space
model.

Storey Mode 1 Mode 2 Mode 3

1 0.18 0.64 1.00

2nd 0.69 1.00 -0.48

3rd 1.00 -0.88 0.16

2

1.5 -| [1 _
1- .111*..

- 0-5 - f 11 -1 t\,4:%B\BRA,Ah'Lkh..
I N 1 111(11111111 AnA AA An An

O- Ill ' ll' 1 , ' 011 1'21 111 (1+1 Illl;lil lsilitil /11105/1/1/0 lilt/ill/\ 11

-0.5 - i.# C j'j 111 4 lu bHOHUUM"... -
Viv'

-1 91111 -1.5 - I |

-2 1 1 1 1
0 5 10 15 20 25

Time (s)

Figure 3.8.3-storey bookshelf structure free vibration decay of the 3rd storey when excited in
the lst mode.

3.1.1.5. Half-power bandwidth method

The half-power bandwidth method (Heylen et al. 1997) is a popular and simple method for

calculating damping ratios directly from the frequency response curve. An estimate of the

damping ratio can be obtained from examination of the acceleration response curve as shown
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in Figure 3.9. The frequencies h and h at which the frequency response is 1/42 of the peak

value can be used to calculate the damping ratio using

.fi + A
(3.20)

At these frequencies the power is half the peak value hence the name of the method. A good

estimate of the damping ratio requires good resolution of the response curve around the half-

power frequencies. In this case, the resolution was sufficient to make a reasonable estimate,

st nd and 3 idsee Figures 3.4-6. The results were 1.6%, 0.3% and 1.4% for the 1,2 mode,

respectively. The results were higher than the estimates from the free decay method with the

exception of the 2nd mode. This lower than expected 2nd mode damping ratio is most likely

due to the procedure used to construct the response curve and experimental error.

A peak
A

peak

-2

ji f f2

Frequency

Figure 3.9. Half-power bandwidth method.

3.1.1.6. Mode shapes from acceleration data

By examining the acceleration data at the natural frequencies an estimate of the mode shapes

could be obtained. An average of 10 consecutive positive peaks from the acceleration

response, when the structure was excited with a sine forcing function at the natural frequency,

was used to estimate the mode shape. The mode shapes were normalised for a maximum

response of 1. The results are given in Table 3.3.
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Table 3.3.3-storey bookshelf structure mode shapes extracted from acceleration data.
Storey Mode 1 Mode 2 Mode 3

1# 0.24 -0.56 1.00

2nd 0.74 -0.91 -0.54

3rd 1.00 1.00 0.17

3.1.2. Discussion and summary

Natural frequencies for the 3-storey bookshelf structure have been accurately determined

from various different methods and the results have been summarised in Table 3.4. A high

level of agreement between the different methods used can be noticed, particularly for the

FRF and state-space results. The state-space results are probably the most actuate because an

average of several results was taken. Damping ratios were difficult to estimate due to the

small amount of damping observed. The damping ratios obtained using different methods,

listed in Table 3.5, appear to agree less between the different methods than the results

achieved for the natural frequencies. Mode shapes obtained from the state-space model and

the acceleration data were in good agreement. Figure 3.10 shows a graphical comparison

between the results o f the two methods.

Table 3.4. Summary of natural frequencies for 3-storey bookshelf structure obtained from
different methods.

f(Hz)
Mode FRF Acceleration response curve State-space
ts' 1.95 1.87 1.928

24 5.46 5.42 5.517

34 8.59 8.43 8.548

Table 3.5. Summary of damping ratios for 3-storey structure obtained from different methods.
4 (%)

Mode State-space Peak to peak ratio Exponential fit Half-power
0 0.6 1.1 1.1 1.6

24 0.6 0.9 0.9 0.3

3rd 0.8 1.3 1.5 1.4
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Figure 3.10. 3-storey bookshelf structure mode shapes obtained from the state-space model
and acceleration data: (a) 1St mode, (b) 2nd mode, and (c) 3rd mode.

3.2. RC column

The cantilever RC column is shown in Figure 3.11. It was l.lm high and had a 120min x

120min cross-section. The footing was 600mm x 600mrn with a depth of 150min. Principal

reinforcement in the column was provided using 4-D 1 0 bars. Wood planks were placed

across the footing and bolted to holes in the concrete tloor to fix the footing. An APS

Dynamics ELECTRO-SEIS 4()0 Linear Mass Shaker was bolted to a plywood sheet fixed to

the column top with bolts in order to provide dynamic excitation. The shaker was also

suspended from the ceiling in the event the column collapsed.

The column was instrumented with 3 uniaxial accelerometers measuring accelerations in the

direction of shaking (x-direction), perpendicular to shaking 0,-direction) and the shaker

armature. Instrumentation of the shaker armature allowed the input into the system to be

measured. This was convenient for modal testing. Data was sampled at 200Hz using a

computer fitted with a data acquisition card. Testing was conducted in the Civil Materials

1
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Lab of the Departinent of Civil and Environmental Engineering, the University of Auckland

in June 2007.

2,
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(a)
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Figure 3.11. RC column: (a) general arrangement, (b) shaker, and (c) drawings.
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3.2.1. Modal analysis

Modal analysis was conducted on the column using the Eigenvalue Realization Algorithm

(ERA). Of primary interest was the translational mode in the x-direction, later used to

estimate the lateral stiffness of the column in each danlage state. Initially, a FRF was

obtained for the x-direction using Welch's method with a Hanning window and no

overlapping. This FRF showed two modes, a translational mode at 11.1 Hz and a torsional

mode at 9.()liz, see Figure 3.12. Using the half-power bandwidth method, discussed above.

modal damping was estimated to be 3.6% and 4.7% for the translational and torsional mode,

respectively. The Inverse Discrete Fourier Transform was applied to the FRF and the

system's Impulse Response Function was obtained. The IFR was required for ERA.

100

10 - :

10
2

10
·3

5 10 15 20

Frequency (Hz)

Figure 3.12. RC column FRF in x-direction.

ERA was developed by Juang (1994) and can be applied to both response only or ainbient

data. and forced vibration data where the input is known. The general algorithm is outlined

below and follows the development in Juang ( 1994). In the identification algorithm. the state-

space matrix triplet A, B and C will be estimated. Assuming the initial state of the state-space

model in Equations (3.11) and (3.12) is zero, the iinpulse response of the system can be

calculated from Equations (3.11) and (3.12) with the input uo = 1 and uk = 0 for k # 0:
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h = D. yi = CB, h = CAB, ... . h = CAk-'B (3.21)

where yk are the Markov parameters or Impulse Response Functions (IRFs) of the system.

The Markov parameters can be assembled to form a generalised ax# block Hankel inatrix

114.-i for tiine step k:

H

h h.+1 ··· h.+B-1

h.+1 h+2 ... yk-+B
k-1 (3.22)

y k+a-\ y k+a ··· y k+a-43-2 _

When k =l. Ho is given by

H

yl y2 ... yf

32 yj ... yl +B
=
..•.

...

(3.23)

Ifak n and #2 n, HA-, is of rank n, where n is the order of the system. The liu matrix can be

factorised using singular value decomposition:

Ho= RIST (3.24)

where the columns of R and S are orthonormal and I is a rectangular matrix of the following

form:

I=I ' 01
I 0

(3.25)

with

I„ = diag[(3-1,0-3,...,ai ....,0-u] (3.26)

where 09 (i = 1,2,...,n) is a monotonically decreasing series of singular values. Ho can be

constructed using only the non-zero singular values and the first n columns of the singular

vectors R,j and S„:

HO =RFUSi (3.27)
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It can be shown (Juang 1994) that the ininimum realization of the triplet is given by

A - EZ/2R,HIS;,I'/2 (3.28)

A = IPST Er (3.29)

C = ET R E'/2 (3.30)
ninn

where Er= [Ir Or ··· 0,],rand Em = I Im Om ··· Om]Tare selection matrices with r and m equal to

the number of inputs and measurements respectively.

ERA applied to the RC column data gave a translation mode of 1 1.2Hz with 4.1% damping.

The torsional mode was estimated at 9.35Hz with 6.0% damping. Table 3.6 lists the

frequency and damping ratio obtained using ERA and analysis of the FRF for both modes.

The frequencies are in good agreement with a greater scatter associated with the damping

ratios.

Table 3.6. Summary of RC column modal analysis results.
.f(Hz) 4 (%0)

Mode ERA ¥RF ERA FRF

Translational 11.2 11.1 4.1 3.6

Torsional 9.35 9.0 6.0 4.7

3.3. The ASCE Phase 11 Experimental SHM Benchmark Structure

The ASCE Phase 11 Experimental SHM Benchmark Structure (ASCE Structural Health

Monitoring Committee) is a 4-storey 2-bay by 2-bay steel frame with a 2.5in x 2.5m floor

plan and a height of 3.6m. see Figure 3.13a. Note only a brief description of the structure and

the test setup and programme is given herein. A full description can be found at the

benchmark problem website (ASCE Structural Health Monitoring Committee). The columns

were Bl()()x9 sections and the tloor beams were S75xll sections, all sections were Grade

300 steel. The beams and columns were bolted together. Bracing was added iii all bays with

two 12.7mm diameter threaded steel rods, see Figure 3.13b. Additional mass was distributed

around the structure to make it inore realistic. Four 1 000kg tloor slabs were placed on the 1 St,

2nd and 3rd floors. one per bay. On the 4 tloor, four 750kg slabs were used. Two of the slabsth

per floor were placed off-centre to increase the coupling between translational and torsional

motion.
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A series of ambient and forced vibration tests were carried out on the structure at the

University of British Columbia. In the following discussions the locations in the structure are

referred to using their respective geographical directions of north (N), south (S), east (E) and

west (W). Of primary interest in this study were the forced random vibration tests conducted
th

using an electro-dynamic shaker mounted on the SW bay of the 4 tloor on the diagonal.

Input into the shaker was band-limited 5-50Hz white noise. The structure was instrumented

. st ,nd rd and 4 floors. Theseth

with 15 accelerometers: 3 accelerometers each for the base, 1, 2,3

were located on the E and W frames to measure motion in the N-S direction and in the centre

to measure E-W motion. Acceleration data was recorded at 200Hz using a data acquisition

system and filtered with anti-aliasing filters. 1n the case of this structure, modal analysis was

not conducted and dynamic measurements were directly used for damage detection studies

described later.

7 4
M

4

(a) (b)

Figure 3.13. ASCE SHM Phase Il Experimental Benchmark Structure: (a) general view, and (b)
beam-column joint and bracing.

3.4. Conclusions

This chapter provided a description of the three experimental structures used later for damage

detection studies. These structures are a 3-storey bookshel f structure, a RC column. and the

ASCE Phase II Experimental SHM Benchmark Structure. The first two structures were

specially built and tested for this project, while data from the third one was sourced from the
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ASCE SHM Committee web site. The modal properties of the structures built and tested

specifically for this study, i.e. the 3-storey bookshelf structure and the RC column, were

determined from forced vibration tests. The ASCE Phase II Experimental SHM Benchmark

Structure was tested elsewhere and its data was taken directly from that study.

The 3-storey bookshelf structure was excited using a shake table. A RC column was excited

using a linear mass shaker mounted at the top of the column. The results showed that natural

frequencies were the most accurately determined modal parameter obtained. Estimates for the

3-storey bookshelf structure using different system identification methods were between

1.87Hz-1.95Hz, 5.42Hz-5.52Hz and 8.43Hz-8.59Hz for the 1St, 2nd and 34 modes,

respectively. There was a greater uncertainty surrounding modal damping ratios. Observed

damping in the 3-storey bookshelf structure was small and estimates of between 0.6%-1.6%,

0.3%-0.9% and 0.8%-1.5% critical damping were obtained for the 1 St, 2nd, and 3rd mode,

respectively. Natural frequencies of the RC column were estimated as 1 1.1-11.2Hz for the

translational mode and 9.0-9.35Hz for the torsional mode. Damping in the RC column was

much greater than in the 3-storey bookshelf structure and a better agreement between the

different identification methods was obtained, 3.6%-4.1% for the translational mode and 4.7-

6.0% for the torsional mode. Mode shapes obtained directly from acceleration data were in

good agreement with those obtained from state-space identification for the 3-storey bookshelf

structure. These experimental studies assisted in understanding the dynamics of the

experimental structures and laid the ground for subsequent damage detection studies.
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CHAPTER 4

DAMAGE DETECTION AND QUANTIFICATION

USING TIME SERIES ANALYSIS AND BACK

PROPAGATION ARTIFICIAL NEURAL

NETWORKS

In this chapter, a time-series based SHM method was developed and experimentally verified

on three experimental structures described in Chapter 3: the 3-storey bookshelf structure, the

RC column, and the ASCE Phase II Experimental SHM Benchmark Structure. The structures

presented varying degrees of structural complexity from a simple cantilever, trough a simple

shear type structure to a multiple-storey, multiple-bay braced steel frame. Each structure was

subjected to several simulated damage scenarios.

The proposed approach to damage detection was to fit the acceleration time histories obtained

from the structure in undamaged and damaged states using AR models. The coefficients of

these AR models were chosen as damage sensitive features and used as inputs into a BP

ANN. The ANN was trained to recognise changes in the patterns of the AR coefficients and

relate these changes to either a specific damage state (damage classification) or a reduction in

structural stiffness (damage quantification). Structural stiffness in healthy and damaged states

was identified from experimental data using model updating. For the ASCE Phase H

Experimental SHM Benchmark Structure the number of AR coefficients was significant and

two data reduction techniques were investigated. The feature dimension was reduced by

either selecting a subset of the AR coefficients or projecting the AR coefficients using

Principal Component Analysis (PCA). Significant reductions in computational burden were

achieved whilst maintaining good accuracy of damage classification. The effect of changing

operating conditions, simulated by a change in mass was investigated on the RC column

4-1



Chapter 4

structure. Results showed good damage quantification was still obtainable under such

conditions. In all three structures, ANNs were shown to be able to detect and classify or

quantify damage with good accuracy.

The layout of this chapter is as follows. Firstly analytical techniques used are described.

These include time series analysis, BP ANNs, model updating and PCA. Secondly, the

proposed damage detection methodology is applied to each of the three experimental

structures and results are discussed.

4.1. Time series analysis

Time series analysis techniques were originally developed for analysing long sequences of

regularly sampled data and have been used in a wide range of fields where modelling or

forecasting of a particular process is required. Due to the varied application of time series

techniques to linear, nonlinear and seasonal data, a broad range of time series models have

been developed. The selection of an appropriate model depends on both the statistical

properties of the time series and modelling requirements.

A general structure of time series suitable for linear stationary processes is the

Autoregressive-Moving Average with eXogenous input (ARMAX) model (Ljung 1999). A

stationary process is a stochastic process in which the mean, variance and higher order

moments are time invariant. A ARMAX(na,nb,nc) model of Autoregressive (AR) order na,

exogenous input of order nb and Moving Average (MA) order nc for the time series {y,} (t =

1,2,...n)with exogenous input {ut} (t = 1,2,...n) can be written as follows:

y,+a,y,-1+...+a vna 3 t- na = b,ut_1 +···+ Abut-Mb +et + Cle,-1 +···+ Cncet- nc
(4.1)

where ai,...ana, bi,...bnb and c/,· ..Cnc are the AR, exogenous and MA coefficients,

respectively, and {et} is the residual error time series. The residual errors are assumed to be

uncorrelated Gaussian white noise with zero mean and constant variance < . The model is

parameterised by the vector 0 which contains all the coefficients:

1r0 = [ai ...ana 4.-*bnb Cl ··· Cnc J (4.2)
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By introducing the backshift operator B defined as

Bh - y,-1 (4.3)

and the following polynomials in B:

A(B)=1+apS+...+ai,a Dna (4.4)D

B (B) = biB +...+ bnbBnb (4.5)

C(B)=1+c,B+...+c„c Dic (4.6)D

Equation (4.1) may be written in a more compact form:

A (B) y,=B(B) u, + C(B)e, (4.7)

By choosing different forms of the polynomials A(B), B(B) and C(B) in Equation (4.7) a

variety of different time series models can be obtained. Of primary interest in this research

are AR models with or without the exogenous part.

4.1.1. Autoregressive Models

AR models are probably the simplest time series models available and used in the analysis of

stationary time series. With the addition of the exogenous input, referred to as ARX models, a

simple input-output relationship is obtained. AR models attempt to account for the

correlations of the current observation in the time series with is predecessors. A short

introduction to both AR and ARX models is given herein, a comprehensive discussion may

be found in Box and Jenkins (1976) and Ljung (1999).

A univariate ARX model of order (na,nb), or ARX(na,nb), for the output time series tv,} can

be written as

A(Bjy,=B<Bju,+et (4.8)
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The ARX coefficients ai,...ana and bi„..bnb can be evaluated using a variety of methods

(Ljung 1999). In this research, the coefficients were calculated using a least squares solution.

Given a series of n observations, Equation (4.8) can be rewritten into matrix form:

e=y+Y0 (4.9)

where

e= Iep, ... emax(na+1.nb+1) _] (4.10)

y - Iyn ··· ymax(na+1.nb+1) _1 (4.11)

y,1-1 ··· yn-na -Un-1 ··· -Un-nb

Y= (4.12)

max(na+1,nb-+1)-1 -'' max(na+I,nbil)-na -Umax(na+1,nb+1)-1 '-' -U
max(na+Lizb+I)-nb

(4.13)

In Equations (4.9)-(4.13), e is an error vector, y is a vector containing the current outputs, Y

is a matrix of the previous outputs and inputs, and 0 is a vector containing the na+nb ARX

coefficients. A least squares solution seeks to minimise the sum of squared errors:

e're = (y + YO)T (y + YO) (4.14)

Hence by differentiation of Equation (4.14) with respect to 0 the ARX coefficients can be

calculated as

0 = (YrY)-1 YTy (4.15)

4.2. Back-Propagation Artificial Neural Networks

In this section, the mathematical framework of BP ANNs is developed. ANNs are data

processing structures consisting of several layers of interconnected neurons. While the

neurons themselves are simple computational devices, collectively when interconnected the
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result is a powerful parallel distributed processing system. The advantage of ANNs over other

artificial intelligence systems, e.g. fuzzy logic, is that ANNs only require examples and no

structured knowledge or IF - THEN rules. While there are many different types of ANNs as

described in Chapter 2, for the purposes of the research presented inn this Chapter the

supervised learning technique of BP was of primary interest. Material presented in this

section follows Keeman (2001).

ANNs utilising the error back-propagation algorithm are commonly referred to as BP ANNs

and belong to a generalised class of multilayer perceptron networks. Prior to the development

of the error back-propagation algorithm, networks were limited to a single output layer as

there was no way the error and required weight change for the hidden layer could be

calculated. With the addition of hidden layers the multilayer networks increased in

computational power and were able to be used as universal approximators. The structure of

BP networks comprise of interconnected layers of neurons, which are the basic computational

units. Figure 4.1 shows structure of a single hidden layer network, where xi are the I inputs

into the network, yk are the outputs of the K hidden layer neurons and oj· are the outputs of the

J output layer neurons. The bias inputs, denoted by solid squares, into the hidden and output

layers have indices of I+1 and K+1 respectively. Both biases have the value of + 1. The

hidden and output layer weights are denoted by wik and wki· respectively, where waB is the

weight for input a coming to neuron B.

Hidden layer neurons, K

Inputs, / 03 Output layer neurons, J
L

Output
yk

O
J

0

W W
ik kj

Figure 4.1. A single hidden layer BP ANN.
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Figure 4.2 shows the function of an individual neuron, in this case a hidden layer neuron. The

basic function of a neuron, in either the hidden or output layers, is to calculate the weighted

sum of all inputs uk and compute the output.Vk. The weighted sum of all inputs is calculated

using Equation (4.16). Note the notation below is for the kh neuron in the hidden layer.

/+1

uk = Exiwik (4.16)
i=1

The output o f the neuron is computed using

y k = f(Mk) (4.17)

where f is the so-called neuron' s activation function. Typical activation functions include

tangent sigmoid, log-sigmoid, or linear. In this research the tangent sigmoid function was

used.

X11

xi 0--1 - • yk = f(Uk )
x =+1 I<

/+1

Figure 4.2. Function of the kh neuron in the hidden layer.

Similarly, for the output layer neurons the sum of weighted inputs uj and output oj is given by

Equations (4.18)-(4.19):

K+1

uj = I Fk W/g' (4.18)
k=1

o j = .f G j (4.19)
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The error Ej at thejth neuron in the output layer is defined by

1E =-(d -0 1 (4.20)
J

where di is the target or desired value of the output j. The total error E in the network is

therefore the sum of individual errors of Equation (4.20) over all J outputs:

J XJ f
E-VE=-Vid -0 1 (4.21)

1 1
j=\ . j=\

In the error back-propagation algorithm, error is back propagated to the preceding layer. For

Figure 4.1 the error at the output layer is propagated to the hidden layer. Following is a

derivation of this algorithm for a single hidden layer network.

The goal is to minimise the error E by changing the weights wik and Wkj, using a gradient

descent method (Rumelhart et al. 1986). Considering the error at the output layer the required

change in weights Awki· is given by

UL.

Awkj. = -4-1-, 0<77<77 (4.22)
alit

A.,
'V kj

where 77 is an unknown step size referred to as the learning rate, and is usually taken to be

less than 1. If 71 is greater than 77(rit the solution will not converge. Using the chain rule for

differentiation Equation (4.22) can be expanded into

Aw41 - -71 = -11
211,4

DE j 80 j

Doj eu j c

OU.
J (4.23)

AN
4

The components of Equation (4.23) can be evaluated to give

DE j

DOJ
-(4 -oj) (4.24)
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20; df(u:)
 =f' u (4.25)auj duj · (1)

K+1

i, 21] kt'kj·yk-j_ - k= 1 (4.26)- -yk

lWki 'Ai

Equation (4.25) is simply the derivative o f the activation function denoted by f'. Note this

adds the constraint that the activation function must be differentiable if the error back-

propagation algorithm is used. Substituting Equations (4.24)-(4.26) back into Equation (4.23)

gives the required weight change for the output layer neurons:

Awkj = 71¢j - oj )f' (uj)vk (4.27)

The problem now is to find the error due to the hidden layer neurons. The total error from the

output layer, E, is back propagated to the hidden layer and the error for the k11 hidden layer

neuron becomes

\J /

Ek - E -,-Ildj -ojj (4.28)
j=\

The starting point is again to use a gradient descent method to find the required weight

change:

Ct

Awlk = -11 -1 (4.29)
1,

V ik

Using the chain rule for differentiation, Equation (4.29) can be expanded into

9Ek = DEk k
91,vik £34 £Fwik

(4.30)

The components of Equation (4.30) can be evaluated to give Equations (4.31)-(4.32):
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j

09 E.

ffk- = M  =1 <fi (4.31)
£34 4, j-1 L<Vk

*L = 2* £14
k ik

(4.32)

Applying the chain rule for differentiation to the derivative term in Equation (4.31) gives

j DE j 00 j Ou j
(4.33)

k 8Oj U 2)'k

The first two terms of Equation (4.33) have already been evaluated for the output layer, see

Equations (4.24)-(4.25). The third term is given by

K+1

* DFLWkjykj = 1=\

k £4
Ill/V (4.34)

Finally, the terms in Equation (4.32) can be evaluated using Equations (4.35)-(4.36):

Vk n £ 1
- = J W k J (4.35)
L'k

31 = x (4.36)
V ik

Substituting the results back into Equation (4.29) gives the required weight changes for the

hidden layer:

j

Awlk - 71.f'Oik)XiI[(dj -oj)f' Q+jk] (4.37)
j=1
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The two Equations (4.27) and (4.37) for the required weight changes for the output and

hidden layers, respectively, can be simplified by introducing the concept of error signals. The

error signals of the output 4 and hidden 4 layers are defined by

r,< 1d.= 1 iu na.-0.1 (4.38)
J J \J 1\ J 31

j

6k = f' luk€6 jwkj (4.39)
j=\

Combining these error signals with the results of Equations (4.27) and (4.37) gives the

following equations known as the Generalised Delta rule (Rumelhart et al. 1986):

Aw,v = 70'yk (4.40)

Awik = 71£5kx (4.41)

Although the error back-propagation model was a major advance in the development of

ANNs, the algorithm in its original form had two predominate problems. Firstly, it could

easily get caught in a local minimum in error space and fail to find the global minimum.

Secondly, it took a long time to converge to a result. To overcome these problems, several

modified error back-propagation algorithms were developed.

The Levenberg-Marquardt algorithm (Marquardt 1963), a quasi-Newton method, was

developed specifically for the sum of errors squared error function. The algorithm's

application to ANNs is described in Hagan and Menhaj (1994). In matrix form, the error

E(w) is a function of the weights and can be written as

E(w)= e(w)T e(w) (4.42)

where e(w) is an error vector defined by

e(w) =d- 0(w) (4.43)
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The target value and output vectors are denoted as d and 0(w) and defined as

d =di...dj...dj] (4.44)

0 - Iot '-· oj···0.j J (4.45)

The weights vector w is

r .T

W = L-Wn 'WI2 · · ·WU ,..W,+1 K +Vii M'12 - ' . Wkj ... WK+I J J (4.46)

Introducing the Jacobian matrix J defined by

J(w)= (4.47)
AV

the new weights can be computed by the following iterative formula:

Wk+1 - Wk - J(wk ) J(wk+ 'lk.I- J' (wk)e(wk (4.48)

where subscript k denotes the iteration step. The parameter 4 is a scalar that controls

convergence properties. If 4 is equal to zero the Levenberg-Marquardt algorithm becomes

the Gauss-Newton method. In this study all BP networks were trained using the Levenberg-

Marquardt algorithm with an early-stopping criterion on validation data (Demuth et al. 2006).

This prevented the network from overfitting the training data. Overfitting occurs when noise

present in the data iS modelled rather the underlying function causing a lost of generalisation

abilities.

4.3. Model updating

In order to match experimental results, analytical modals can be updated on a range of

experimental data including natural frequencies, mode shapes and frequency domain data
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(Friswell and Mottershead 1995). Natural frequencies are often the most certain modal

parameters obtained from modal analysis and are often used in the model updating process,

as is also the case in this study. The relative errors ei between the analytical and experimental

frequencies, coa,i and ae,i, can be expressed as an error vector:

ei - CO,1 - £2,2.i (4.49)
CO,i

th

where subscript i refers to i mode. The analytical frequencies depend on a set of parameters,

such as masses and member stiffnesses, which define the model and are denoted by vector 0.

In the sensitivity-based updating process, the vector of errors for all considered modes e is

minimized by an iterative procedure where the updating parameters 0k at iteration step k are

adjusted using

k+1 = k - Skek (4.50)

where S+ is the pseudoinverse of the sensitivity matrix whose entries can be evaluated as

1
S.=-
y (02

e.i

'T

Ta.i
OK _ 02 aM
Dej a,i eel

(4.51)

where K and M are the stiffness and mass matrices and *a i are the analytical mode shape
vectors.

After the updating process is complete, the analytical mode shapes can be checked against the

experimental mode shapes using the popular Modal Assurance Criterion (MAC) (Friswell

and Mottershead 1995):

9a.j're.j2
(4.52)MAC ij =

cia,i ,je,j 

where *a and (|)e are the analytical and experimental mode shapes. MAC values of 0.9 or

greater are generally considered to be a sign of good correlation between analytical and

experimental mode shapes.

4.4. Principal Component Analysis

Principal Component Analysis (PCA) is a well-known multivariate statistical technique and a

full description can be found, c.g., in Sharma ( 1997). Given a set of n data points xi == [xii, Xli,
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..., xpf'(i= 1,..., n) in ap-dimensional space with mean i and covariance matrix I, PCA

seeks to project the data into a new p-space with orthogonal coordinates zi (i = 1,..., n) via a

linear transfonnation.

Decomposition of the covariance matrix by singular value decomposition leads to

I =VAVT (4.53)

where A- diag[ a , .... a ] is diagonal matrix containing the ranked eigenvalues ofI and V

is a matrix containing the corresponding eigenvectors or principal components, The

transformation ofa data point xi into principal components is

Zi= VT (Xi-X) (4.54)

The new coordinates zi are uncorrelated and have a diagonal covariance matrix A. Therefore,

r nT

Zi = Lzti,···,zpi J isa linear combination ofxii, ..., Xpi which explain variances af,···,ai.To

reduce the dimensionality, a selection q<pof principal components can be used that retains

those components that contribute most to the variance, thus reducing the dimension of the

data to q.

4.5. Application to 3-storey bookshelf structure

In this section. the proposed damage detection method using BP ANNs was applied to the 3-

storey bookshelf structure described in Chapter 3. Damage was introduced into the structure

by replacing the original 4.5mm thick columns of a particular storey with thinner, 3.Omm

aluminium angles. Four damage states were considered; these were labelled DO, Dl,D2 and

D3 corresponding to no damage (healthy structure), 1 St storey damage, 2nd storey dainage and
nd

simultaneous 1 St and 2 storey damage.

Before dainage classification and quantification the modal properties of the structure in either

undamaged or damaged states were obtained. This data was used to update simple inass-

spring models of the structure. Modal parameters when the structure was in both undamaged

and damaged states were estimated from five response records, containing four 1 ()s and one

2()s record using the procedures explained in Chapter 3. Iii all cases the ground excitation was

chosen to be Gaussian white noise. Table 4.1 shows the estimated natural frequencies.f, and
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percentage changes of the frequencies 44% in states Dl, D2, and D3 in relation to DO. Mode

shapes normalised for a maximum response of 1 are shown in Table 4.2 and graphically in

Figure 4.1 forall four damage states.

Table 4.1. Natural frequencies and their percentage changes at different damage states for 3-
storey bookshelf structure.

h (Hz) Afyf (%)0
Mode DO Dl D2 DJ Dl D2 D3

INt 1.928 1.879 1.837 1.840 -2.5% -4.7% -4.6%

2,4 5.52 5.43 5.46 5.42 - 1.6% -1.0% -1.8%

3rd 8.55 8.30 8.09 8.15 -2.9% -5.3% -4.6%

'Based on DO.

Table 4.2. Mode shapes at different damage states for 3-storey bookshelf structure.

Mode shape 1 Mode shape 2 Mode shape 3
Storey 1

0 1.00

D3

1 st 0

2nd 0 a -0.53

3rd 1 9 0.19

)0 D1 D2 D3 DO Dl D2 D3 DO D1 D:

.18 0.20 0.10 0.20 0.64 0.69 0.68 0.54 1.00 1.00 1.0

.69 0.70 0.66 ().71 1.00 1.00 1.00 1.00 -0.48 -0.53 -0.6

.00 1.00 1.00 1.00 -0.88 -0.91 -0.87 -0.86 0.16 0.18 0.1

DO
2- 2- 2-

- 01

- 02

1.8- - 03 - 1.8 - 1.8 -

1.6 - 16-

1.4 - 1.4 - 1.4 -

- 1.2-
E

1-

I

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 - 0.4 -

0.2 - 0.2 - 0.2 -

0 0 0
-1 0 1 -1 0 1 -1 0 1

(a) (b) (C)

Figure 4.3. Mode shapes of 3-storey bookshelf structure in each damage state: (a) 1St mode, (b)
2nd mode, and (c) 3rd mode.

Eight sealed earthquake records were used to excite the structure in the four damage states.

Table 4.3 lists the earthquakes used, the Peak Ground Acceleration (PGA) of the original and
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scaled records, the duration of the record and the frequency at which the earthquake was

sampled. The earthquakes were scaled so that a range of response amplitudes was obtained,

while ensuring no yielding of the structure occurred. Yielding of the structure would cause

nonlinearities in the structural response and such cases are outside the scope o f this chapter.

Table 4.3. Earthquake records used to excite 3-storey bookshelf structure.

Earthquake PGA (g) Scaled PGA (g) Duration (sec) Sampling frequency (Hz)
Duzce 12/11/1999 0.535 0.027 25.885 200

Erzincan 1 3/3/1992 0.496 0.033 20.780 200

Gazli 1 7/5/1976 0.718 0.048 16.265 200

Helena 31/10/1935 0.173 0.035 40.000 100

Imperial Valley 19/5/1940 0.313 0.031 40.000 100

Kobe 17/1/1995 0.345 0.035 40.960 100

Loma Prieta 18/10/1989 0.472 0.047 39.945 200

Northridge 17/1/1994 0.568 0.038 40.000 50

4.5.1. Model updating

In this study, the lateral stiffness of the structure in both undamaged and damaged states

could not be accurately determined from analytical investigations. The actual stiffness was

much less than initially expected. This was attributed to the construction of the column-floor

joints. The joints were constructed using relatively flexible brackets and lacked continuity of

the column over the joint, refer to Figure 3.lc in Chapter 3. Knowledge of the stiffness would

however be useful and necessary if experimental damage was to be quantified as a reduction

in lateral stiffness. Also in a real-world application a computer model would have to be relied

upon as it is highly unlikely that a full-scale structure would be damaged to obtain AR

coefficients. Although outside the scope of this study, an accurate computer model of the

structure would allow AR coefficients to be calculated at various simulated damage

scenarios.

In order to estimate the stiffness, simple 3-DOF lumped mass-spring analytical models

(Figure 4.4) were updated. The updating parameters were chosen to be the lateral stiffness of

each storey ki, kz, and kj. The initial stiffnesses were estimated by hand calculations giving

93003/m for ki and ki. Because of the additional brackets placed at the base of the structure,

ki was expected to be significantly greater than kz or kj. As a hand calculation was difficult, a

value for ki of 40000N/m was used.
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Figure 4.4.3-DOF lumped mass-spring model used for modelling the 3-storey bookshelf
structure.

Table 4.4 lists the results from the updated analytical models. The analytical frequencies h

are very close to the experimental values. The MAC values show excellent correlation for the

1 st mode while the 2nd and 3rd modes show good correlation. The obtained storey stiffnesses

are given in Table 4.5.

Table 4.4. Analytical frequencies and MAC values after updating for 3-storey bookshelf
structure.

DO Dl D2 D3

Mode f (Hz) MACa .h (Hz) MACa A (Hz) MACa h (Hz) MACa

1.928 1.00 1.879 0.99 1.837 1.00 1.840 0.99

24 5.517 0.93 5.426 0.92 5.464 0.93 5.417 0.96

3 8.548 0.93 8.303 0.92 8.093 0.92 8.152 0.91

aBased on experimental mode shapes.

Table 4.5. Updated stiffnesses from analytical models for 3-storey bookshelf structure.
Initial DO Dl D2 D3

ki (N/m) 4.00x 104 3.77x 104 3.55x 104 3.38404 3.43x 104

k, (N/m) 0.93x 104 0.61 x 104 0.58x 104 0.54x 104 0.54x 104

k,(N/m) 0.93x 104 0.78x 104 0.76x 104 0.78x 104 0.76x 104

From the updated model stiffnesses, the damaged and undamaged stiffness for each storey

was estimated by averaging the results in Table 4.5. As no changes were made at the 3rd
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storey, k.i should remain constant for all damage states and therefore an average of all values

in Table 4.4 was taken. Similarly, the undamaged 4 should remain constant for states DO and

D 1, while the damaged ki should be constant for states D2 and D3. The process was repeated

for ki, however, ki for D2 was considered to be too low and was ignored. The final, averaged

stiffnesses are given in Table 4.6. This averaging of the stiffness affected the analytical

frequencies and MAC values and the final values have been listed in Table 4.7.

Table 4.6. Averaged stiffness for damage states for 3-storey bookshelf structure.
DO Dl D2 D3

k,(Nfrn) 3.77404 3.49x 104 3.77x 104 3.49*104

AD (N/m) 0.60x 104 0.60x 104 0.54x 104 0.54x 104

k., (N/m) 0.77x 104 0.77x 104 0.77x 104 0.77x 104

Table 4.7. Final analytical frequencies and MAC values for 3-storey bookshelf structure based
on averaged model updating results.

DO Dl D2 D3

Mode h (Hz) MACa A (Hz) MAC

1 St 1.917 1.00 1.908 0.99

2nd 5.489 0.93 5.473 0.93

3rd 8.541 0.93 8.283 0.93

Based on experimental mode shapes.

a

A (Hz) MAC

1.846 1.00

5.458 0.91

8.462 0.90

a

h (Hz) MAC

1.838 0.99

5.445 0.96

8.200 0.91

a

4.5.2 Damage classification using output-only model

The acceleration time history of each storey was modelled using a univariate AR model. The

same data acquisition procedure applied in Chapter 3 was followed. However, for the time

series modelling of the acceleration data the signal was decimated from 400Hz to 50Hz. A

univariate AR(12) model was determined to give both a sufficient fit to the acceleration data

and had no significant correlation in the residual errors. The AR coefficients were estimated

from a 500-point window advancing 100 points until the end o f the record was reached. A

least squares approach was used to calculate the AR coefficients. A data set of 388 points

containing 97 points for each damage state was obtained. Figure 4.5 shows the statistical

distribution (histogram) of the 1 St AR coefficient from the 1 St storey in the DO and D 1 damage

states. There are noticeable changes in spread and mean between the two distributions which

both appear to be bi-modal. However, extracting further information e.g., the location or

extent of damage however requires more investigation.
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Figure 4.5. Histograms of the 1St AR coefficient for 3-storey bookshelf structure in various
damage states: (a) DO, and (b) Dl.

The 388 point data set was randomly divided into 300 points for training and 88 points for

testing the ANNs. Initially, the ANN was trained to distinguish between the four damage

states only. The damage states DO, Dl, D2 and D3 were assigned the vector outputs [1 0 0

0-1 i [0 1 0 0] T, [0 0 i or and [0 0 0 11 1, respectively. A single hidden layer ANN with 5

hidden layer neurons was found to give perfect results with 100% correct classification. Table

4.8 shows the break down ofthe classification results.

Table 4.8. Damage classification results for 3-storey bookshelf structure.
DO Dl D2 D3

Actual number of data points 27 17 26 18
Classified correctly 27 17 26 18

4.5.3 Damage detection, localisation and quantitication using output-only model

Rather than simply classifying damage into several classes, a more useful approach would

give information about the extent and location of damage in the structure. In this section, the

ANNs were trained to relate the AR coefficients to the remaining stiffness at each storey,

providing more useful information about the extent and location of damage. The damage at

each storey is listed in Table 4.9 and shown in Figure 4.6 as the percentage of remaining

storey lateral stiffness. A single hidden layer ANN with 5 hidden layer neurons was found to
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give good predictions. The results have been shown graphically in Figure 4.7, where the

detected damage has been plotted against the actual damage for all three stories. For perfect

predictions, the data points should lie on (0.93,0.93) and 0.00,1.00) for the 1 St storey,

(0.90,0.90) and (1.00,1.00) for the 2nd storey and (1.00,1.00) for the 3rd storey. The means of

the identified remaining stiffness values together with two standard deviation bounds are

shown in Table 4.10. At a 95% confidence level these values do not differ from the actual

stiffness identified by model updating by more than 3.3%. These results show that the ANN

has correctly quantified the damage at each story with only a small amount of scatter about

the actual remaining stiffness.

Table 4.9. Damage at each storey as a percentage of remaining stiffness for 3-storey bookshelf
structure.

Percentage of remaining stiffness (%)
Storey DO Dl D2 D3

1 st 1.00 0.93 1.00 0.93

2nd 1.00 1.00 0.90 0.90

3rd 1.00 1.00 1.00 1.00

Table 4.10. ANN identified damage as a percentage of remaining stiffness in 3-storey
bookshelf structure using AR models.

Identified percentage of remaining stiffness
Storey Undamaged Damaged
1. 1.0010.02 0.9410.02

24 1.00*0.02 0.90*0.03

34 1.0010.00

Legend:
100%of stiffness 100%of stiffness 100%of stiffness 100%of stiffness

4.5mm thick angle

100%of stiffness 100%of stiffness ,

1 0

1 1

, 93%of stiffness ,100%of stiffness
1 1

1 1
1 11 11-

90%of stiffness

100%of stiffness

1 0 0

1 0 90%of stiffness '
1 1 0

00 01
1 :1
i ,  3.Omm thick angle
1 1

, 93%of stiffness , 0
1 0

1 0
il 1

DO Dl D2 D3

Figure 4.6. Damage states in 3-storey bookshelf structure showing percentage of lateral
stiffness at each story.
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Figure 4.7. Detected vs. actual damage for 3-storey bookshelf structure using AR models: (a)
1st storey, (b) 2nd storey, and (c) 3rd storey.

4.5.4 Damage detection, localisation and quantisation with a known input

In this study it is assumed that additional information is available, i.e. the input into the

system as measured by the accelerometer fitted to the shake table. Inclusion of the input into

the time series model could improve accuracy and can be achieved using the ARX

formulation, a simple input-output model. An ARX(12,12) model was selected and applied to

the time histories of each storey obtained above. The ARX coefficients were estimated using

least squares from a 500-point window advancing 100 points until the end of the record was

reached. A data set of 388 points containing 97 points for each damage state was obtained

and randomly divided into 300 and 88 points for training and testing respectively. The results

have been shown in Figure 4.8. Compared to Figure 4.7 there is a clear reduction in the

amount of scatter about the actual value of remaining storey stiffness. Table 4.11 shows the

means and two standard deviation bounds for the percentage remaining stiffness identified by

the ANN using the ARX models. At a 95% confidence level these values do not differ from

the actual stiffness identified by model updating by more than 1.1%. The means the error

bounds have been reduced by a factor of 2 or 3 from those in Table 4.10.
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Figure 4.8. Detected vs. actual damage for 3-storey bookshelf structure using ARX models: (a)
1. storey, (b) 2nd storey, and (c) 3rd storey.

Table 4.11. ANN identified damage as a percentage of remaining stiffness in 3-storey
bookshelf structure using ARX model.

Identified percentage of remaining stiffness
Storey Undamaged Damaged
1 1.0010.01 0.93*0.01

24 1.0010.01 0.90*0.01

3.d 1.0010.00

4.6. Application to ASCE Phase 11 Experimental SHM Benchmark Structure

A basic description of the ASCE Phase II Experimental SHM Benchmark Structure and

experimental programme is provided in Chapter 3. In the following discussions the locations

in the structure are referred to using their respective geographical directions of north (N),

south (S), east (E) and west (W). A total of 9 damage scenarios were simulated on the

structure; these involved the removal of bracing and the loosening of bolts in the floor beam

connections. Table 4.12 lists the damage states and gives a description of damage. The

different configurations give a mixture of minor and extensive damage cases.
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Table 4.12. Damage configurations for ASCE Phase Il Experimental Benchmark Structure.
Configuration Damage

1 No damage
2 AH bracing removed on the E side

3 Bracing removed floors 1 -4 on a bay on the SE corner
4 Bracing removed floors 1 and 4 on a bay on the SE corner

5 Bracing removed floors 1 on a bay on the SE corner
6 All bracing removed on E face and floor 2 on N face

7 All bracing removed
8 Configuration 7 + loosened bolts on floors 1-4 on E face N bay
9 Configuration 7 + loosened bolts on floors 1 and 2 on E face N bay

4.6.1. Damage classification

The data from the ASCE Phase II Experimental SHM Benchmark Structure served a twofold

purpose. Firstly, it was used to validate the performance of the proposed method on a more

realistic and complex structure with complex damage scenarios. Secondly, the problem of

data reduction for multi-sensor SHM systems proved to be of importance and was addressed.

Because quantitative information about the damage severity was not readily available, in this

application damage classification into the 9 states was atteinpted. The 9 damage

configurations were assigned vector outputs from [1 0 0 0 0 0 0 0 0] T to [0 0 0 0 0 0 0 0 1.1

for configurations 1 to 9, respectively. Univariate AR(20) models were fitted to the

acceleration data from each accelerometer. The AR coefficients were estimated using least

squares from 1000-point segments advancing 200 points until the end of the record was

reached. A data set of 1035 points was obtained, 115 points from each configuration, and

randomly divided into 700 points for training and 335 points for testing, respectively.

Using AR(20) models and all 15 accelerometers gave an ANN input dimension of 300. This

sized network proved to be difficult to train due to computational limitations. Two data

reduction techniques were investigated: (i) selection of subset AR coefficients and/or

accelerometers and (ii) projection of the data onto a lower dimensional space using PCA.

Reducing the number of AR coefficients and/or accelerometers may adversely affect the

amount of information in the data and degrade the performance of the damage detection

method. Therefore several combinations of reduced AR coefficients and accelerometers were

systematically investigated to ascertain their practical minimum numbers. The number of AR

coefficients was reduced by selecting the first few coefficients only. This was chosen to be

either (i) the first coefficient, (ii) the first two coefficients, (iii) the first three coefficients, (iv)
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the first four coefficients, or (v) the first six coefficients. Similarly, the number of

accelerometers and their location was either (i) the full set (15 accelerometers), (ii) omitted

accelerometers located on the base and those of the W face measuring N-S motion (8

accelerometers), or (iii) same as case (ii) but with all remaining accelerometers on stories 1

and 3 omitted (4 accelerometers). Choosing naccel accelerometers and nAR AR coefficients

reduces the damage sensitive feature dimension to naccel >< nAR and this can be compared to the

original dimension of 300. A single hidden layer ANN with 3 hidden layer neurons was

selected for its good performance. The results were analysed as a classification task and are

shown in Figure 4.9 where the number of misclassifications out of the 335-point test data set

is given for different combinations of reduced AR coefficients and/or accelerometers.

Establishing the value of a threshold where the performance of an SHM system can be judged

as good or otherwise is always rather arbitrary. Here, 5% or less of misclassifications was

considered to be a good result and 1 % or less to be excellent. The quality of results is referred

to using the same words throughout the whole report. Figure 4.9 shows a clear boundary

where performance rapidly deteriorates below the 5% misclassification threshold. The full

suite of 15 accelerometers achieved good performance with only 1 AR coefficient (reduced

feature dimension 15), while 2 or 3 AR coefficient were required for 8 or 4 accelerometers,

respectively, (reduced feature dimension 16 or 12, respectively). For excellent results at least

2 or 3 AR coefficients were necessary for 15 and 8 accelerometers, respectively, (reduced

feature dimension 30 or 24, respectively). An overall conclusion that can be drawn from this

simulation is that small numbers of AR coefficients and sensors suffice for precise damage

classification. Compared to the original feature dimension of 300, depending on the choice of

accelerometers only about 5% of features were required to obtain good or excellent results.

While the dimensionality reduction approach discussed above gave good results, a more

methodical approach would retain data of statistical significance only. PCA was used to

project the data onto the first 30,20,10, or 5 principal components. These, compared to the

original damage sensitive feature dimension, correspond to 10%, 6.7%, 3.3% and 1.7% of

this original dimension. Using a single hidden layer ANN with 5 hidden layer neurons, the

number of classifications with percentage errors for each case is given in Table 4.13. The

results showed good damage classification could be achieved by projection of the data onto

the first 10 or more principal components. Some improvements over the previous results were

observed especially when the feature dimension was small. Referring to Figure 4.9, using 4

accelerometers and 3 AR coefficients, equating to a feature dimension of 12, 46
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misclassifications were recorded. When using 10 principal components, 16 misclassifications

were recorded. This comparison shows a superior performance of the more systematic feature

reduction approach using PCA over simple selection of accelerometers and AR coefficients.

Excellent or perfect classification results were obtained when using 20 or more principal

components.

x # of misclassifications

5% 1%

6- x 8

x 11 x 1 X 0 -

3 - x 46 -\\ .*2 -

2- x 19

1- x 67 \\ x 7 -

4 8 15

# of accelerometers used

Figure 4.9. Results from the ASCE Phase 11 Experimental SHM Benchmark Structure using
subsets of AR coefficients and accelerometers.

Table 4.13. Number of misclassifications using PCA reduced data from the ASCE Phase Il
Experimental SHM Benchmark Structure.

Number o f principal components Number of misclassifications

30 0 (0%)

20 2 (0.6%)

10 16 0.8%)

5 85 (25.496)

4.7. Application to the RC column

The RC column described in Chapter 3 was damaged progressively from minor to severe

damage cases by chipping off concrete from around the base using a chisel and hammer. This

method of introducing damage was adopted because the linear shaker was unable to provide

sufficient force to damage the column from its healthy state. However, in a serve damage
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state the shaker was observed to induce further damage. A total of 7 damage states were

considered and these were labelled D()-D6 in the order of increasing damage. The healthy or

no damage condition eorresponded to DO. while D6 con-espon(led to severe dainage with the

removal of large chunks of concrete and exposure of reinforcing steel. In addition to the

seven damage states three other states were considered. These states differed in mass: the

additional masses were placed at the top of the column and designed to simulate a change in

operating conditions. Two masses, either 2kg or 5kg, were added at D2 to give two new

dainage states D2 + 2kg and D2 + 5kg, respectively. Similarly, at D4 a mass of 5kg was

added to give D4 + 5kg. Using a SDOF mass-spring formulation, the effective mass of the

column together with the shaker was estimated to be 97kg and an additional 2kg or 5kg

would equate to an increase in seismic mass of 2.1 % or 5.2%, respectively. Table 4.14 gives

a short description o f the extent o f damage in each damage state. Figure 4.10 shows

photographs of the damage for states D 1 -D5. The nuinbers in the photographs denote faces

and are used to refer to them in the subsequent discussions. No observable changes were seen

between D5 and D6.

Table 4.14. Description of damage states for RC column.

Damage state Description of damage
D() No damage - healthy condition
D I Minor damage - chipping 3-4mm depth across face 1
D2 Minor damage - additional chipping 3-4mm depth across face 3
D3 Moderate damage - additional chipping 5-101nm depth across face 1
D4 Severe damage - additional chipping 5-10mm depth across face 3, large pieces

removed from corners exposing rehars
D5 Severe damage - additional pieces of concrete removed
D6 Severe damage - additionally damaged using shaker at full power

D1 D2 D3 D4 D5

6

Figure 4.10. Photographs of RC column in damaged states Dl-D5 numbered in the picture.
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Modal analysis was conducted on the column in both healthy and damaged states using the

ERA algorithm: refer to Chapter 3 for details. Of primary interest was the translational mode

in the direction of forcing, later used to estimate the lateral stiffness of the column in each

damage state. The ERA results were verified by analysing the peaks of the FRF curves. FRF

curves were calculated using Welch's method with a Hanning window and no overlapping.

Figure 4.11 shows the FRF curves obtained while the column was in damage states DO, Dl,

D4 and D6. Table 4.15 gives the natural frequencies and damping ratios for the translation

mode in all damage states. The results show an immediate reduction in natural frequency for

D 1 and smaller changes amongst D 1 -D3. There was a larger drop in frequency between D3

and D4 indicating the severe extent of the damage while the separation between D4-D6 is

again much closer. Generally, the FRF results are slightly greater than those estimated using

ERA. Damping ratios appeared to increase initially with minor damage before decreasing

with increasing damage severity. however, for D6 an increase was again observed. The

frequencies for the three states with added mass, D2+2kg, D2+5kg, 06+5kg, are listed in

Table 4.15 and show appreciable changes. placing these operational states into frequencies

associated with more extensive damage. This would make damage detection based on natural

frequencies alone inadequate.

10
0

l

D6 D4 D1 Do

10

10'2 -

10
-3

2 4 6 8 10 12 14 16 18

Inertance IH(m)1

20

Frequency (Hz)

Figure 4.11. FRF curves for RC column in damage states DO, Dl, D4 and D6.
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Table 4.15. Frequency and damping ratio of translational mode of RC column at different
damage states.
Frequency (Hz) 4(%)

Damage state ERA FRF ERA

DO 11.2 11.1 4.1

DI 9.88 9.77 6.8

D2 9.78 9.77 6.9

D3 9.67 9.57 5.8

D4 7.79 7.52 5.4

D5 7.58 7.52 4.6

D6 6.95 7.03 7.2

D2 + 2kg 9.54 - -

I)2 + 5kg 9.33 - -

D4 + 5kg 7.48 - -

At each damage state, a set of AR coefficients was obtained from two 30s white noise records

produced under shaker excitation. A AR(30) model was chosen to fit the time histories and

the coefficients were calculated using least squares from a 500-point window advancing 100

points until the end of the record was reached. Two separate cases were analysed: Case I and

Casell. Case I contained the states DO-[)6 and the 770-point data set was randomly divided

into 600 and 170 points for training and testing, respectively. Case II contained the same data

as Case I but also included the three other operational states with different masses. These

states were lumped into their respective categories, e.g., D4+5kg luinped into D4 etc.. This

increased the data set to 1100 points, which was divided into 90() aiid 200 points for training

and testing respectively. The purpose of Case Il study was to see if under changed operational

conditions accurate damage classification was still possible.

The statistical distributions (histograms) of the 1 St AR coefficient for damage states DO, Dl,

D4 and D6 are given in Figure 4.12. The figure shows that the mean of the 1 St AR coefficient

increases with damage.

4.7.1. Damage classijication

Initially, the ANNs were trained to classify the damage into the states D()-D6. The states DO-

[-)6 were assigned the vector outputs [ 1 000000]Tto [0000001]T respectively. A single

hidden layer ANN with 10 hidden layer neurons was found to give adequate predictions. The

results are shown in Table 4.16 with the number of actual and correctly classified cases for

Case I. A total of 13 misclassifications (7.6%) were present which can be considered as a

fairly good result. In Case 11 the three other operational states with different masses were also

included as a challenge to the classification task and the results are given in Table 4.17. A

total of 22 misclassifications ( 11.0%) were present. This increase in error was attributed to
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the inclusion of the additional states, e.g., the D2 state had 10 errors alone. These results

indicate that although reliable damage classification was still possible the accuracy decreased

when additional masses were added.

25 30

20 -
25

20
15-

15-

10 -

10-

5
5-

2

2,1

Figure 4.12. Histograms of the 1St AR coefficient from RC column in various damage states: (a)
DO, (b) Dl, (c) D4, and (d) 06.

Table 4.16. Case I classification results for RC column.

DO DI 02 D3 D4 D5 D6

Actual number of data points 25 25 21 29 24 22 24
Correctly classified 25 18 18 29 22 22 23

Table 4.17. Case Il classification results for RC column.

DO Dl D2 D3 D4 D5 D6

Actual number ofdata points 16 20 60 22 39 25 18
Correctly classified 14 14 50 21 37 25 17

4.7.2. Damage quantilication

In this section the AR coefficients were related to the extent o f damage, defined as the current

remaining stiffness divided by the initial. undamaged stiffness. Table 4.18 gives the stiffness,

estimated from a lumped mass-spring SDOF model and the damage for each state via model

updating using natural frequencies, and percentage of remaining stiffness for each damage
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state. In the severe damage cases the reduction in stiffness was approximately 50-60%, while

in the minor cases the reduction was approximately 25%.

Table 4.18. Stiffness and damage at each state for RC column.
Damage state Stiffness (N/m) Percentage of remaining stiffnessa

DO 4.75x 105 100

Dl 3.70x 105 78
D2 3.63405 76
D3 3.54><105 75
D4 2.30><105 48
D5 2.18x 105 46
D6 1.83x 105 39

Based on DO.

A single hidden layer ANN with 3 hidden layer neurons was chosen. The results are shown

graphically in Figure 4.13 for Case I where the actual damage has been plotted against the

detected damage. For perfect predictions the results would form seven points (0.39,0.39),

(0.46,0.46), (0.48,0.48), (0.75,0.75), (0.76,0.76), (0.78,0.78) and (1.00,1.00). The figure

shows good predictions over the broad range of damage. As before, the three remaining states

with different masses can be included to simulate a change in operating conditions. The

results for Case II are shown graphically in Figure 4.14. The figure shows more spread about

the actual value of damage compared to Figure 4.13.

1-1
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0.9 -

0.8 -

0.7 -

0.6 - X

Detected damage XX

0.5 -

0.4 -

0.3
03 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Actual damage

Figure 4.13. Detected vs. actual damage for RC column Case I using AR models.
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Figure 4.14. Detected vs. actual damage for RC column Case Il using AR models.

Table 4.19 gives the means and two standard deviation bounds of the remaining stiffness

identified by ANN for the two cases. The means were in good agreement, especially for Case

I with the actual damage and at the 95% confidence level the errors are in most situations

between 5-10%. For Case II the two standard deviations bounds were in most instances

smaller than for Case I, however, the means were further away from the actual values.

Table 4.19. ANN identified damage as a percentage of remaining stiffness for RC column.
Damage state Case I Case II

DO 0.9910.05 0.9910.04

Dl 0.7910.04 0.7710.03

D2 0.7710.04 0.761:0.03

D3 0.7510.03 0.7410.03

D4 0.4810.07 0.481:0.06

D5 0.4610.06 0.44*0.04

D6 0.40*0.03 0.4210.02

4.8. Conclusions

In this chapter, a damage detection and quantification method using time series models and

ANNs was developed and applied to three experimental structures. Acceleration time

histories from the structures in various damaged and undamaged states were fitted using AR

and ARX models while the structures were excited dynamically. ANNs were used to interpret
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changes in the AR coefficients and either classify damage into states or quantify the extent of

damage as the percentage of remaining structural stiffness. Studies on the 3-storey bookshelf

structure using output only AR models demonstrated that for stiffness reductions of 7-10%,

the ANN was able to classify damage 100% correctly into states. Quantification and

localisation of the damage, defined as the remaining stiffness, was achieved with small errors

not exceeding 3.3% of the actual values at 95% confidence levels. This improved to 1.1%

when input-output ARX models were used instead.

Due to computation limitations, ANNs were unable to be trained in some instances without

reduction in dimensionality of the data. Two dimensionality reduction approaches were

applied to the data from the ASCE Phase II Experimental SHM Benchmark Structure to

reduce the dimension of the AR coefficient feature vector. Either a reduced number of AR

coefficients and accelerometers were selected or the data was reduced using PCA. The results

showed that significant reductions in the number of accelerometers and AR coefficients used

can be achieved whilst maintaining good performance for damage classification. With

judicious choice of accelerometers only about 5% of AR coefficients were required to obtain

good or excellent damage classification results. For PCA-reduced data, using only 10

principal components (3.3% compared to the total number of AR coefficients) good

classification (4.8% misclassifications) was achieved and excellent or perfect results were

obtained using 30 principal components (10% compared to the total number of AR

coefficients) with 100% correct classification. Overall data reduction via PCA provided a

performance gain over selection of subset of AR coefficients and accelerometers.

Results from the RC column showed that the proposed method was able to classify and

quantify damage despite changes in operating conditions, simulated by the addition of extra

mass at the top of the column, although some deterioration o f performance was observed. For

classification tasks the number of misclassification increased from 7.6%, in the normal case

to 11.0% for the changing operational conditions cases. Similarly, for damage quantification

better agreement between the actual and detected damage was obtained for the normal case.

The detected damage for the changing operational conditions case was once outside the two

standard deviation bounds of the detected damage.

4-31



Chapter 4

4.9. References

Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis: Forecasting and control.

Englewood Cliffs, NJ, Prentice Hall.

Demuth, 11. B., Beale, M., H. and Hagan, M. T. (2006). Neural network toolbox 5: User's

guide. Natick, M.A., Mathworks.

Friswell, M. I. and Mottershead, J. E. (1995). Finite element model updating in structural

dynamics. Dordrecht, Kluwer Academic Publishers.

Hagan, M. T. and Menhaj, M. (1994). "Training feedforward networks with the Marquardt

algorithm." IEEE Transactions on Neural Networks 5(6): 989-993.

Keeman, V. (2001). Learning and soft computing. Cambridge, Massachusetts, MIT Press.

Ljung, L. (1999). System identification: Theory for the user. Upper Saddle River, NJ,

Prentice Hall.

Marquardt, D. (1963). "An algorithm for least squares estimation of nonlinear parameters."

Journal of the Society for Industrial and Applied Mathematics 11(2): 431-441.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning internal representations

by error propagation. Parallel distributed processing: Explorations in the

microstructures of cognition. D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,

Massachusetts, MIT Press. 1: 318-362.

Sharma, S. (1997). Applied multivariate techniques. New York, Wiley.

4-32



CHAPTER 5

NEAREST NEIGHBOUR CLASSIFICATION,

LEARNING VECTOR QUANTISATION AND

SELF-ORGANISING MAPS FOR DAMAGE

CLASSIFICATION AND QUANTIFICATION USING

TIME SERIES ANALYSIS

Back-Propagation ANNs can be seen as 'black boxes' that require input data and produce

classification results without much insight into their internal working. In this chapter, more

intuitive analytical techniques based on clustering analysis that could be used for damage

classification are studied: Nearest Neighbour Classification (NNC), Learning Vector

Quantization (LVQ) and Self-Organizing Maps (SOM). The basic idea behind these methods

is to establish a database of baseline damage features corresponding to various damage states,

and later, when a new feature becomes available, assign it to the damage state with the

closest distance between the new feature and the reference feature clusters. The NNC

technique uses a fixed, predefined reference feature set, whereas LVQ adapts its reference

feature set to optimise the classification results. NNC and LVQ are supervised learning

techniques while SOM is an unsupervised one. Supervised methods differ from unsupervised

methods in that learning is based on prior knowledge of the true classification of the data.

Unsupervised methods attempt to classify data based on similarity between the data alone.

Initial inspection of the data to check the presence of damage clusters for quick visualisation

of damage was conducted using two-dimensional projections obtained from PCA and

Sammon mapping. For damage classification, the dimensionality of the AR coefficient data

was reduced using PCA and NNC and LVQ were applied to classify damage into states.

Clustering of the data using SOM was investigated and the results were analysed as a
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classification task. Damage quantification was attempted by analysing the relative distance of

data points to reference points o f known damage extent.

5.1. Nearest Neighbour Classification

Nearest Neighbour Classification is a simple supervised pattern recognition technique. Given

a set of fixed reference or codebook vectors mi (i = 1, ..., k) which have known classes, the

input vector x is assigned to the class which the nearest mi belongs. Several distance

measures can be used including Manhattan, Euclidean, Correlation and Mahalanobis

(Kohonen 1997). In this research the Euclidean or L2 norm and the Mahalanobis distance

measures were investigated. The Euclidean distance Ddx,y) between two vectors x and y can

be calculated using

L)£(x,y)=4(x-y)7'(x-y) (5.1)

The Mahalanobis distance D(x,y) between two vectors of the same distribution with a

covariance matrix I can be calculated from

DM (x, y) = (X-y)Tri (X-y) (5.2)

The Mahalanobis distance accounts explicitly for the different scales and correlations

amongst vector entries and can be more useful in cases where these are significant. To reduce

computational requirements the squared Euclidean or Mahalanobis distance may be used

instead.

5.2. Learning Vector Quantisation

LVQ is a supervised machine learning technique designed for classification or pattern

recognition by defining class borders. It is similar to NNC in that it uses a set of codebook

vectors and seeks for the minimum of distances of an unknown vector to these codebook

vectors as the criterion for classification. However, unlike in NNC where codebook vectors

are fixed, an iterative procedure is adopted in which the position of the codebook vectors is

adjusted to minimize the number of misclassifications. LVQ is a type of ANN and is closely

related to vector quantisation and SOM. A complete description of LVQ can be found in

Kohonen (1997) and only a brief discussion is given herein. LVQ are competitive networks

and can be trained using several learning algorithms. The Optimised-Learning-Rate LVQ 1
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algorithm was used in this study (Kohonen 1997). This algorithm has an individual learning

rate for each neuron or codebook vector, resulting in faster training.

Given a set of codebook vectors mi (i = 1 , ...5 k) which have been linked to each class region,

the input vector x is assigned to the class which the nearest mi belongs, i.e. NNC is

performed. Let c define the index of the nearest mi calculated using a certain distance

measure. Learning is an iterative procedure in which the position of the codebook vectors is

adjusted to minimise the number of misclassifications. At iteration step t let x(t) and mi(t) be

the input vector and codebook vectors, respectively. The codebook vectors are adjusted

according to the following learning rule:

mc (t +1) =[1-s(t) ac (t)]mcct)+sct) a (t )40
(5.3)

mi (t +1) =mi (t) for itc

(+ 1 class correct
S(t)= 4 (5.4)

l -1 class incorrect

a

ac (t)=
1+s(

00 -0
(5.5)

t)ac(t-1)

where S(t) equals +1 or -1 depending if x(t) has been correctly or incorrectly classified and

Otc(t) is the variable learning rate for codebook vector mc. Care must be taken to ensure that

ac(t) < 1 for convergence. In this research an initial value of 0.3 was assumed for all 04(0.

5.3. Self-Organising Maps

SOM attempt to create projections of high dimensional data in which the organisational

structure, i.e. relative distances between adjacent data points is retained. SOM are often used

for visualisation and clustering tasks. SOM is a type of ANNs and is similar to LVQ in that

the position of the codebook vectors is adjusted iteratively. However, SOM is an

unsupervised learning algorithm in which adjustment is based on the similarity between input

and codebook vectors only, and class membership for the input does not need to be known. A

formal discussion on SOM and self-organisation principals can be found in Kohonen (1997).

The formulation of SOM is similar to LVQ. Given a set of reference vectors mi (i = 1,..., k)

which have been initialised over the input space, the input vector x is assigned to the class
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which the nearest mi belongs. Let c define the index of the nearest reference vector i.e. mc.

During training the mi are adjusted according to the iterative application of

mc (t + 1)=mc (t)+a (t) I x (t)-m(t)-1
(5.6)

mi (t +1)=mi (t) fori#c

where a(t) must satisfy lim t-+00 a(t)» 0 for convergence. In this investigation

a(k)= 0.5/(0. lk + 1) was adopted, where k was the number of epochs, i.e. number of

complete runs though the training data.

5.4. Sammon mapping

Sammon mapping (Sammon 1969) is a nonlinear transformation used for mapping a high

dimensional space to a lower dimensional space in which local geometric relations are

approximated. Consider a set of vectors xi (n = 1, ..., n) in a p-dimensional space and a

corresponding set of vectors yi in a lower dimensional q-space. For visualisation purposes q

is usually chosen to be 2 or 3. The distance between vectors xi and xj in p-space is given by

4 =DE3 (5.7)

and the distance between the corresponding vectors yi and yj in q-space is

Dij =D(yi,yjl (5.8)

where D is a distance measure, usually the Euclidean distance. Mapping is achieved by

adjusting the vectors yi to minimise the following error function by steepest descent:

2

1
E= (5.9)

11.. i=\ J<i ijL is, L j <, 9

5.5. Application to 3-storey bookshelf structure

In this section visualisation and statistical pattern recognition techniques were applied to the

3-storey bookshelf structure. The structure, experimental damage detection programme and

data analysis have been described in Chapters 3 and 4. Using three univariate AR(12)
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models, one for each storey acceleration resulted in a 36-dimensional feature vector. Asa

preliminary investigation to visualise and check the presence of clusters in the data, PCA,

explained in Chapter 4, and Sammon mapping were used to create two-dimensional

projections of' the AR coefficient vectors. Projection of the data onto the first two principal

coinponents (Figure5.1) showed no clearly defined clusters. In contrast, the Sammon inap

(Figure 5.2) showed some organisation of the data into overlapping bands, although again. no

distinct clusters could be drawn. Using 3-dimensional mappings did not provide a better

separation of clusters. These preliminary insights indicated that higher dimensional data was

needed to separate the AR coefficients from the different damage states. For

inultidimensional data siinple visual techniques were inadequate and more advanced

approaches such as NNC and LVQ classification were needed.
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Figure 5.2. Projection of data from 3-storey bookshelf structure via Sammon mapping.

The two previously described pattern recognition techniques, NNC and LVQ, were used to

classify damage into the states D()-D3. The feature dimension was reduced by projecting the

AR coefficients onto the first 30, 20, 10 or 5 principal components using PCA. Only PCA

was used for dimensionality reduction due to the computational effort required for Sammon

mapping. The 388-point data set, consisting of 97 points from each damage state was

randomly divided into 300 codebook vectors and 88 testing points, respectively. Five

different random sets of codebook vectors were considered. Using NNC and averaging the

results from the five runs, the obtained number of misclassifications and percentage errors

using Euclidian and Mahalanobis distances are given in Table 5.1. The Mahalanobis distance

measure outperformed the Euclidean by a considerable margin and adequate results with

6.8% misclassifications were obtained using 10 principal components. Increasing the number

of principal components to 20 or 30 reduced the number of misclassification to 1.1°/8. The

difference in performance between the Mahalanobis and Euclidean distance measures could

be explained by the fact that the Mahalanobis distance accounts for the different scales of

each principal component.
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Table 5.1. Number and percentage of misclassifications using NNC for 3-storey bookshelf
structure.

Number of principal components Euclidean distance Mahalanobis distance

30 17 (19.3%) 1 (1.1%)

2() 16( 18.2%) 1(1.1%)

10 16 (18.2%) 6 (6.8%)

5 27 (30.7%) 24 (27.3%)

Although NNC performed well, performance could be improved by using a more advanced

and adaptive classification technique such as LVQ. The LVQ classification was used with the

Mahalanobis distance measure and the same dimensionality reduction technique as above.

l'he 388-point data set was divided into 300 points for training and 88 points for testing,

respectively. The number of codebook vectors was chosen to be 30, 50 or 100. These were

initialised by random selection from the training data set. The results averaged from five runs

with different initialised codebook vectors are shown in Table 5.2. The table showed that

increasing the number of codebook vectors and principal components reduced the number of

misclassifications. For 20 or more principal components there was perfect classification.

Overall a small improvement over NNC was observed.

Table 5.2. Number and percentage of misclassifications using LVQ classification for 3-storey
bookshelf structure.

Number ofcodebook vectors

Number of principal components 30 50 100
30 0 (0%) 0 (0%) 0 (0%)

20 0 (0%) 0 (0%) 0 (0%)

10 14 (15.99 10 (11.4%) 5 (5.7%)

5 31 (35.2%) 31 (35.2%) 28 (31.2%)

Clustering using SOM was investigated on data reduced by both PCA and Sammon mapping

using several different dimensions. however. SOM was unable to successfully identify the

true classification of the data and typical misclassification rates of 50% were obtained. This

poor performance was attributed to the degree of overlap as observed in the two-dimensional

projections.

5.6. Application to ASCE SHM Phase 11 Experimental Benchmark Structure

The ASCE SHM Phase 11 Experimental Benchmark Structure is described in Chapter 3 and

its simulated dainage cases in Chapter 4. In this section, only damage configurations 1 -7

(7 able 4.12) were used for data visualisation and classification. The 805-point data set,

consisting of AR coefficients from AR(20) models for all 15 sensors. contained 115 points

from each damage configuration. Preliminary investigations showed that projection of the
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data onto the first two principal components allowed distinct clustering in the data to be

observed, see Figure 5.3. Three larger clusters were apparent that consisted of the

configurations 2-4, configurations 1, 5-6 and configuration 7. Some overlapping existed

between certain damage configurations, in particular configurations 1 and 5. This large-scale

clustering could be due to similarities in the damage configurations. Referring to Table 4.12,

configurations 2-4 may be considered to be similar in the extent of damage. Configuration 7

representing the un-braced case is significantly different from configurations 1 -6. Using

Sammon mapping, see Figure 5.4, a similar result was obtained, however, configuration 7

appeared to be further isolated from the other configurations. Both of these projections could

be used for visual classification of the data once the damage clusters were clearly defined.
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Figure 5.3. Projection of data from ASCE Phase 11 Experimental SHM Benchmark Structure on
the first two principal components.

Table 5.3. Number and percentage of misclassifications using NNC for ASCE Phase 11
Experimental SHM Benchmark Structure.

Number of principal components Euclidean distance Mahalanobis distance

20 0 (0%) 0 (0%)

10 2 (1.0%) 2 (1.0%)

5 9 (4.5%) 9 (4.5%)

3 29 (14.590) 27 (13.596)
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Using AR(2()) models and all 15 accelerometers gave a set of 300 AR coefficients. This

feature dimension was reduced by projection of the data onto the first 20,10, 5 or 3 principal

components. The 805-point data set was randomly divided into 605 codebook vectors and

200 testing points, respectively. Using NNC and averaging the results from five runs the

number of misclassifications and percentage errors is given in Table 5.3. In this case, similar

performance was obtained using both distance measures. Excellent performance was obtained

using only 10 principal components and perfect classification was achieved using 20

principal components. These results show a significant reduction in dimensionality was

achievable whilst maintaining good accuracy.

10

x Config. 1
O Config. 2
o Config. 3
a Config. 4
+ Config. 5

+ Config. 6
v Config. 7

4'

7

+XX

W UVV
VV V V

& VV
X

79 1UFF

5- a -

el

V

V

V

7VV
/7

59=21JA:181&91.-....1/Kilir

4 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8 10 12

lE' component of 20 Sammon vector

Figure 5.4. Projection of data from ASCE Phase 11 Experimental SHM Benchmark Structure via
Sammon mapping.

LVQ classification was applied to PCA reduced data with the same number of components

taken from above. The saine sized training and testing data sets were used. The results from

NNC showed that performance was similar for both distance measures, hence only the

Euclidean distance was chosen for LVQ. The number of codebook vectors was chosen to be

either 50. 100 or 200. These were initialised by random selection from the training set. The

results obtained from averaging the number of misclassifications from five runs are shown in

Table 5.4. Excellent performance with less than 1 % misclassifications was obtained using 20

principal components for all numbers of codebook vectors. Good classification was still
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achieved using 10 or 5 principal components, however, errors became significant once fewer

than 5 components were used. Overall, performance was similar to NNC.

Table 5.4. Number and percentage of misclassifications using LVQ classification for ASCE
Phase 11 Experimental SHM Benchmark Structure.

Number of codebook vectors

Number of principal components 50 100 200

20 1 (0.5%) 1 (0.5%) 0(09/0)

10 6 (3.0%) 3 (1.5%) 2 (1.0%)

5 10 (5.0%) 12 (6.0%) 7 (3.5%)

3 26 (13.0%) 26 (13.0%) 27 (13.5%)

Unlike the data from 3-storey bookshelf structure, Figures 5.3 and 5.4 clearly showed the

presence of distinct damage clusters corresponding to specific damage configurations.

Although SOM does not require a priori knowledge of which point belongs to which cluster,

provided the true classification is known, as is the case in this study, the number of points

misclassified to each cluster is an appropriate measure of performance of SOM. Using 7

reference vectors initialised randomly over the input space, a SOM was trained on the PCA

reduced 805-point data set with 30 principal components. The number of reference vectors

was adopted due to the known presence of 7 damage configurations in the data. Due to the

unsupervised nature, no points were set aside for testing the SOM. Figure 5.5 shows the

assigned cluster for each data point obtained from the SOM using the Euclidean distance.

Compared to Figure 5.3 there is a clear resemblance, i.e. the SOM has correctly clustered the

PCA reduced data into the actual damage configurations (note different symbols used for

clusters in Figures 5.3 and 5.5). Table 5.5 shows a comparison between the true classification

and the clustering obtained from SOM. In the table, the cluster number equates to the damage

configuration that is most represented in each cluster. The table may best be analysed row by

row. For perfect classifications nonzero entries would only appear on the diagonal. The table

shows that damage configuration 7 was classified 100% correctly while adequate

classification, 90% correct, was obtained for configurations 2 and 6. Results for

configurations 3, 4 and 5 were rather mediocre with 67-77% corrects classifications.

Configuration 1 was only 39% correctly classified and was the worst result obtained. Overall,

there ware 162 misclassifications or 20%. Compared to supervised classification the results

were worse as a consequence of providing the classification algorithm with less information

but were still quite promising.
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Figure 5.5. Clustering of data from ASCE Phase 11 Experimental SHM Benchmark Structure
using SOM on PCA reduced data.

Table 5.5. Comparison of true classification and clustering from SOM on PCA reduced data for
ASCE Phase 11 Experimental SHM Benchmark Structure.

Cluster

Configuration 1 2 3 4 5 6 7
1 45 0 0 0 70 0 0

2 0 104 0 11 0 0 0

3 0 0 88 27 0 0 0

4 0 0 77 38 0 0 0

5 30 0 0 0 85 0 0

6 1 0 0 0 10 104 0

7 0 0 0 0 0 0 115

Results of unsupervised classification of PCA reduced data were good, however. Figure 5.4

shows that better projections were obtained using Sammon mapping and therefore clustering

of Saminon mapping reduced data was investigated. A 10 dimensional Sammon map was

constructed and cluster analysis was performed using SOM with 7 reference vectors

randomly initialised over the input space. Figure 5.6 shows graphically the first two

components of the 10 dimensional Sammon vector and the assigned clusters. The

classification results have been shown in Table 5.6 in which the assigned cluster and true

damage configuration has been given. Once again the assigned cluster numbers have been

relabelled for convenience of corresponding with damage configurations. Clusters
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corresponding to damage configurations 2-3 and 6-7 were 100% correctly classified.

Configurations 4 and 5 gave 90% and 82% correct results, respectively, which are marked

improvements compared to using the PCA reduced data. Configuration 1 was again poorly

classified with only 36% correct. The results show an overall improvement in results with a

total of 10% misclassifications.
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Figure 5.6. Clustering of data from ASCE Phase 11 Experimental SHM Benchmark Structure
using SOM on Sammon projection data.

Table 5.6. Comparison of true classification and clustering from SOM on Sammon projection
data for ASCE Phase 11 Experimental SHM Benchmark Structure.

Cluster

Configuration 1 2 3 4 5 6 7
1 41 0 0 0 65 9 0

2 0 115 0 0 0 0 0

3 0 0 115 0 0 0 0

4 12 0 0 103 0 0 0

5 21 0 0 0 94 0 0

6 0 0 0 0 0 115 0

7 0 0 0 0 0 0 115

5.7. Application to RC column

The RC column was described in Chapter 6. Due to only a single time series model being
St

used, a AR(30) model, the data may be visualised by plotting the 1 AR coefficient against
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the 2'id AR coefficient, see Figure 5.7. Note the Case I data set, i.e. without the additional

masses were used here and in all but one analysis in this section (for details refer to Chapter

4). The figure shows the AR coefficients formed overlapping bands with the undamaged state

DO and the most extensive damage state 06 being the furthest apart. This property would be

later investigated in an attempt to quantify damage.
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5.7.1. Damage classuication

Column damage was classified into the states DO-D6 using NNC. Two approaches for data

reduction were compared: either selection of a subset of AR coefficients or reduction using

PCA. The 770-point data set was randomly divided into 600 points for codebook vectors and

170 points for testing, respectively. The results were averaged from five runs. The number of

misclassifications and percentage errors using either the Euclidean or Mahalanobis distance

measures and both data reduction techniques are given in Table 5.7. The Mahalanobis

distance measure consistently performed better than the Euclidean measure. Both

dimensionality reduction approaches, PCA and Sammon mapping, gave similar good or

excellent results with only around 1 % of misclassifications when more than 20 features were

used. When using 10 features, i.e. either the first 10 AR coefficients or principal components,
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differences in performance were observed and the subset AR coefficient data performed

better with 9.4% misclassifications compared to 17.1% for the PCA reduced data. Overall

good classification results were obtained.

Table 5.7. Number and percentage of misclassifications using NNC for Case I data from RC
column.

Subset o f AR coefficients Principal components
Number of Euclidean Mahalanobis Euclidean Malialanobis

coefficients/components distance distance distance distance

30 15 (8.8%) 2 ( 1.2%) 16 (9.4%) 1 (0.6%)

20 29(17.1%) 2 (1.2%) 23 (13.5%) 2 ( 1.2%)

10 74 (43.596) 16 (9.4%) 50 (29.4%) 29 (17.1%)

LVQ classification was applied to the AR coefficient data with the Mahalanobis distance

only. The 770-point data set was randomly divided into 600 points for training and 170 points

for testing, respectively. Either 50, 100 or 200 codebook vectors were used. These were

initialised by random selection from the training set. The results obtained from averaging the

number of misclassifications from five runs are shown Table 5.8. The performance of LVQ

was similar to NNC and the best results were obtained using 30 AR coefficients and 100 or

200 codebook vectors.

Table 5.8. Number and percentage of misclassifications using LVQ for Case I data from RC
column.

Number of codebook vectors

Number of coefficients 50 100 200

30 6 (3.5%) 2 (1.2%) 2 (1.2%)

20 9 (5.3%) 5 (2.9%) 4 (2.4%)

10 31 (18.2%) 27 (15.9%) 20 (11.8%)

Using the Case II data set that included damage states with additional mass added to the top

column (see Chapter 4) NNC and LVQ classification was applied using the Mahalanobis

distance measure. The 1 100-point data set was divided into 900 codebook vectors and 200

testing points for NNC. For LVQ the same number of training and testing points were used

and the number of codebook vectors was chosen to be 100. The results for both NNC and

LVQ are shown in Table 5.9. Performance was once again similar, however, LVQ did give

the best classifications. Overall performance was similar to the results obtained using the

Case I data with approximately 1 % misclassification for the best result.

Table 5.9. Number and percentage of misclassifications using NNC and LVQ classification on
RC column Case 11.

Number of coefficients NNC LVQ

30 3 (1.5%) 2 (1.0%)
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20 3 (1.5%) 2 (1.0%)

10 14 (7.0%) 9 (4.5%)

Unsupervised classification using SOM was investigated, however the results were poor and

have not been shown here.

5.7.2. Damage quantilication

In the foregoing discussions only damage classification has been studied. however. damage

quantification may also be attempted. It was proposed that the centroids of the AR coefficient

clusters corresponding to each dainage state would correspond to the state's damage severity

(relative remaining stiffness), e.g. the centroid of cluster DO would correspond to a damage of

1.00, the centroid of cluster D 1 to a damage of 0.78, etc. The assumption was made that the

distance between a data point and the 7 damage centres was related to the likelihood of the

data point having that particular dainage severity, e.g. i f the data point was closest to the D 1

centroid it was most likely to have a damage of 0.78, however, it was also possible, although

with smaller probability, that the point corresponded to a different damage severity. To

account for this, the distances between the data point and damage state centroids were

combined in a membership function that gave more weight to the closest damage centre.

Membership mi or closeness of each data point x to each of the 7 damage centroids ci (i =

0,..,6) was calculated using a Gaussian function:

c-tx-c) lx-ci)/1 (5.10)nli = exp  c ic j

where c was a constant determined by trail and error to yield the best damage quantification

results. Damage was estimated as the normalised sum:

1.00m + 0.78mt + 0.76,n, + 0.75„13 + 0-48,n.; + 0-46,;15 + 0.39,16
damage = (5.11)

n4 + m + /712 + 1713 + m4 + /715 + m6
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Figure 5.8. Damage quantification results for RC column.

Table 5.10. Detected mean damage for RC column.
DO Dl D2 D3 D4 D5 D6

Actual 1.00 0.78 0.76 0.75 0.48 0.46 0.39

Mean detected 0.97 0.77 0.75 0.74 0.48 0.46 0.42

Using the Case I data set, the centroids of the 7 damage states were obtained and the

Mahalanobis distance between these centroids and the data points was calculated. The data

set was not divided into training and testing data sets as this approach was not a learning

technique. A trail and error approach was taken to determine the best number of AR

coefficients and the constant c. The best results were obtained using the full set of 30 AR

coefficients with a value of c = 25. These results have been shown graphically in Figure 5.8

in which the actual damage has been shown against the detected damage. Table 5.10 gives

the actual damage and the mean damage detected for each state. Due to the constraint of the

states DO and D6 having damage severities of 1.00 and 0.39 respectively, the maximum and

minimum damage obtainable using Equation (5.11) was also 1.00 and 0.39. This caused the

mean damage detected for these states to be lower for DO and higher for D6, respectively

than their true values. However. for the remaining damage states the mean damage detected

showed good agreement with the actual value. At the same time, the spread of results was in
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some cases considerable, e.g. state D4, and a number of outliers was clearly seen, e.g. states

DO, D2 and D4.

5.8. Conclusions

Three techniques for damage classification based on clustering analysis, namely NNC, LVQ

and SOM were studied in this chapter. The basic idea behind these methods is to establish a

database of baseline damage features corresponding to various damage states, and later, when

a new feature becomes available, assign it to the damage state with the closest distance

between the new feature and the reference feature clusters. NNC and LVQ are supervised

learning techniques while SOM is an unsupervised one.

In techniques based on cluster analysis it is convenient to visualise high dimensional data for

quick inspection of cluster presence. Two-dimensional projections were obtained using PCA

and Sammon mapping. Organisation of the data into clusters corresponding to damage states

with some separation between them was observed especially with the ASCE Phase lI

Experimental SHM Benchmark Structure data in which distinct clusters belonging to specific

damage configurations could clearly be seen. Another benefit from using projection

technique is a reduction in data size and smaller computational demand.

NNC and LVQ were applied to damage classification in the three experimental structures.

The dimensionality of the AR feature vector was reduced by projection onto a fewer number

of principal components. Results showed that significant reductions were possible whilst

maintaining good classification. Generally, LVQ gave a slight performance advantage over

NNC. For the 3-storey bookshelf structure classification based on the Mahalanobis distance

was superior to the Euclidean distance. Excellent or perfect results, 1% or 0%

misclassifications, were obtained using 20 principal components with the Mahalanobis

distance and using NNC and LVQ, respectively. Classification results for the ASCE Phase II

Experimental SHM Benchmark Structure were similar for both distance measures and

classification techniques. Excellent or perfect results, 1% or 0% misclassifications, was

obtained using both NNC and LVQ with 20 principal components. Noting that original

feature vector had a dimension of 300, its dimensionality was reduced by a factor of 15.

Similar results between NNC and LVQ were also obtained for the RC column data, however,

the Mahalanobis distance again performed better than the Euclidean distance. Using 30 AR
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coefficients not transformed using PCA, NNC and LVQ both had only 1.2%

misclassifications.

Overall, the performance of NNC and LVQ classification was comparable to results obtained

using BP ANNs. Damage in the 3-storey bookshelf structure was 100% correctly classified

by the BP ANN. NNC and LVQ classified respectively 99% and 100% o f the data correctly.

Better results were obtained using NNC and LVQ classification in the RC column. For Case I

data LVQ had 1.2% misclassifications compared to 7.6% using BP ANNs and 1.0%

compared to 11.0% for Case II data. As only 7 out of 9 configurations were analysed for the

ASCE Phase II Experimental SHM Benchmark Structure a comparison with the BP ANN

results could not be easily drawn, although all classification techniques worked well on this

data.

The unsupervised clustering technique of SOM was applied successfully to the ASCE Phase

II Experimental SHM Benchmark Structure data. Using either PCA or Sammon mapping

reduced data 20% or 10% misclassifications were obtained, respectively. Several damage

configurations were identified with 100% correct results. These findings indicate that SOM is

a promising technique. For the other structures, however, the results were worst and produced

unacceptable classification results because of significant cluster overlaps.

Damage quantification was attempted on the RC column structure using a weighted distance

between data and the centroids of damage clusters corresponding to known stiffness

degradations. The results showed the mean detected values of damage were in good

agreement with the actual values, but the spread of result was considerable.
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CHAPTER 6

ONLINE DAMAGE DETECTION USING

RECURSIVE IDENTIFICATION OF TIME SERIES

MODELS AND BACK-PROPAGATION

ARTIFICIAL NEURAL NETWORKS

In previous chapters, damage was detected using offline procedures in which time series

models were estimated from acceleration data recorded over a certain time interval. In this

chapter, an extension to online or real-time damage detection was developed using recursive

identification techniques to estimate the time series models online. Online damage detection

would allow damage to be detected and tracked as it accumulates over the period of ground

motion duration.

Two recursive techniques were chosen for AR model identification from structural

accelerations: the forgetting factor and the Kalman filter. Initially, a simple analytical linear

3-DOF lumped mass-spring model representing a shear building was investigated with

damage simulated as sudden stiffness loss. BP ANNs were trained to interpret the changes in

the AR coefficients in order to trace online stiffness degradation. The effect of measurement

noise on damage prediction was assessed with the addition of Gaussian white noise to the

analytical time history data. Later, analytical models of a 1 -DOF nonlinear elastoplastic

oscillator and a more complex 3-DOF nonlinear Bouc-Wen hysteretic structure were

investigated and the detection of nonlinear damage was addressed. Using online identification

of AR models the presence or on-set of nonlinearity could be detected by observation of

sudden changes in the AR coefficients. The effect of noise on nonlinearity on-set detection

was also studied.
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6.1. Recursive identification of AR time series

Recursive parameter estimation techniques for the identification of times series models

include the use of the forgetting factor, Prediction Error Method (PEM) and Kalman filter

approaches (Ljung 1999). These techniques are suitable for the identification o f systems in

which the model coefficients are expected to vary over time. In this chapter, the forgetting

factor and Kalman filter approach were investigated. For AR time series the PEM reduces to

the forgetting factor approach.

6.1.1. Forgetting factor

The forgetting factor approach (Ljung 1999) is a recursive algorithm that gives a weighted

least-squares estimate. The forgetting or weighting factor A determines the method's ability

to track changes over time by assigning more weight to current observations. This parameter

is usually taken to be 0.98 < A < 0.995. The algorithm estimates the model time varying

parameters 0t, in this case the AR coefficients, at time step t from recursive application of the

following equations

0, = 4-1 + L. Iyf -T1-1 1 (6.1)

L
P,-Iq),

(6.2)
1 - 2+*fP,-191

P, =
£-11 A + (pP,--tfpt (6.3)

where y, is the current observed value o f the time series and (pt = 5,-1, ···, yt-nal T isa vector of

previous values. The gain Lt determines how much the prediction error affects the update of

the parameter estimate. Matrix Pt is the estimated covariance matrix. In this study, 00 and Po

were initialised with 00 = O and Po = 1 x 104 I, where O and I are the null and identity matrices

of appropriate sizes.

6.1.2. Kalman filter

The Kalman filter (Harvey 1989) is an optimal linear recursive estimator. Consider the

following state space model
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yt = Z,at + st (6.4)

at = Tta,-1 + Tlf (6.5)

Equation (6.4) is referred to as the measurement equation and Equation (6.5) as the transition

equation, where y, is the vector of outputs and ott is the state vector. Matrices Zt and T, are the

measurement and transition matrices respectively. Vectors Et and 'rl, represent noises with

zero mean multivariate Gaussian distributions and covariance matrices Hi and Qi,

respectively. These noises can also be contemporaneously correlated so that

E (8,11
t= s

(6.6)
ZO, t#s

where E denotes the expected value operator.

The optimal estimation al of the state vector at conditional on the information available at

time t can be obtained through recursive application o f the following prediction equations

a,1,-1 = T, at-1 (6.7)

Ptit-1 =IP,MT/ +Q, (6.8)

and updating equations

at = atlt-1 + C P it-1 Zi + G, ) E -' [y, - zt C atl,-1 )1 (6.9)

P - Pit-1 -  PI,-1 Z, + G, ) F, 1 ( Z, PIL + G,- ) (6.10)

with

E-7 P zT+ZG +GTZT+Hc (6.11).t 1\1-1 t t 1 11

Matrix Pt is the covariance matrix o f the estimation error
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,T

K =EL(a,4 -84,4)Ca,_1-a„) 1 (6.12)

Equations (6.7)-(6.12) represent the Kalman filter.

Applying the Kalman filter to the identification of AR coefficients, the output and state

vectors are

y 1 - yl (6.13)

(6.14)

Assuming the coefficients vary according to a random walk model the transition equation is

01, = at-1 + 711 (6.15)

The rationale behind the choice of the random walk model was that in an undamaged system

the AR coefficients do not change with time except for some stochastic uncertainty in their

identification. Selection of Qi allows the tracking of the Kalman filter to changes in the

coefficients to be adjusted. In this study, 00 and Po were initialised with 00 =0 and Po = 1 x 108

I, where 0 and I are the null and identity matrices of appropriate sizes.

6.2. Application to an analytical linear 3-DOF lumped mass-spring building

model

A linear 3-DOF lumped mass-spring shear building model (Figure 6.1) was used in the

numerical investigations. The lateral stiffness of each storey for the undamaged structure

were set to ki = ki = kj = 1 x 107 N/m and the lumped storey masses were set to mi = ml = mj

= lx104 kg. A Rayleigh damping model was used and damping was set at 5.0% critical for

the 1 St and 2nd modes and the 3rd mode had 6.2% damping. The natural frequencies of the

structure were 2.24Hz, 6.28Hz and 9.07Hz for the 1 st, 2'td, and 3rd modes, respectively.
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m3

ki

'ni

L mi

kl

l 111111

Figure 6.1. Linear 3-DOF lumped-mass model.

Damage in the inodel was simulated as steep ramped drops in storey stiffness occurring at

predetermined times. Stiffness of the 1>;t storey was reduced from 1.00 to 0.80 of the initial,

undamaged value and afterwards from 0.8 to 0.4. Stiffness of the 2!ld storey was reduced from

1.00 to 0.70 and stiffness of the 31-d storey from 1.00 to 0.90. In all cases, the stiffness was

linearly interpolated over a 2s time period. These stiffness drops are illustrated in Figures 6.2

and 6.3 as the continuous blue line representing the actual stiffness.

For the purpose of training a BP ANN seven damage severities (relative reinaining

stiffnesses) were considered: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. Considering various

combinations of these severities occurring at the different stories resulted in 73=343 damage

states. Models with so reduced stifthess were excited by white noise ground motion. Three

univariate AR(30) models were identified from the accelerations of the three stories using

either the forgetting factor or Kalman filter approaches. Two AR coefficient training data sets

were constructed, one for each approach, containing AR coefficients for different damage

scenarios. A set of 100 AR coefficients was obtained for each of the 343 states. For both

approaches, a hidden layer BP ANN with 3 hidden layer neurons was trained. The following

sections show the results of each recursive identification method.
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6.2.1. Forgetting jactor approach

Using the forgetting factor approach, the ability of the method to track changes can be tuned

using the forgetting factor A. Smaller values of A result in 'shorter memory', which makes

quick identification of abrupt changes possible but at the expanse of larger stochastic

variation in the results. Larger values cause the algorithm to react with delay to sudden

changes in the system being identified but result are smoother. After some initial trails a

value of A = 0.99 was adopted for all three models as a trade off. Figure 6.2 shows the

damage detected in each storey compared to the simulated value. Note the large error in the

initial start up phase was due to the AR coefficients initialised as zero. The figure shows that

the forgetting factor approach was effective at tracking damage and scatter about the exact

values was small.

1.5

0.5

n

1.5

Damage
(a) 20 40 60 80 100 120 140 160

1

0.5

n

1.5

uamage
(b) 90 40 60 80 100 120 140 160

E

0 0.5 [
- Actual

- Detected

<C)
0
0 20 40 60 80 100 120 140 160

Time (s)

Figure 6.2. Damage detection using forgetting factor R = 0.99: (a) 1 St storey, (b) 2nd storey, and
(c) 3r storey.

6.2.2. Kalman jilter approach

The tracking abilities of the Kalman filter can be tuned by selection of the matrix Q. After

initial trails Q = 1.5I for all three models was adopted. Figure 6.3 shows the detected damage
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at each storey compared to the simulated damage. The figure shows generally a slower

response to changes in the structure than in Figure 6.2. Also, in the 3rd storey the detected

dainage appeared to not track the simulated damage. One problem with the Kalinan filter was

the number of parameters required to define the filter for efficient tracking. In this case, three

30x30 matrices were required whereas for the forgetting factor approach, only three

forgetting factors were required.

1.5 T i i i i i i i

-

0 0.5 -1-.*
0 1

(a) 0 20 40 60 80 100 120 140 160

1.5 1 i i i i i i i

1 A. U..1.41 1

0 0.5 -

(b) 0 20 40 60 80 100 120 140 160

1.5  i i

E 1
2 0.51

- Actual

-- Detected

(C)
0 1 1
0 20 40 60 80 100 120 140 160

Time (s)

Figure 6.3. Damage detection using Kalman filter: (a) 1St storey, (b) 2
storey.

nd storey, and (c) 3rd

6.2.3. Ejlect Of measurement noise

To assess the effect of measurement noise on the online damage detection method, Gaussian

white noise was added to the acceleration time histories. Two noise-to-signal ratios of 2% or

5%, respectively, were investigated. Previous results showed that the forgetting factor

approach was more effective at tracking changes in the system than the Kalman filter and was

therefore chosen here. Figure 6.4 shows the detected damage and simulated damaged once

2% noise was added to the acceleration time histories of each storey. There was a clear

increase in the degree of scatter about the exact stiffness values compared to Figure 6.2.

Despite this the actual values were still tracked and good damage quantifications were
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obtained. Figure 6.5 shows the results with 5% noise. Once again there was an increase,

although somewhat smaller, in scattering about the simulated values. However the actual

damage was still tracked and damage quantification produced adequate results.

1.5

1

0.51-

0

1.5

Damage
(a) 0 20 40 60 80 100 120 140 160

f M#4441.#VANW0,.4*y+444:IN -
0 0.5

0 1 1
(b) 0 20 40 60 80 100 120 140 160

1.5

E

00.5-
- Actual

- Detected

(C)
0
0 20 40 60 80 100 120 140 160

Time (s)

Figure 6.4. Damage detection with 2% noise using forgetting factor 2 = 0.99: (a) 1st storey, (b)
2nd storey, and (c) 3rd storey.
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1.5,

uamage
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0
0 20 40 60 80 100 120 140 160
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01 1
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Figure 6.5. Damage detection with 5% noise using forgetting factor,1 = 0.99: (a) 1St storey, (b)
2nd storey, and (c) 3rd storey.
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6.3. Application to an analytical model of a 1-DOF elastoplastic oscillator

Research up to this point has dealt with the detection of damage in linear structures in which

damage was defined as a change in lateral stiffness. However, the response of a damaged

structure during a strong earthquake will most likely be nonlinear and the concept of damage

quantification as a reduction of lateral stiffness becomes inappropriate. I o illustrate this.

consider a simple elastoplastic system representing the idealised behaviour of a steel structure

in which the tangent stiffness is initially k until the yield displacement is reached and the

tangent stifthess drops to zero. Figure 6.6 shows a hysteresis loop of such a model with a

yielding force of 2x 104 N, an initial tangent stiffness of 5x 105 N/m and a yield displacement

of *0.04 in. During an earthquake the structure may yield, however. once the large vibrations

have passed the structure returns to the initial tangent stiffness. Clearly, damage has occurred

and yet quantification by a reduction in lateral stiffness is inadequate. A new indicator of

dantage taking into account the response nonlinearity is required.

x 1 04

2 r-1

1- Ill -

0- 1,1 -

A- / / -

11 --2 -

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Displacement (rn)

Figure 6.6. Force-displacement relationship for elastoplastic system.
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A 1 -DOF oscillator with mass of lx104 kg, 5% damping and the above force-displacement

relationship was subjected to Gaussian white noise excitation with a peak acceleration of

0.5g. A univariate AR(20) model was fitted to the accelerations with no noise added. Figure

6.7a shows the Ist AR coefficient identified using the forgetting factor approach. After the

initial start-up phase the 1 St AR coefficient shows sudden jumps correlated with the onset of

yielding. Figure 6.7b shows when the structure was actually yielding, adopting the value of 1.

The observed jumps in the Ist AR coefficient could be utilised to detect the on-set of yielding.

By observing the magnitude ofjumps corresponding to yielding onset, the following yielding

indicator was proposed:

detect = 811 - 81,,-1 1 > 0.1 (6.16)

where I I is the absolute value and 01,; and 01,t., are the ist AR coefficients at time steps t and t-

1, respectively. It is proposed that if Equation (6.16) was true, yielding had occurred and the

indicator assumed the value 1. Figure 6.7c shows the results of this yield indicator. Compared

to Figure 6.7b, the proposed indicator of yielding has detected most of the yielding events in

the time history.

1 I I I I I

0- -

-1- -

1%

-3 1
0 10

7»«f»
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(b) 0 10 20 30 40 50 60

El- -
0
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0
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Figure 6.7. Damage detection in a 1-DOF elastoplastic oscillator: (a) 1St AR coefficient, (b)
actual yielding, and (c) detected yielding.

6-1()



Chapter 6

6.4. Application to an analytical model of a 3-DOF nonlinear Bouc-Wen

hysteretic oscillator

Previously, a simple 1 -DOF oscillator with an idealised elastoplastic hysteretic restoring

force, incorporating clearly defined elastic and plastic regions was investigated. Realistically,

the transition between elastic and plastic behaviour would be smoother. The popular Bouc-

Wen hysteretic model can be used to model a broad range of hysteretic restoring forces. The

equations of motion for a 3-DOF system using a Bouc-Wen type hysteresis model can be

written as follows

mixi +4 -4 =miNg

"22·X2 +4-4= "12£4 (6.17)

m36 +4= m3£4

where xi, i and N. are the displacements, velocities and accelerations of the ith storey and

i is the ground excitation. The restoring forces for the 1 St to 3rd storeys, ri, 4, and 0 can be

calculated from

4 = ciki + akixi + (1 -a) Rmizi

ri = Cz (222 - ki )-1- ciki (x2 - xi ) +(1 - Ir) Rmizz (6.18)

4 - 4 (·4 -.4 ) +aki 06 - x2 ) +(1 -a) Rm,zi

where ci are damping coefficients and Rmi are the yield restoring forces for the ith storey. The

parameter a is the ratio of post-yielding to pre-yielding stiffness. The fictitious hysteretic

displacements zi are found by solving the following nonlinear differential equations

Z

1 VI1 = Aki - 7, | .i:| | 1 Zi I
2 = 21)22 - 72 - i

| Zl - fll Z
11 In-1

1 221 22 -

11

p Ck2 - 221)'Z
,1

2
(6.19)

It In-1 . ..1 1,1

4 = AK - 7' | 32 - 1:211 231 z3 - B ( 4- 4)1 231

where /1, h # and n are shape parameters. Equations (6.17)-(6.19) were solved using the 4th

order Runge-Kutta method (Butcher 1987). This method solves a system of ordinary

differential equations
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9 =f(t,y) (6.20)

with initial conditions

y (to ) = yo (6.21)

by iterative application o f the following equations

ki =hf(ti, yi )
k2 -hf (ti + 4-,yi + 1-kl )

kj = hf (ti +4' yi +4-kz ) (6.22)

k4 =hf(ti+Pyi + k3 )
y,+1 =yi +HkE +2k2 + 2k) +14 )

where h is the time step and i is the iteration step. In this case the system of equations was as

follows

Y1y \

E-migg -4 +4)/ml
y2

i i in-1 .,1

Ay2 -F|y2||3| 3 -.2 |3|

YA 5

y = y 5 = (-mig-4+4)/ml (6.23)
I I In-1

A 00'5 -yl ) - 7 |y5 -7211.y61 6 -  A -y2  |yf
91 y,

98 (-m,ug -4)/"13

99_ 71(y8-ys)-rlyg-y5yg

1T
where y = [xi ki zi Xz *2 Zz x3 23 23 ]

For the 3-DOF model the initial tangent lateral stiffness of each storey was set to ki = k2 = kj

=lx107 N/m, lumped storey masses were set to mi = ml = 7713 = 1 x 104 kg and the damping

coefficients ci = e = cj = 1 x 104 Ns/m. The maximum restoring forces Rmi = 1.2><105 N, Rm2

= 1.0x 105 N and Rm3 = 1.0x 105 N were adopted. These maximum forces were chosen to
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prevent yielding being localised to the 1%1 storey, however, yielding at the 3 storey was not

explicitly sought. The following Bouc-Wen parameters were adopted A = kd Rm\. 7 - ().5x

ki/Rmi , P= 0.5x ki/Rmi and n = 20. The structure was excited with Gaussian white noise

ground motion with a peak acceleration of 0.5g. Figure 6.7 shows the hysteretic restoring

forces against the interstorey displacement. The 1 st and 2'Id stories show a degree of yielding

and ductilities of 2.2 and 2.0 were reached respectively. The 3rd storey remained elastic.

A univariate AR(20) model was identified from the interstorey acceleration of each storey

using the forgetting factor approach with X = 0.99 adopted for the 1 St and 2'id storeys and X =

rd

().995 for the 3 storey, respectively. Note, previously all AR models have been based on

total or absolute accelerations. In the current investigation, the use of interstorey accelerations

appeared to give better results. No noise was added to the accelerations. Figure 6.9 sliows the

1st AR coefficient for all three models. In the figure, the value of all three coefficients for

different storeys appeared to jump at various time instants and these jumps sometimes

appeared to be simultaneous. This could indicate a departure from linear elastic behaviour.

x 105 x 105

1. 1

8 0.5
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* 0.5
0

2 -0.5
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-1 -1
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Interstorey disp. (m) Interstorey disp. (m)

X 10-

1.

0.5

0

-0.5 -

-1

(c) -003 -0.02 -001 0 0.01 0.02

Interstorey disp. (m)

Figure 6.8. Hysteresis loops for 3-DOF Bouc-Wen structure under Gaussian white noise
ground excitation: (a) 1St storey, (b) 2nd storey, and (c) 3rd storey.
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Figure 6.9.1St AR coefficient for: (a) 1 St storey, (b) 2nd storey, and (c) 3rd storey.

Due to the smooth transition between elastic and plastic behaviour, the structure was assumed

to sustain damage when the restoring force was greater than 99% of the maximum restoring

force. Figures 6.10a and 6.10b show respectively the tiine instances at which the 1 st and 2'ld

storeys were actually yielding, assuming the value 1 when yielding occurred. For detecting

yielding events three indicators based on the AR coefficients were proposed

detect 1 =loic' -Oic.li>O. 1
detect 2 = 0(2)-00)1.t i.h> 0.1 (6.24)

detect 3 = |4
.t 1./-1

where 8, d. 2 and 0,4 are the 1 st AR coefficients for the 1 st, 2nd and 3rd stories at time step

t, respectively. The indices assumed the discrete value 1 if Equation (6.24) was true,

otherwise the value 0. All three indices are plotted in Figure 6.10c-e. Apart for initial false

detections due to the initialisation of the AR models, all three indicators were able to

correctly detect several yielding events. The first and second indicators detected the same

yielding events. Figure 6.11 a and 6.11 b show that around these time instances there was a

large yield in both stories in which the structure moved to a new centre of oscillation. Later,

6-14



Chapter 6

the structure moved back and this event was also identified. The indicator based on the 3rd

nd
storey detected a larger number of events in both the 1 St and 2 stories.

ro assess the effect of measurement noise on the approach, 1% Gaussian white noise was

added to the analytical time histories. Using 2% or larger noise resulted in too many errors

for consistent damage detection. Figure 6.12 shows the results in the saine format as

previously introduced using a forgetting factor of 2 - 0.988 for all three storeys. Several

yielding events were successfully detected by the three yield indicators and no false positive

events were indicated apart from those caused by the initial start up phase. However, overall

the performance of the approach was diminished. The three indicators appeared to detect

mainly different events and only twice was a yield simultaneously detected.
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Figure 6.10. Detection of yielding in a 3-DOF Bouc-Wen structure: (a) actual 1St storey yield, (b)
actual 2nd storey yield, (c) detected yielding events using detect 1 indicator, (d) detected
yielding events using detect 2 indicator, and (e) detected yielding events using detect 3

indicator.
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Figure 6.11. Interstorey displacements: (a) 1St storey, (b) 2nd storey, and (c) 3rd storey.
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3 indicator.
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6.5. Conclusions

In this chapter, an online method of damage detection using recursive identification of the

AR time series models has been presented, Firstly, a linear 3-DOF lumped-mass oscillator

with damage introduced as sudden stiffness loss was studied. Two recursive system

identification algorithms, the forgetting factor and Kalman filter, were investigated for AR

coefficient identification. A BP ANN was trained to relate changes in the AR coefficients to

stiffness and was used to track time .dependent stiffness. The forgetting factor approach

allowed for easier adjustment of the tracking properties than the Kalman filter and showed

better results. Addition of 2% or 5% Gaussian white noise to the analytical time histories,

simulating the effects of measurement noise, showed that good damage estimates and

tracking were still obtainable.

Detection of nonlinear response on-set was investigated on analytical models of a 1 -DOF

elastoplastic oscillator and 3-DOF Bouc-Wen hysteretic system. The onset of nonlinearity

manifested itself by distinctive, sudden jumps in AR coefficient values, and its detection was

based on comparing the magnitudes of these jumps to preselected thresholds. Detection of

yielding events in analytical time histories was generally successful. With the addition of 1 %

Gaussian white noise, many yielding events were still identified despite an overall reduction

in performance and the number o f events detected.
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CHAPTER 7

CONCLUSIONS

In this report, the techniques of statistical pattern recognition were applied to detect and

assess the seismic damage in civil infrastructure. Methods were presented for damage

detection from analysis of the dynamic responses. This chapter summarises the results and

discusses directions for future research.

A damage detection methodology using time series analysis was proposed and studied.

Initially, an offline damage detection method was developed, suitable for intermittent damage

prognosis. Three experimental structures were studied, which presented varying degrees of

complexity and damage mechanisms: a 3-storey bookshelf structure, the ASCE Phase II

SHM Experimental Benchmark Structure and a RC column. The accelerations of the three

structures were fitted using AR models whilst the structures were in undamaged and several

damaged states. The coefficients of these AR models were chosen as damage sensitive

features. The techniques of statistical pattern recognition: BP ANNs, NNC, LVQ and SOM

were systematically applied for damage detection and quantification.

BP ANNs were used to recognise changes in the patterns in the AR coefficients and relate

these changes to either a specific damage state (damage classification) or a reduction in

structural stiffness (damage quantification). BP ANN demonstrated a very good performance

in both tasks. Supervised learning techniques o f NNC and LVQ were used to classify damage

into states by assigning damage sensitive features to the reference feature clusters

corresponding to known damage states. The ASCE Phase II SHM Experimental Benchmark

Structure had a multi-sensor arrangement and the problem of feature dimensionality was

addressed by either selection of a subset of accelerometers and/or AR coefficients or

dimensionality reduction via PCA. PCA gave a more methodical approach and slightly better
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results. The effect of changing operating conditions on the method was simulated by the

addition of extra mass to the RC column. The techniques of NNC and LVQ were shown in

some instances to be more effective classifiers than BP ANN. The results showed that

successful damage classification was possible even when the data dimensionality was

significantly reduced. An attempt was also made to quantify damage by observing the

distance between a damage feature and centroids of clusters corresponding to known damage

extent and results were promising.

The visualisation of AR coefficient data using two-dimensional projections using PCA and

Sammon mapping showed some organisation of damage states into clusters. This was

particularly present in the data from the ASCE Phase II SHM Experimental Benchmark

Structure in which distinct clusters corresponding to various damage configurations could be

seen. Unsupervised classification using SOM was attempted on data projections obtained

from PCA and Samrnon mapping. Surprisingly good results, comparable to NNC and LVQ,

where obtained for the ASCE Phase II SHM Experimental Benchmark Structure, however,

the results for the other two structures were poor.

The damage detection based on AR coefficients and pattern recognition was adapted to

online damage detection using recursive techniques to identify the AR models online.

Analytical studies on a 3-DOF liner building model showed that the forgetting factor and

Kalman filter approaches in conjunction with a BP ANN were capable of detecting and

tracking the extent of damage over time. The forgetting factor approach was preferred and

showed good performance even in the presence of simulated Gaussian measurement noise.

Nonlinear online damage detection was investigated on a simple analytical model of a 1 -DOF

elastoplastic oscillator. The presence of nonlinearity could be identified online by observing

abrupt changes in the AR coefficients. The approach was subsequently applied to an

analytical model of a 3-DOF Bouc-Wen hysteretic system and good results were also

achieved.

Future research may attempt to quantify damage using techniques other than ANNs.

Supervised classification techniques have been shown to be effective, however, limited

success has been achieved so far using unsupervised techniques. Such unsupervised methods

would be useful to detect a departure from an initial, healthy state. For real structures
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acquiring data from damaged states will be impractical and observing departures form a

healthy state may be the only practical approach.

Linear time series methods have been known for some time and used exclusively in this

research. However, although applications of nonlinear time series methods are in their

infancy, they may prove useful. The characteristics of the embedding dimension, correlation

dimension or information entropy could be incorporated with either BP ANNs, NNC, LVQ or

SOM for damage detection in nonlinear systems.

More research needs to focus on applying techniques already developed to real-world

structures. With the expanding instrumentation of buildings in New Zealand under the

GeoNet monitoring system, data on real-world structures should become available for

research. Appling the techniques developed in this research to such data would be an exciting

and purposeful study that would realize a latent potential o f GeoNet data.
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