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Summary

Methods for undertaking the earthquake design of rectangular underground structures have

been investigated. In most rectangular underground structures the racking deformations

produced by waves propagating in a direction perpendicular to the longitudinal axis are the

most critical action and previous studies indicate that vertically propagating shear waves are

the predominant wave form governing the design of cross-sections for racking deformation.

The empirical relationship developed by Wang (1993) for assessing the racking interaction of

rectangular structures with the surrounding soil during earthquakes was verified by

undertaking a large number of simplified dynamic finite element analyses, and by comparison

with analytical expressions recently published. The work of Wang was extended by

undertaking a large number of simplified dynamic finite element analyses to determine the

sensitivity of his interaction curves to variations in the main parameters. This produced a

number of charts that can be used in the earthquake design of smaller underground structures

where the site information is unlikely to be known in sufficient detail to warrant more

sophisticated analyses. The finite element method developed for the present study can also be

used directly to analyse large or more complex structures when more detailed site information
is available.

Application of the Wang design method to several box culverts and pedestrian subway

structures showed that the internal forces from earthquake induced racking deformations can

be large in comparison to actions produced by gravity and water pressure loads. It was

concluded that these earthquake induced deformations need to be considered in the design of

most underground rectangular structures.
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1. INTRODUCTION

Although many rectangular underground concrete structures have strength reserves that

apparently lead to satisfactory performance during earthquakes there is considerable

uncertainty in engineering design communities in both New Zealand and overseas as to how

to estimate the magnitude of the dynamic earth pressures or the shear strain deformations that

they are subjected to during earthquakes.

Many technical papers and design codes address the design and analysis of buildings and

above-ground structures for earthquake resistance. In contrast, there is significantly less

information available for the design of underground structure. Within the past 30 years,

particularly since the availability of commercial finite element software, analysis procedures

have gradually evolved for most forms of underground structures but to date there have been

few published design guidelines and most national and international design codes developed

for seismically active countries do not consider underground structures. Analyses and design

of large under-ground structures has tended to be carried out on a one-off basis with design

criteria developed for each specific project. Considering the variability in ground conditions

often encountered in urban areas and the relatively few large underground structures

constructed, the lack of the development of a more standardised approach is perhaps not

unexpected. However, for many smaller structures such as culverts, services tunnels, and

pedestrian sub-ways, which are becoming more prevalent as urbanisation restricts the

construction of open channels and above ground development, it is not economical to

undertake detailed one-off analyses. There is a need for simplified analysis procedures,

design guidelines and code design criteria for these structures. Simplified analysis procedures

are also helpful for checking the results of the more sophisticated numerical analyses

employed for large underground structures.

Seismic design of underground structures is either omitted completely or not covered

adequately in New Zealand design codes. For example, the current Transit New Zealand

Bridge Manual identifies the problem of the seismic design of underground structures for

culverts and subways with moderate depths of cover but suggests using an out-of-date

analysis procedure know as the "stresses at infinity method". Many small underground

structures exist in urban areas in New Zealand, for example there are about 13 underground

subways, box culverts and highway underpasses in the Lower Hutt City area located in

sediments close to the Wellington Fault. None of these have been specifically designed for

earthquake effects.

Large underground car-parking buildings and buildings with significant underground

basement structures have been constructed in the major New Zealand cities. For these major

underground structures seismic effects have usually considered in the design but the analyses

have been based on a simplified theory developed for retaining walls with the wall top at the

ground surface and the foundation assumed to be rigid. When the structure is constructed
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below the surface in deep soil layers these simplified methods have obvious limitations.

Ultimate strength analysis refinements are leading to less reserve of strength in more complex

box and rectangular shapes used in large underground structures. Because of these

advancements, underground structures are becoming more vulnerable to earthquake damage

and it is therefore important to develop a rational method of defining the earthquake-induced

pressures and deformations.

Underground structures are constrained by the surrounding soil or rock and cannot move

independently so are not generally subjected to significant dynamic amplification effects.

They are affected by the deformation of the surrounding ground and not by the inertia forces

acting on the structure. In contrast, surface structures often have natural frequencies that are

within the range of the predominant frequencies of earthquake ground motions resulting in

resonant effects with the accelerations acting on the structure amplified with respect to the

ground surface to produce large inertia forces. Constraint effects of the ground on

underground ground structures and amplification of acceleration on above ground structures

are main factors that have contributed to the generally better performance in major

earthquakes of underground structures than above ground structures.

The earthquake response of underground structures is usually considered with reference to the

following three principal types of deformations:

• Axial

• Curvature

• Racking (rectangular cross-sections) or ovaling (circular cross-sections)

As shown in Figure 1.1 axial and curvature deformations develop when seismic waves

propagate either parallel or obliquely to the longitudinal axis of the structure. The general

behaviour o f a long structure subjected to a component o f parallel wave propagation is similar

to that of an elastic beam with axial and flexural strains computed by beam theory. In

simplified analyses, the structure is assumed to be flexible relative to the surrounding soil or

rock and to respond with the same deformation pattern as in the free-field elastic seismic

waves. These simplified analyses are often employed for pipelines that have relatively small

cross-sectional areas and for the preliminary analyses of tunnels. When the structure is stiff in

the longitudinal direction relative to the surrounding soil, it will not be compliant with the soil

or rock deformations. For this case, interaction effects need to be considered by employing

either numerical methods or approximate solutions developed from wave propagation theory

for beams on an elastic foundation.

As shown in Figure 1.2 ovaling or racking deformations develop in an underground structure

when the seismic waves propagate in a direction perpendicular or with a significant

component perpendicular to the longitudinal axis resulting in distortion of the cross-section.

In this case, and for long structures, a plane-strain two-dimensional analysis may be
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employed. Any type of seismic wave propagating in any direction can cause racking or

ovaling deformations. However, previous studies indicate that vertically propagating shear

waves are the predominant wave form governing the design of cross-sections for ovaling or

racking.

Before the development of sophisticated numerical methods, research on the earthquake

analysis of underground structures focused on circular cavities in elastic continua and then

advanced to consider lined cavities located within elastic half-spaces. Lined circular shapes

were a reasonable approximation to typical tunnel cross-sections and could be analysed by

analytical theory of elasticity and approximate elasticity methods. Elastic wave theory was

also applied to develop procedures for assessing the axial and flexural strains acting normal to

the cross-section of long flexible structures. Although the longitudinal analysis of rectangular

structures can be carried out using this same elastic wave theory there are no simple analytical

procedures that can be used to analyse the cross-sectional deformations. Consequently it has

only been with the rapid advance of numerical methods in the last decade that satisfactory

analysis procedures have been developed for rectangular structures. Prior to this, rectangular

cross-sections were designed by assuming that they were subjected to the free-field soil or

rock shear strains and by the application of standard structural frame analysis methods.

Rectangular underground structures are suitable for cut-and-cover construction and are

therefore often constructed close to the surface in relatively soft soils. In this situation, the

assumption of compatibility with the free-field shear strains can lead to very conservative

designs.
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2. EARTHQUAKE DAMAGE TO UNDERGROUNGD STRUCTURES

Published research on the past performance of underground structures and openings during

earthquakes has been summarised by Wang (1993). Research reports and papers by

Dowding and Rosen (1978), Owen and Scholl (1981), Wang (1985) and Sharma and Judd

(1991) are mentioned in his summary. The Sharma and Judd study extended Owen and

Scholl's work and collected qualitative data for 192 reported observations from 85 world-

wide earthquakes. Sharma and Judd correlated the vulnerability of underground facilities

with six factors: overburden cover, rock or soil type, peak ground acceleration (PGA),

earthquake magnitude, epicentral distance and type of lining. The main findings from this
work were:

• Damage decreases with increasing overburden depth.

• More damage occurred in facilities constructed in soil than in competent rock.

• For PGA's less than 0.15 only 25% of the cases reported damage. For PGA's greater

than 0.15 g, 69% ofthe cases reported damage.

• More than 50% of the damage reports were for earthquakes with magnitude M

exceeding 7.

• Facilities were most vulnerable when within 25 to 50 km of the epicentre.

• The proportion of damaged cases of concrete-lined tunnels was greater than for

unlined cases. This was attributed to the poor ground conditions that originally

required the openings to be lined.

Of particular relevance to the present study was the damage to rectangular underground

structures in the 1971 San Fernando earthquake. Owen and Scholl (1981) reported damage to

five cut-and-cover conduits, and culverts with reinforced concrete linings, with failure of

longitudinal construction joints, cracking and formation of plastic hinges at the top and

bottom of the walls. Lew et al (1971) reported severe damage to box culvert sections of the

Wilson Canyon flood control channel. A large underground reinforced concrete reservoir,

part of the Balboa Water Treatment plant, suffered severe damage. The walls, roof slab, floor

slab and some of the columns of this 150 mx 150 mx 11.5 m high reservoir were extensively

damaged. It was thought that the damage was related to settlement and sliding produced by

the ground shaking but soil shear strains and earthquake-induced pressures on the walls were

significant factors (Priestley et al, 1986).

Six underground stations out of the total of 21 subway stations in the Kobe area were severely

damaged in the 1995 Hyogoken-nanbu earthquake. Sections of tunnels connecting the

damaged stations and the tunnel section of the Hanshin Railway sustained damage (Iwatate et

al 2000). The damaged structures were constructed by the cut-and-cover method. A large
number of the central reinforced concrete columns of twin cell structures were cracked and in

one case the columns failed with collapse of the roof and a 2.5 m subsidence of the street

above. The primary factor believed to have caused the damage and failures were large shear

distortions of the box structures induced by shear strains in the surrounding ground during the
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earthquake. The failed central columns had insufficient ductility to withstand the distortions

imposed upon them.

Less serious damage to underground common utility boxes and parking structures in Kobe

was also reported (PWRI 1996).

In relation to the Kobe damage, Nishiyama et al (2000) stated that the damage to cut-and-

cover tunnels and subways was unexpected as they had been considered to be relatively safe

from earthquake effects compared to above ground structures. Apparently, except for

important facilities and those constructed in soft ground, seismic design is not specifically

considered for underground structures in Japan. Because of the damage, a number of research

programmes have recently been initiated and the seismic design of these structures will

undoubtedly receive greater attention in future.

In the 1999 Chi Chi, Taiwan, earthquake a large partially underground rectangular concrete

tank at the Taichung County Water supply treatment plant was extensively damaged with a

large section of the roof collapsing (Brunsdon, 1999). Causes of the damage are unknown but

it is likely that earthquake-induced pressures on the walls were a significant factor.
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3. PREVIOUS RESEARCH

Much of the past research reported in the literature on the seismic analysis of underground

structures has often been overly theoretical and difficult to implement in design applications

or has been orientated towards a specific structure. There is available a considerable volume

of published work related to circular tunnels and pipelines but there is little information on

how this work might be relevant to structures with rectangular cross-sections.

Kuesel (1969) presented design recommendations for underground rectangular subways that

were developed for the design of the San Francisco Bay Area Rapid Transit System (BART).

His work was a pioneering development that produced the first published design

recommendations sufficiently versatile and simple enough to gain acceptance over a range of

applications in varying soil conditions. Kuesel used conventional wave propagation theory to

estimate the curvature and shearing distortion strains to be applied to the structures. His

method did not include soil-structure interaction affects and so was only strictly applicable to

very flexible structures in relation to the surrounding soil. In relation to the BART structures,

he concluded that most had sufficient capacity to absorb the imposed distortions elastically,

and no special provisions need be made for seismic effects. Where plastic deformations were

indicated, the design criteria that he developed included special structural details to provide

the required ductility.

In reviewing Kuesel's work, Wang (1993) stated that some of the soil deformation profiles

and other assumptions were applicable only to the BART project. However the design

philosophy and the general approach proposed was still valid, even when viewed more than

two decades later.

Hwang and Lysmer (1981) reported a complex numerical study to evaluate the soil-structure

interaction effects on the response of large underground rectangular to travelling seismic

waves. By including interaction effects this work was a significant advancement on the work

of Kuesel. To demonstrate the application of their work they analysed a specific structure.

However, they did not vary the critical parameters to any extent and it was not possible to

apply their findings to design applications without repeating detailed numerical work. Hwang

and Lysmer concluded that for large structures, although the interaction effects on the

computed ground surface motions were small, the presence of the structure significantly

reduces the computed strains because the rigidities of the structures provide significant
resistance to deformation. It was therefore overly conservative to design to the strains

developed in the free field. They further concluded that the assumption of vertically

propagating waves lead to errors in predicting the stresses and strains induced in underground

structures. However, the results from their example showed that the simplification of using

vertically propagating waves, instead of the more correct assumption of travelling waves,

gave conservative estimates of the stresses in the plane of the cross-section.
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For the Los Angeles Metro project, Monsees and Merritt (1991) developed design criteria

using the Kuesel free-field deformation method for estimating the racking deformations of

underground rectangular structures. Their criteria permitted joints to be strained into the

plastic range under the Maximum Design Earthquake (MDE) provided that no plastic hinge

combinations were formed that could lead to a potential collapse mechanism.

To develop a simple and practical procedure for use in design of rectangular underground

structures that accounted for soil-structure interaction effects, Wang (1993) carried out an

extensive parametric study using dynamic soil-structure interaction finite element analyses.

His work was limited to investigating the racking effects produced on the cross-sections of

typical rectangular shaped elastic frame structures with rigid joints under vertically

propagating shear waves. Two horizontal earthquake accelerograms were input to rigid bases

underlying the soil strata to simulate the vertically propagating shear waves. Five different

one and two barrel structural configurations were considering with differing height to width

ratios of the cross-sections. The average shear modulus of the soil was varied to provide six

different homogenous soil profiles and one with the soil shear modulus linearly increasing

with depth. Four different depths of soil cover to the top of the structures were investigated.

Dynamic finite element analyses were performed for 25 cases of the soil-structure interaction

system with varying combinations of the soil profile, structure configuration and input ground
motion. For each of the 25 cases a free-field site response was performed, followed by a

corresponding soil-structure interaction analysis.

To present his results in a convenient and compact form, Wang defined a flexibility ratio as

the structure racking flexibility divided by the shear flexibility of the area of soil displaced by

the structure (see Section 5.3). The racking flexibility, which is the displacement at the top

of the structure divided by the structure height for a unit horizontal force applied at the top of

the structure, was found by simple frame analysis or alternatively from closed form solutions

derived for single barrel structures and the soil shear flexibility from the soil strata input data.

He also defined a racking coefficient as the ratio of the racking displacement of the structure

embedded within the soil layer per unit height, divided by the free-field soil shear strain

averaged over the height of the structure. The racking coefficient was calculated from the

results of the free-field and soil-structure interaction finite element analyses.

Further details of Wang's analyses and design method are presented in Section 5.3.3 below.

Results ofhis analyses are shown in Figure 5.7 where his structure racking coefficients, R, are

plotted against flexibility ratios, Fr and comparisons are made with other closed form

solutions presented in the research literature and some of the results of the present study.

An interesting result of Wang's study was that points from his numerical analyses plotted

very closely along the normalised R versus Fr curves obtained for circular lining cross-

sections from closed form solutions.
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The main conclusions from Wang's work were:

• Taking into account soil structure-interaction effects is important when the flexibility

ratio, Fr, is significantly different from 1. When Fr is less than one, the conventional

design methods (no interaction) will be too conservative, and when Fr is greater than

one, the conventional method will underestimate the displacement response of the
structure.

• The normalised R versus Fr curve is reasonably insensitive to the structure geometry.

• The normalised R versus Fr curve is reasonably insensitive to the input ground motion

characteristics, and also the absolute stiffness and stiffness variation details of the soil

profile. (These parameters obviously influence the free-field shear distortions, which

need to be estimated by a suitable method to enable the absolute values of the structure

racking deformation to be calculated.)

• The normalised R versus Fr curve is reasonably independent of the depth of burial

when the soil cover exceeds the structure height.

Although further research on underground rectangular structures has been undertaken since

the publication of Wang's 1993 monograph on seismic design of tunnels it still remains the

most comprehensive guideline document for seismic design of underground structures.

Nishiyama et al (2000) and Iwatate et al (2000) report recent Japanese research on subway

structures. Both studies were related to underground rail station subway structures that failed

in the 1995 Hyogoken-nanbu earthquake. In both projects, shaking table model investigations

and numerical analyses were undertaken. The results from these studies indicated that there

are a wide range of parameters that need to be considered in analysis of structures of his type.

Although the results were not been presented in a suitable form for design application they

will be useful for verification of future numerical studies.

Wood and Jenkins (2000) used an elastic finite element dynamic analyses method to

investigate earthquake-induced forces in the cross-sections of buried arch structures. They

assumed a rigid base beneath the arch foundation soil layers and a response spectrum modal

analysis procedure was used to calculate the actions in the arch. A particular shortcoming of

this approach was that the significant level of "radiation damping" arising from the wave

energy reflecting out through the boundaries of the model could only be estimated. The

results of the analyses indicated that dynamic amplification in the soil strata surrounding the

arch could in some cases produce much larger arch actions than estimated by simple static

design procedures.

Penzien (2000) used an approximate theory of elasticity method to evaluate the racking

deformation of rectangular and circular tunnel linings including soil-structure interaction

effects. The method followed the procedure used by Penzien and Wu (1998) for circular

linings. Because the dimensions of a typical tunnel cross-section are small compared with
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the wavelengths in the dominant ground motions producing the racking deformations, Penzien

assumed that the cross-section was interacting with soil in a uniform strain field. He further

assumed that because the inertia forces from the lining and surrounding soil, as produced by

interaction effects, are small, that a quasi-static analysis procedure could be used. A further

approximation used for the rectangular cross-section was the neglect of the normal stresses

that occur on the soil/structure interface. Penzien's work resulted in the development of

simple closed form expressions for the racking ratio R in terms of the flexibility ratio Fr

previously defined by Wang. By defining R for a circular cross-section as the ratio of the

principal diameter strain for the lining and the imaginary circle in the free field, and using

generalised lining and soil stiffness parameters, Penzien indicated that the expression was

identical for both the circular and rectangular cross-sections. He also found good agreement

between his expression and the numerical results of Wang (1993).

Nishioka and Unjoh (2002 and 2003) presented simplified analysis and design procedures for

underground rectangular structures. By undertaking both numerical analyses, and theoretical

derivations based on a dynamic substructure method, for rectangular cross-sections, they

developed an empirical expression for the racking ratio R in terms of a structure to soil

flexibility ratio. Both these ratios were defined to be essentially identical to those used by

Wang (1993). Their numerical work was based on the dimensions of typical common utility

boxes (CBU's) located in Kobe. Some of the structures analysed received minor cracking

damage in the 1995 Hyogoken-nanbu earthquake. Nishioka and Unjoh extended the work of

Wang by considering the nonlinear response of the structure and proposing a design method

based on limiting the shear deformation to an acceptable value determined by a nonlinear push-

over analysis ofthe structure in which plastic hinges formed at the critical joints.

Comparisons of the Nishioka and Unjoh R versus Fr relationship with the Penzien (2000)

relationship and the Wang (1993) numerical results are shown in Figure 5.7
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4. PROJECT SCOPE

Originally it was planned to determine the racking distortions in rectangular cross-sections of

underground structures by undertaking sophisticated dynamic finite element analyses

generally following the methods described by Wang (1993). However, following the

completion of a literature review it was clear that considerable numerical work had been

carried out by Wang and that his work had been verified by similar sophisticated numerical

studies more recently completed by Nishioka and Unjoh (2002 and 2003). It was decided that

there would be little benefit in repeating further complex dynamic finite element analyses.

Trial analyses demonstrated that a simplified pseudo-dynamic finite element procedure, in

which the interaction was analysed in the strain field of the first mode of response of a shear

layer could be used to accurately study the soil-structure interaction effects, and that a

complete analysis of any design problem could be reliably carried out by combing these

interaction results with either a numerical or empirical analysis to determine the free-field

shear strain response of the soil strata. This simplified interaction method allowed several

hundred analyses to be performed to cover a comprehensive range of the soil and structural

input parameters likely to be encountered in practise and in this way advanced the design

procedures published previously.

The work completed in this project advances previous research by demonstrating that a

pseudo-dynamic analysis method, readily amenable to design office application, can be used

to calculate the interaction effects. Graphical solutions were also developed that allow the

free-field shear distortions to be estimated without the need for numerical analyses. The wide

range of analyses completed allow the influence of the following parameters to be

independently assessed:

• Cover depth of soil over the structure

• Soil layer depth

• Strain field depth versus shear modulus profile

• Structure geometry

• Influence of soil Poisson's Ratio

One significant shortcoming of the work by Wang and others is that although they provided

satisfactory methods of estimating the racking deformation they did not develop satisfactory

methods for computing the force actions within the structure. Although the racking

deformation is an important result, the bending moments, shear and axial forces within the

cross-section (generally represented by a rigid jointed frame) need to be known to calculate

the stresses and the magnitude of any inelastic strains in the structural members. Wang

suggested an approximate method in which a frame analysis is carried out using either a

concentrated force or a triangular load distribution applied to the structure of sufficient

magnitude to produce that calculated racking deformation. This procedure requires a detailed

frame analysis and does not correctly represent the interaction effects of the soil in this phase
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of the analysis. In the present study the interaction model was used to compute the frame

forces and these are presented in graphical form suitable for preliminary design of major

structures and for the complete design of smaller structures.

Application of the study results to the design of rectangular cross-sections, including a

method of considering inelastic structural behaviour, is demonstrated by worked examples.

The analysis of the curvature and axial response of long structures has not been considered in

the present study. Wang (1993) presents satisfactory design analysis procedures for these

deformations in his monograph on seismic design of tunnels.
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5. ANALYSIS METHOD

The evaluation of the racking performance of the cross-section of a rectangular underground

structure subjected to earthquake ground motions can be undertaken using the following

steps:

(a) Evaluation of the free-field peak shear strain in the soil at the average depth of the

structure. The free-field is defined here to be a point in the soil sufficiently remote

from the structure so that the state of strain is uninfluenced by the structure.

(b) Evaluation of the elastic and post-elastic stiffness of the structure.

(c) Evaluation of the racking deformation of the structure from the free field strain (see

Section 5.1), structure stiffness (Section 5.2) and soil-structure interaction curves

presented in this report (Section 5.3).

(d) Evaluation of the member forces in the structure (Section 6.).

Details of the methods and procedures available for undertaking the above four steps are

given in the following sections.

5.1 Free-Field Strain

The shear distortion of the ground from vertically propagating shear waves is usually

considered to be the most critical and predominant effect producing racking type

deformations in underground rectangular structures. Numerical analytical methods have often

been often applied to estimate the free-field shear distortions, particularly in sites with

variable stratigraphy. Computer codes such as SHAKE and FLUSH based on one-

dimensional wave propagation theory for equivalent linear systems have been developed to

carryout these types of analyses. Most commercially available codes require the site to be

simplified into horizontal layers with uniform properties. More sophisticated analysis

procedures using nonlinear wave propagation theory are available but have mainly been

applied in research rather than in design applications.

In the present study, an alternative to undertaking numerical analysis to predict free-field

shear deformations has been developed by evaluating theory of elasticity analytical solutions

for vertically propagating shear waves in a layer of uniform thickness. These solutions may

provide sufficiently good approximations for design of many smaller underground structures,

particularly where the site soil properties are not know in any great detail. They are also

helpful in providing quick solutions for preliminary analysis work, and provide a useful

verification method for more sophisticated numerical analysis.
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Analytical solutions were evaluated for a uniform elastic shear layer of infinite horizontal

extent overlying rock assumed to form a rigid lower boundary. Solutions were evaluated for

the following depth profiles of the elastic shear modulus, G.

(a) Uniform

(b) Parabolic with the surface value Gt = 0

(c) Linear variations with G increasing with depth. The variation of G with depth in the

layer was defined by G(y) = Gb(1 - q y/H), where Gb is the shear modulus at the base

of the layer, y is the height above the base, H is the thickness of the layer and q is a

parameter varying between 0 and 1.

Plots of G versus depth for the layers investigated are shown in Figure 5.1. The layers

included uniform, parabolic, and linear variations with q = 0.75,0.95,0.9 and 0.95. These

variations cover the range likely to occur in practise for common geological conditions. For

convenience of presentation, all the layers investigated were taken to have an average shear

modulus over the layer depth of Gave = 100 MPa.

Analytical solutions for normal modes of vibration for elastic shear layers with uniform,

parabolic and linear variations of shear modulus with depth are given by Wood (1973).

These solutions were used to evaluate first horizontal mode displacement and shear strain

responses for typical elastic shear layers with H = 50 m, Gave = 100 MPa, and a uniform

density p = 2.0 t/m2 First mode displacement and shear strain responses calculated for a one-
g static base acceleration are shown for the various layers in Figures 5.2 and 5.3.

First mode periods of vibration for the analysed layers are given in Table 5.1

Table 5.1. First Horizontal Mode Periods of Shear Layer

Layer Description Period, Ti

sec

Uniform 0.894

Parabolic 0.811

Linear, q = 1.0 0.826

Linear, q = 0.95 0.819

Linear, q = 0.90 0.818

Linear, q = 0.75 0.826

The response to a dynamic base acceleration input is obtained by scaling the one-g static

responses by Sa(Ti)/g where Sa(Ti) is the spectral acceleration of the input acceleration

response spectrum at Ti, the first horizontal mode period of the layer.
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1st Shear Mode Strain Response
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It is possible to present the displacement and strain responses and the first mode periods in

dimensionless form but it was considered to be more informative to present absolute values

for a typical layer. These values can be readily scaled to give the response and periods for a

layer of any thickness, average shear modulus or density (assumed uniform). Scaling

functions to give the required site values of first mode period, displacement and strain, 71 Us,

Es from the standard layer values presented for the H = 50 m, Gave = 100 MPa, and p= 2 t/m2
layer are as follows:

71 =71 [HS 1 liOOPS
L 50 31 26, (5.1)

12

US = Ul
F HI
L 50

FlOOP.1 (5.2)
[ 2Gs ]

Hs P.l (5.3)

E.% = ElP®wyn = E
[50.24 _| 1

Where Ti, ui and m are the standard layer values given in Table 5.1, and Figures 5.2 and 5.3

The analytical solutions for the first horizontal mode strain response show that different rates

of increase in the shear modulus with depth can produce large variations in the strain profiles.

In particular, strains near the surface for a linear increase in G with a low value near the

surface can be much higher than is the case for a layer with G uniform over the depth.

5.2 Structure Stiffness and Flexibility

Most underground structures of rectangular shape are designed to act as rigid jointed box
structures. The simplest example of this type of structure is the single-barrel box shown in

Figure 5.4. To assess the racking stiffness or flexibility, the structure is loaded with a

horizontal load P at the roof level to produce a racking or shear deformation of A. The

structure is assumed to extend sufficiently normal to the plane of the section for plane-strain

conditions to exist. Simple closed form solutions for the racking stiffness and flexibility

(1/stiffness) for this single-barrel structure have been published previously. (For example,

Shepherd and Wood, 1966). The elastic flexibility can be written as:

f# = =

24Kw
1

1

2+3r +3jr (5.4)

2 + 24 + 2j + 3 jr)_
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Where:

K =EL-1 K = Eir
W H r L K

E is Young's modulus for the material and 4 and 4 are the moments of inertia per unit

length of the wall and roof respectively. H L andj are defined in Figure 5.4.

If the roof and floor have equal flexural stiffness coefficients 0 =
reduces to:

= 1) then Equation (5.4)

f#=
H2 [ 11 (5.5)

-

24Kw |_ r J

For the case of an infinitely rigid floor, which might be a reasonable approximation for a

structure constructed on a rock base, equation (5.4) reduces to:

f Nt --- H2 [2+3r
- 12Kw [1+6r J (5.6)

There are no simple solutions available for multi-barrel structures but reducing the multi-

barrel structure to and equivalent single-barrel structure can provide a good approximation for

the stiffness or flexibility. Each wall element of the equivalent single-barrel structure has
one-half of the sum of the flexural stiffness of all the wall elements in the multi-barrel

structure, and the roof and floor elements of the equivalent structure have the sum of the

corresponding roof or floor elements in the multi-barrel structure. Numerical frame analysis

indicated that the error from this approximation is less than 6% with the approximation

underestimating the flexibility.

For multi-barrel or multi-storey structures with complex geometry, the racking flexibility can

be readily computed numerically using conventional frame analysis software.

Under high racking deformations yield in the members may occur leading to plastic hinge

formation in the walls, roof or floor members. Progressive development of the hinges can be

investigated by a pushover analysis using nonlinear frame analysis software. To investigate

the deformation following the formation of sufficient hinges to form a collapse mechanism it

is usual to assume bilinear elasto-plastic behaviour.

5.3 Soil-Structure Interaction

Because of both soil-structure interaction and dynamic inertial effects, the soil shear strains in

the vicinity of the structure are generally significantly different to the free-field shear strain at

the corresponding depth in the soil layer.
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A reduction in total mass of the soil and structure at the soil cavity created by the structure

may have some influence the inertial forces in the vicinity of the structure, however previous

research has concluded that inertial effects do not have a significant impact on the shear strain

field. Often the mass change is small in relation to the total mass in the layer corresponding

to the height of the structure and acting in unison with the structure during dynamic loading.

In contrast to influence of soil inertial effects, soil-structure interaction effects may produce

significant changes in the shear strains near the structure. If a cavity in the soil is unlined,

then the shear strains in the soil near the cavity would clearly be greater than the free-field

shear strain. If a stiff structure is inserted in the soil cavity then the shear strains may be less

than the free-field and conversely with a very flexible structure the shear strains may be

greater than in the free-field.

In assessing soil-structure interaction effects on underground structures it is usual to define

shear strain deformation and flexibility ratios. The shear strain deformation ratio, R, is

defined by:

R = Shear deformation of structure embedded in soil (including interaction)
Free-field shear deformation over height of structure

A
R=-

A
(5.7)

If

The flexibility ratio, Fr, is defined by:

F r = Shear flexibilitv of free standing structure without soil interaction
Shear flexibility of soil block of same overall dimensions as structure

=Jst (5.8)
f

Soil shear stiffness is defined by:

Kt =G=1

Where G = soil shear modulus in the soil at the level under consideration

T = soil shear stress

7 - soil shear strain

From the soil shear stiffness definition it follows that the shear flexibility of a block of soil of

height H and length L is given by:

H
f

S

LG (5.9)
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The flexibility ratio Fr can be readily computed from the soil shear modulus G and the

structure flexibility coefficient ht· (Procedures described in Section 5.2 can be used to

compute the structure flexibility coefficient.) Methods for calculating the shear deformation

ratio, R, from the flexibility ratio have been investigated in several previous research projects

(see Section 3) and also in the present study. The structure shear deformation (including soil-

structure interaction) Ztu can be readily calculated from the shear deformation ratio R and

estimates of the peak free-field shear deformation + during the design earthquake event.

The structure shear deformation can then be used to calculate the earthquake-induced forces

in the members of the structure. A summary of available methods for determining the shear

deformation ratio is presented below.

5.3.1 Penzien Interaction Method

Penzien (2000) derived the following closed form expression for R using an approximate
static theory of elasticity method:

R= F 4(1 - vs)]
[ 1+a 1 (5.10)

in which,

av =(3 - 4v,)
f

JX,

and vs is Poisson's ratio for the soil.

The main assumptions made by Penzien in his approximate analysis procedure were:

(a) Uniform strain field

(b) No inertia effects

(c) Plane-strain conditions

(d) Normal stresses acting on the surfaces of the structure ignored.

5.3.2 Nishioka and Unjoh Interaction Method

Nishioka and Unjoh (2002) derived the following closed form expression for R from a finite

element approximation:

R. 24 (5.11)
65 + 1)

The assumptions made were similar to those made by Penzien (2000) but the derivation

method was less rigorous. Nishioka and Unjoh (2002) verified expression (5.11) against

finite element analyses of a twin-barrel structure of varying stiffness for two different soil

stiffness conditions and obtained satisfactory agreement.
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Equation (5.10) from Penzien's analysis reduces to Equation (5.11) for Poisson's Ratio,

v = 0.5. Equation (5.11) can therefore be expected to give satisfactory results for some soil

properties but may not be satisfactory for soils with low values of v, particularly when Fr

becomes large.

5.3.3 Wang Interaction Method

By undertaking 25 dynamic finite element analyses of typical rectangular structures Wang

(1993) showed that the relationship between R and 6 for rectangular structures was closely

represented by the following closed form expression derived for circular tunnels:

R=
86 (1 - v.,¥) (5.12)

26 +5- 6vs
Wang's dynamic finite element analyses were performed using the computer code FLUSH

(1975), a two-dimensional, plane-strain, finite element program using a frequency domain

solution technique. The analyses were based on linearly elastic soil properties and an energy

absorbing boundary was used on one side of the mesh to minimise dynamic boundary effects.

Two synthetically generated ground input motions were input at the rigid base of the model to

simulate vertically propagating shear waves.

Five different single-barrel and twin-barrel box structures were analysed with heights varying

between 4.6 to 7.9 m and L/H ratios varying from 1 to 3.5. The soil medium was assumed to

be homogenous in 22 of the cases analysed. A soil profile with linearly increasing shear

modulus with depth was used for the other three cases. The soil cover over the structures was

limited to a range of 4.6 to 6.9 m. A soft soil profile depth of 18.3 m was used with an

underlying 6.1 m layer of dense soil above the rigid foundation. An average shear modulus

taken at the mid-height of the structure was used to represent the soil stiffness and to calculate

the flexibility ratio for these three cases.

5.3.4 Interaction Method Used in the Present Study

In the present study R versus Fr relationships have been developed for a range of structures

and site soils conditions by carrying out 200 dynamic finite element analyses. The analysis

procedure was similar to that used by Wang but the dynamic analysis process was simplified

by undertaking a modal analysis and investigating the strain field in the first mode of each of

the layers investigated. This simplification enabled a wide range of the important parameters

to be investigated. Good precision was obtained by using a fine element mesh. Because of the

dynamic analysis simplification and the refined mesh it was possible to reliably calculate the

forces in the members of the rectangular box structure.
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Information on the member forces has not previously been published. Wang proposed

approximate methods of calculating the forces by a frame analysis procedure based on the

interaction shear deformation but this method did not properly account for the soil interaction
normal stresses on the members.

The main assumptions made in the finite element analyses carried out in the present project
were:

(a) Plane-strain conditions.

(b) Linearly elastic soil and structure material properties.

(c) Dynamic response constrained to the first shear mode of the layer.

The rigid frame single-barrel and twin-barrel box structures with dimensions shown in Figure

5.6 and 5.7 were investigated. Properties and dimensions adopted for the analyses were:

• Material Young's modulus = 20 GPa

• Material Poisson's ratio = 0.2

• All members were assumed to have the same uniform thickness. Thickness values of

200,250,300,350,400,500,600,700 and 800 mm were used to obtain solutions for a

wide range of structural flexibility.

Properties adopted for the soil layer were:

• Layer depths of 20 m and 50 m.

• Shear modulus uniform and parabolic with a value of 40 MPa for the uniform layer

and an average value over the depth of 100 MPa for the parabolic layer (150 MPa at

the base of the parabolic layer.)

• Soil Poisson's ratio = 0.4

• Depth of cover taken as 5,10,15m for both layers. Additional cover depths of 20 m

and 45 m were investigated for the 50 m layer. The 45 m cover represents a limiting

case of the structure on a rigid foundation under a very deep soil layer.
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6. RESULTS OF ANALYSES

6.1 Comparison of R Versus Fr Relationships

R versus Fr curves for the single and twin-barrel structures analysed in the present study are

compared with the numerical results of Wang (1993), and the theoretical relationships given
in Equations 5.10 (Penzien, 2000), 5.11 (Nishioka and Unjoh, 2002) and 5.12 (Wang, 1993)

in Figure 6.1. A soil Poisson's Ratio of 0.4 was used in the present analyses and in the

evaluation of the theoretical expressions. The depth of cover for the present analyses was

taken as 5 m and the structures were embedded in a 50 m deep soil layer with a shear modulus

increasing parabolicaly from zero at the surface.

When the flexibility ratio approaches zero, representing a perfectly rigid structure, the R value

also reduces to zero. At Fr = 1, the structure has the same stiffness as the soil and the

structure has a similar racking distortion to the ground distortion in the free-field, resulting in

an R value of approximately 1.0. When the flexibility ratio is greater than 1.0, the structure is

flexible in relation to the ground and the racking distortions becomes magnified with respect

to the distortion of the ground free-field distortion.

There is good general agreement between the R versus Fr curves produced by the various

methods particularly at Fr ration less than 2.0. At the larger Fr ratios there is some

divergence. The Nishioka and Unjoh expression produces strain ratios that are two low when

Fr is greater than 2.0; however, as explained in Section 5.3.2 their expression does not contain

a Poisson's Ratio term and gives more satisfactory results when Poisson's Ratio is close to

0.5.

6.2 Influence of Cover Depth

R versus Fr curves for the single-barrel structure in the uniform 50 m thick layer are shown in

Figures 6.2 and 6.3. Figure 6.2 shows the Fr ratio out to the maximum value investigated of

15 and Figure 6.3 the curves with an expanded scale for Fr from 0 to 2.0.

From the plotted results is apparent that the structure located on the rock base is a rather

special case where interaction effects are less pronounced than is the case for the structure in

the middle regions of the layer or nearer to the layer surface.

There is little variation between the curves for cover depths between 5 and 20 m. Surface

layer effects cause moderate changes in the interaction for shallow covers at high Fr ratios,

but once the structure is covered by more than its height of soil, the interaction does not

change significantly with increasing depth of the structure within the layer.
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Soil-Structure Interaction Curves
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6.3 Influence of Layer Depth

R versus Fr curves for the single-barrel structure in a uniform 20 m thick layer are shown in

Figures 6.4 and 6.5. Figure 6.4 shows the Fr ratio out to the maximum value investigated of

15 and Figure 6.5 the curves with an expanded scale for Fr from 0 to 2.0.

A comparison between the interaction curves for the 20 and 50 m deep layers is shown in

Figure 6.6. As indicated by this plot, the depth of the layer has little influence on the

interaction except when the structure is close to or supported on the rigid base. Because the

structure height of 5 m is significant in relation to the 20 m depth of the shallower layer, the

rigid base effect causes some differences in the higher Fr part of the curves. Layers

significantly deeper than 20 m would give similar results to the 50 m deep layer for the case

when the structure is founded on the rigid base or in the layer close to the base.

6.4 Influence of Strain Field

R versus Fr curves for the single-barrel structure in the 50 m thick layer with a parabolic

increase of the shear modulus, G, with depth are shown in Figures 6.7 and 6.8. Figure 6.7

shows the Fr ratio out to the maximum value investigated of 15 and Figure 6.8 the curves with

an expanded scale for Fr from 0 to 2.0.

A comparison between the interaction curves for 50 m deep layers with uniform and parabolic

variation of G with depth are shown in Figure 6.9. Provided the depth of cover is greater than

the height of the structure the variation in the shear modulus or strain field has little influence

on the interaction. With shallow cover depths less than the height of the structure there are

significant differences in the interaction curves. This is apparently caused by the large

variation of the G value from zero at the surface to a moderately high value at the base of the

structure that occurs in the layer with the parabolic variation. The low G values near the

surface cause the structure to be effectively stiffer with respect to the soil than is the case for

the structure in a uniform layer. For the purpose of plotting the curves, the effective G value

was taken as the average over the height of the structure. Defining the effective G value as

either the value at the top or base of the structure would obviously modify the curves for the

structure in a layer with a parabolic G variation, particularly when the structure is near the
surface.

6.5 Influence of Structure Shape

R versus Fr curves for the twin-barrel structure in 50 m thick layers with both a uniform and a

parabolic increase of the shear modulus, G, with depth are shown in Figures 6.10 and 6.11.

Figure 6.10 shows the Fr ratio out to the maximum value investigated of 15 and Figure 6.11

the curves with an expanded scale for Fr from 0 to 2.0.
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Soil-Structure Interaction Curves

Uniform 20 m Deep Layer: Poisson's Ratio = 0.4: 1st Mode Displacement Field
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Soil-Structure Interaction Curves: Comparison of 20 m and 50 m Deep Layers
Uniform Layers: Poisson's Ratio = 0.4: 1st Mode Displacement Field

5 x 5 m Single Barrel Box
2.5

- 2

1.5

nc

1/le'lu.lulu' W
'/154111 1 'CI /1

Oaas:zpnzi.
6.

-50 m Layer: top of structure at surface

- - * - -20 m Layer: top of structure at surface

50 m Layer: 5 m cover to structure

---»-20m Layer: 5m cover to structure

-0-50 m Layer: 10 m cover to structure

- 20 m cover: 10 m cover to structure

50 m Layer: Structure on rock base

20 m Layer: Structure on rock base
0

f
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.6 Flexibility Ratio, Fr (Structure / Soil)

30



Soil-Structure Interaction Curves: Parabolic Variation of G With Depth

50 m Deep Layer: Poisson's Ratio = 0.4: 1st Mode Displacement Field
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Soil-Structure Interaction Curves: Comparison of Parabolic & Unifom G Layers
50 m Deep Layer: Poisson's Ratio = 0.4: 1st Mode Displacement Field
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Soil-Structure Interaction Curves: Uniform & Parabolic Variation of G with Depth

50 m Deep Layer: Poisson's Ratio = 0.4: 1st Mode Displacement Field
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A comparison between the interaction curves for the single and twin-barrel structures is

shown in Figure 6.12 and 13 for cover depths of 5 and 10m respectively. For Fr ratios less

than 2.0 the structure shape has little influence, however at greater Fr ratio the shape causes a

moderate degree of divergence of the curves.

6.6 Influence of Soil Poisson's Ratio

Further work to estimate the influence of soil layer Poisson's Ratio on the interaction curves

using the finite element procedure of the present study is planned but until this is completed

the Poisson Ratio effect can be estimated approximately by Penzien's analytical expression.

R versus Fr curves evaluated using Equation 6.14 for a range of Poisson's Ratio from 0.3 to

0.5 are shown in Figure 6.14. Poisson's ratio has a moderately significant influence on the

interaction curves when Fr is greater than 2.0, particularly for Poisson's ratio less than 0.4.

6.7 Forces in Box Structural Members Without Soil Interaction

Simple structural analysis, such as the Slope Deflection Method, can be used to analyse the

laterally loaded single-barrel box shown in Figure 5.4 without surrounding soil to give the

bending moments, shear and axial forces in the members. Expressions for the bending

moments Mr and A* acting in the members at the top and bottom rigid joints respectively in

terms of the lateral displacement A are:

M =6AK. F jO + q) (6.1)
j H L 0 -(21 + q)(2 + q) 1

Mr = 6AK,  jO + q)(2 + q)
H L 0 - (21 + q)(2 + q)+ 1 (6.2)

Where:

K -EIW K =EIr q:
W H

KW

The shear and axial forces in the wall members are obtained from the equilibrium equations to

be f and PH respectively.
2L
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Soil-Structure Interaction Curves: Comparison of Single & Twin Barrel Structures

50 m Deep Layer: Poisson's Ratio = 0.4: 1st Mode Displacement Field
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Influence of Poisson's Ratio on Soil-Structure Interaction Solutions

Penzien (2000) Analytical Method
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6.8 Forces in Box Structural Members With Soil Interaction

Forces in the structural members of the single and twin-barrel box structures analysed in the

interaction analyses described in Section 5.3.4 were calculated by the finite element

procedure.

The bending moments and shear forces in the side-wall members computed for the single and

twin-barrel box structures with a5m depth of cover are shown in Figures 6.15 to 6.18.

Results are given for both a uniform and parabolic variation of G in a layer of 50 m depth.

Figures 6.15 and 6.16 show the bending moments at the top and bottom of the side-walls

respectively and Figures 6.17 and 6.18 the corresponding shear forces.

Figures 6.19 to 6.22 show results corresponding to those shown in Figures 6.15 to 6.18 but

with the depth of cover increased from 5 m to 10 m.

Both the plotted interaction bending moments and shear forces have been normalised by

dividing the computed values by the corresponding values for the structures without

surrounding soil. For the single-barrel structures, Equations 6.1 and 6.2 were used to compute

the side-wall bending moments for the case without surrounding soil. For the twin-barrel

structures, a simple plane frame computer analysis was used to calculate the moments for this

case. (Closed form analytical solutions can be developed but it was less time consuming to

use a numerical method.) In interpreting the results, it is important to note that the analyses

without the surrounding soil require the structure to be supported by pinned reaction points

under the lower corners which prevent vertical displacements (see Figure 5.4). This imposes

different boundary conditions than occur when the structure is supported only by the

surrounding soil. In the later case, the structure can undergo rigid body rotations, which may

influence the magnitude of the internal forces in the structural members. For this reason, not

all the plotted moments and shears tend to a value of 1.0 as the flexibility ratio, or effectively

the soil stiffness, reduces to zero.

From the results plotted in Figures 6.15 to 6.22 it is apparent that the interaction effects

significantly modify the bending moments and shear forces in the box members for large Fr

ratios. Previous recommendations (Wang, 1993) have suggested that the forces in the box

structure can be obtained by analysing the structure without the soil loaded by a horizontal

force at the top that produces the same shear distortion as calculated from the shear strain

interaction analysis. However, the present analyses show that for values of Fr greater than 1.0,

the force actions cannot be reliably obtained by this procedure. Better approaches would be to

use a simple finite element analysis including the soil (the method outlined in this project for

example) or the curves shown in Figures 6.15 to 6.22 to correct the actions computed by a

frame analysis without the soil.

To calculate the flexural strength capacities of the box section walls it is also necessary to

know the axial forces in them. Information on these actions is available from the present
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work and will be presented at a later time. The variation of the normalised axial forces with

Fr ratio will be similar to that shown for the normalised bending moments.
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Soil-Structure Interaction Curves For Side-Wail Top Moment

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0

5 m Soil Coveron Single and Twin-Barrel Box Structures
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Figure 6.15 Flexibility Ratio Fr(Structure / Soil)

Soil-Structure Interaction Curves For Side-Wall Base Moment

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio =
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Soil-Structure Interaction Curves For Side-Wall Top Shear

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0

5 m Soil Coveron Single and Twin-Barrel Box Structures
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Figure 6.17 Flexibility Ratio Fr(Structure / Soil)

Soil-Structure Interaction Curves For Side-Wail Base Shear

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0.4
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Soil-Structure Interaction Curves For Side-Wall Top Moment

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0

10 m Soil Coveron Single and Twin-Barrel Box Structures
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Figure 6.19 Flexibility Ratio Fr(Structure / Soil)

Soil-Structure Interaction Curves For Side-Wall Base Moment

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0
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Soil-Structure Interaction Curves For Side-Wall Top Shear

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0

10 m Soil Coveron Single and Twin-Barrel Box Structures
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Figure 6.21 Flexibility Ratio Fr(Structure / Soil)

Soil-Structure Interaction Curves For Side-Wall Base Shear

50 m Deep Layer: Uniform & Parabolic Varation of G With Depth: Poisson's Ratio = 0
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7. WORKED EXAMPLES

The application of the methods and results developed in this study is illustrated in the

following sections by analysing two examples of relatively small and commonly constructed

underground structures. The first example is a single-barrel box culvert structure originally

designed by the New Zealand Ministry of Works and Development in 1976. It was one of a

number standard culvert designs (see MWD drawings Job 0/121/1 Code 8104) and similar

structures to the one analysed have probably been constructed in a number of locations in

New Zealand. The structure used in the second example is a similar structure to the first

example but the wall thicknesses and reinforcement quantities have been reduced to make the

structure more typical of a pedestrian subway structure constructed in dry ground conditions

without water pressures. The structure analysed in the first example was found to respond

essentially elastically under typical design earthquake ground acceleration levels. The second

structure was found to respond into its inelastic range of behaviour with plastic hinges

forming at the corner rigid joints.

7.1 Box Culvert Example

Details of the structure analysed are given in Figure 7.1 and Table 7.1. The standard culvert

box structure has internal dimensions of 3x3m and was assumed to be covered by 4mof

soil in a 50 m deep soil layer with a shear modulus G varying parabolicaly from zero at the

surface to 200 MPa at the rigid base. The average calculated G value over the height of the

structure was 44 MPa corresponding to a shear wave velocity of about 150 m/s. This velocity

indicates medium density sediments. The design peak ground acceleration at the surface was

taken as 0.4 g.

The walls were assumed to have a uniform thickness of 400 mm although in practise most
culverts are constructed with a 50 mm thicker base to allow for water erosion.

Reinforcement details for the side-walls are listed in Table 7.1. The same details apply to the

outside bars in the roof and floor. Bars on the inside of the roof and floor are D28 at 250 mm

centres.

The analysis procedure follows through sequentially on the spreadsheet of Table 7.1. A

summary ofthe steps involved is as follows:

(a) Calculate the average shear modulus over the height of the structure.

(b) Calculate the structure stiffness and flexibility parameters using the formulae given in

Section 5.2. Modify the stiffness parameters to allow for cracking in the box sections

if necessary.

(c) Calculate the Fr and R ratios using the equations given in Section 5.3. (Penzien's

Equation 5.10 was adopted to calculate R for his example but the charts in Figures 6.2

to 6.13 can be used to get more correct values.)
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(d) Calculate the design earthquake level surface strain and the soil strain at the level of

the structure using Figure 5.3 and correct for the soil layer base shear modulus using

Equation 5.3. (Gb assumed to be 200 MPa, which is different to the chart value of 150

MPa.)

(e) Calculate the structure shear deflection from the interaction shear strain and then

calculate the earthquake induced moments in the structure using Equations 6.1 and
6.2.

(f) Correct the calculated bending moments for soil pressure effects using Figure 6.19 and
6.20.

(g) Calculate the flexural strength capacities o f the box sections.

(h) Calculate the gravity load bending moments using a standard frame analysis

procedure. (For simplicity in the present example water pressures have been neglected

but where the produce significant loads they can be combined with the gravity load

actions).

(i) Combine the earthquake and gravity load moments. The resulting bending moment

diagram for the present example is shown in Figure 7.2

(j) Compare the combined E +G bending moments with the section capacities. From this

comparison it is clear that a plastic hinge will form at the bottom left corner of the

box. (Axial forces will enhance the flexural strengths slightly, particularly in the right

wall in which the earthquake and gravity axial forces are additive.)

(k) From the earthquake and combined E+G bending moments calculate by simple

scaling the structural shear displacement necessary to form the first hinge. This is

considered to be the yield displacement.

(1) Compare the yield displacement with the displacement induced by the shear response

of the soil. This gives an indication of whether significant nonlinear deformation is
induced in the structure.

The analysis indicates that the structure is deformed to slightly beyond the structure yield

displacement by the 0.4 g peak ground acceleration motions. Significant cracking and minor

damage would occur under this level of ground shaking. Although the structure would have

been designed for significant water pressures they have been neglected in the analysis. If

water pressures moments were included the level of inelastic deformation would be

significantly greater than calculated.

The Draft AS/NZ 1170.4 Loadings Code indicates that the design peak ground acceleration

on Site Subsoil Class D soils (the period of vibration of the layer used in the present example

would be greater than 0.6 seconds) for a 500 year return period event in the Wellington area

should be about 0.49. To allow for the averaging reduction over a number of damaging peaks

in the acceleration time history, it would be normal to design an important underground

structure to about the 0.4 g acceleration level used in the above example.
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Table 7.1 Single-Barrel Box Culvert Structure Example

Item Symbol Value Units Comments or Formula

Soil Input Parameters

Soil layer depth D 50 m

Soil cover depth over structure Ds 4.0 m

Shear modulus at base of soil layer Gt 200 MPa Layer assumed to have parabolic varation of G

Soil density ps 2.0 Urr,3
Soil Poisson's Ratio v 0.4

Structure Geometric Inputs

Outside height (overall) H 3.8 m

Outside length (overall) L 3.8 m

Floor thickness 4 0.40 m

Roof thickness tr 0.40 m

Wall thickness tw 0,40 m

Concrete Section Inputs

Young's modulus for concrete Ec 30000 MPa

Concrete crushing strength fc 25 MPa

Reinforcement yield stress fy 300 MPa

Cracked section MOI reduct. factor Fcs 0.50

Concrete cover to reinforcement cs 40 mm

Outer reinforcement bar diameter db 24 mm

Outer reinforcement bar spacing Sb 200 mm

Inner reinforcement bar diameter dbi 20 mm

Inner reinforcement bar spacing Sb, 250 mm

Calculated Layer Properties

Height bottom of structure above rock Yb 42 m

Height top of structure above rock Yl 46 m

Ave shear modulus over structure ht. Gs 44.3 MPa Gs = Gb/H(Yt-Yt3/(3 D2)-Yb+Yb3/(3 [)2))

Shear wave velocity at average Gs Vs 149 m/s VS = Sqrt(Gs 1000/Ps)

Calculated Frame Stiffness Properties

Cracked wall moment of inertia Iw

Cracked floor moment of inertia If

Cracked roof moment of inertia Ir

Wall stiffness Kw

Floor stiffness Kt

Roof stiffness K

Ratio roof / wall stiffness r

Ratio wall / roof stiffness q

Ratio floor / roof stiffness j

Structure  flexibility ts,

Assumed displacement ductility factor kid

Inelastic structure flexibility fsii

Displaced soil block flexibility fs

Flexibility ratio Fr

0.00267 n,4/m

0.00267 mi/m

0.00267 m4/m

23529 kN m/m

23529 kN m/m

23529 kN m/m

1.0

1.0

1.0

4.09E-05 m / kN / m

1.00

4.09E-05

2.26E-05 m / kN / m

1.814

KW= 4 Ec 1000/(H- 4/2- 4/2)

14 - If Ec 1000/(L- tw)

I<r = |r Ec 1000/(L- tw)

From Equation (5.4)

fail = fsi Pd

From Equation (5.9)

From Equation (5.8) Struct. Flexibility / Soil flex.
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Table 7.1 Continued

Calculated EQ Interaction Parameters

1-g free-field shear strain Efl

1-g free-field strain corrected for Gb Efc

Design level peak ground acceln. ad

Design level free-field shear strain Efd

Interaction strain ratio R
P

Structure shear strain Est

Structure shear deflection Ast

EQ moment at top corners Mr

EQ moment at bottom corners Mf

Correction factor for top moments Fmr

Correction factor for bottom moments Fmf

Corrected EQ mom. at top corners Mfc

Corrected EQ mom. at bottom corners Mrc

Equiv horizontal force at top structure P

Approx EQ axial force in wall Nw

Section Flexural Capacity

Tensile strength of concrete in flexure tic

Cracking moment of wall section Mc

Ultimate strength tension on outside

Reinforcement area per m length As

Effective depth of section de

Compression width aco

Unreduced flexural capacity M u

Ultimate strength tension on inside

Reinforcement area per m length Asi

Effective depth of section dei

Compression width aci

Unreduced flexural capacity M Ul

Approximate Gravity Load Moments

Soil pressure on roof Pr

Weight of structure Wst

Soil pressure on base Pf

Gravity load axial forces in walls Nd

Gravity load moment at top wall Mgt

Gravity load moment bottom wall Mgb

Combined EQ + Gravity Load

E + G Moment top left wall Mct'

E + G Moment top right wall Mctr

E + G Moment bottom left wall Mabl

E + G Moment bottom right wall Mcbr

Approximate Yield Displacement

Diff. between Mcbi and capacity Mdi

Shear deflection of structure at yield Ay

Required ductility factor kldr

0.0049

0.0037

0.4 g

0.0015

1.355

0.0020

0,0076 m

-157 kN m/m

-157 kN m/m

1.05

1.14

-165 kN m/m

-178 kN m/m

185 kN / m

92 kN / m

3.75 MPa

100 kN m/m

2262 mm2/ m

0.348 m

32 mm

225 kN m/m

1257 mm2/ m

0.350 m

18 mm

129 kN m/m

78 kPa

131 kN/m

113 kPa

167 kN / m

57 kNm/m

-84 kN m/m

-108 kN m/m

-222 kN m/m

-262 kN m/m

-94 kN m/m

-37 kN m/m

6.0 mm

1.26

From Figure 5.3 for Gb = 150 MPa

From Equation (5.3)

Efd = Efc ad

From Eq 5.10 (Penzien) Structure / Free-Field

Est  Efd Rp
Ast = Est H

Equation (6.2)

Equation (6.1)

From Figure 6.19

From Figure 6.20

Mfc = Mr Fmr

Mrc = Mf Fmf

P = Dst/fst

Nw =P/2 (1-1- 42 -tr/2)/ (L- tw)

Priestley et al page 267. Equation (5.3b)

Mc = 103 ftc 62/ 6

de = tw - (Cs + db2)/1000

aco = (As fy)/(0.85 fc 1000)

No correction made for axial loads

del = W - (Cs + d42)/1000

aci = (Asi fy)/(0.85 fc 1000)

No correction made for axial loads

Pr = Ds Ps 9.81

Wst =24(2 HL+(L -24*4 + tr))

Pf =Pr + wst/L

Twice magnitude of EQ axial forces

From frame analysis (+ve sign = clockwise)

From frame analysis

Tension on inside

Tension on outside

Tension on outside. Plastic hinge forms

Tension on inside

Mdw = Mcbl + Mu

Taken as defln when 1st plastic hinge forms

Only subjected to small inelastic displacement
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262 kN m/in

94 kN m/m

Figure 7.2. Combined earthquake induced + gravity bending moments

*4 . 4.

222 kN m/m
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7.2 Box Subway Example

For the second example, the structure analysed in Section 7.1 was modified by reducing the

wall thickness to a uniform 300 mm and also the quantity of the reinforcing. Other details of

the structure and soil were maintained the same as previously. Reinforcement details for this

modified box structure are listed in Table 7.2. The modified structure has dimensions typical

of a pedestrian subway constructed above the water table.

Preliminary analyses indicated that this structure would be deformed into the inelastic range.

For this case the previous analysis procedure developed for a structure responding elastically

needs to be modified into a three-stage analysis procedure. The three stages are as follows:

1. The first stage is to calculate the ground motion acceleration required to induce

yielding in the structure. The procedure is similar to that described in the first

example except that the acceleration level is gradually increased (using the

spreadsheet) until the first plastic hinge develops in the structure (assumed to be the

yield level). This analysis is outlined in Table 7.2. An acceleration of 0.23 g resulted

in yield. The corresponding shear displacement of the structure was 5.3 mm.

2. The second stage involves a pushover type frame analysis of the structure without the

soil to determine the lateral force versus shear deflection relationship into the full

inelastic displacement region. This analysis is required to define the overall structure

stiffness or flexibility to use in the soil-structure interaction equations when the soil

induced deformations exceed the structure yield displacement levels. For simplicity in

the present analysis, an elasto-plastic force relationship was assumed in which the

structure becomes fully plastic with no rise in the applied lateral force level beyond

the yield displacement level. This relationship is illustrated in Figure 7.3. For these

simplifying assumptions, the effective structure flexibility beyond the yield

displacement level is the elastic flexibility multiplied by the duetility factor.

3. The third stage is to calculate the inelastic displacement and the ductility demand on

the structure at the 0.4 g design ground acceleration. To carry out this part of the

analysis the same spreadsheet used previously for the first stage can be used as shown
in Table 7.3. The procedure is to estimate a ductility factor and then calculate the

structure flexibility. Undertaking the standard soil-structure interaction analysis with

the modified inelastic flexibility provides an estimate of the shear displacement in the

structure. From this displacement and the yield displacement calculated in the first

stage a ductility factor can be calculated. This factor is then used to improve the

estimated ductility factor and the analysis repeated iteratively on the spreadsheet until

convergence. The earthquake moments shown in Table 7.3 are incorrect for his

inelastic stage of the analysis, but for convenience have been left in the table. Correct

moments in the box section for inelastic response can only be reliably obtained by a

detailed pushover analysis.

The procedure above indicates that under the 0.4 g design ground acceleration level the

displacement ductility demand on the subway box will be about 2.0. There would be no

49



Table 7.2 Single-Barrel Box Subway Structure Example: Yield Displacement Calculation

Item Symbol Value Units Comments or Formula

Soil Input Parameters

Soil layer depth D

Soil cover depth over structure Ds

Shear modulus at base of soil layer Gb

Soil density Ps

Soil Poisson's Ratio v

Structure Geometric Inputs

Outside height (overall) H

Outside length (overall) L

Floor thickness t

Roof thickness tr

Wall thickness tw

Concrete Section Inputs

Young's modulus for concrete Ec

Concrete crushing strength fc

Reinforcement yield stress fy

Cracked section MOI reduct. factor Fcs

Concrete cover to reinforcement Cs

Outer reinforcement bar diameter db

Outer reinforcement bar spacing Sb

Inner reinforcement bar diameter dbi

Inner reinforcement bar spacing Sbi

Calculated Layer Properties

Height bottom of structure above rock Yb

Height top of structure above rock Yi

Ave shear modulus over structure ht. Gs

Shear wave velocity at average Gs Vs

Calculated Frame Stiffness Properties

Cracked wall moment of inertia Iw

Cracked floor moment of inertia If

Cracked roof moment of inertia Ir

Wall stiffness Kw

Floor stiffness K

Roof stiffness K

Ratio roof / wall stiffness r

Ratio wall / roof stiffness q

Ratio floor / roof stiffness j

Structure flexibility fsi

Assumed displacement ductility factor kid

Inelastic structure flexibility fsii

Displaced soil block flexibility fs

Flexibility ratio Fr

50 m

4.0 m

200 MPa Layer assumed to have parabolic varation of G

2.0 Vm3

0.4

3.6 m

3.6 m

0.30 m

0.30 m

0.30 m

30000 MPa

25 MPa

300 MPa

0.50

40 mm

20 mm

150 mm

20 mm

300 mm

42 m

46 m

43.6 MPa Gs = Gb/H(YE-'43/(3 02)-Yb+Yb3/(3 [)2))

148 m/s VS = Sqrt(Gs 1000/Ps)

0.00113 mi/m

0.00113 m4/m

0.00113 mtrn

10227 kN m/m KW = 4 Ec 1000/(H- t42- 4/2)
10227 kN m/m Kf - If Ec 1000/(L- tw)

10227 kN m/m Kr = |r Ec 1000/(L- tw)

1.0

1.0

1.0

8.87E-05 m / kN / m From Equation (5.4)

1.00 Taken as 1.0 to calculate yield disp.

8.87E-05 f. = 4 Md

2.29E-05 m / kN / m From Equation (5.9)

3.87 From Equation (5.8) Struct. Flexibility / Soil flex.
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Table 7.2 Continued

Calculated EQ Interaction Parameters

1-g free-field shear strain En

1-g free-field strain corrected for Gb Efc

Yield level peak ground acceln. ad

Design level free-field shear strain Efd

Interaction strain ratio Rp

Structure shear strain Est

Structure shear deflection Ast

EQ moment at top corners Mr

EQ moment at bottom corners Mf

Correction factor for top moments Fmr

Correction factor for bottom moments Fmf

Corrected EQ mom. at top corners Mfc

Corrected EQ mom. at bottom corners Mrc

Equiv horizontal force at top structure P

Approx EQ axial force in wall Nw

Section Flexural Capacity

Tensile strength of concrete in flexure L

Cracking moment of wall section Mc

Ultimate strength tension on outside

Reinforcement area per m length As

Effective depth of section de

Compression width aco

Unreduced flexural capacity M u

Ultimate strength tension on inside

Reinforcement area per m length Asi

Effective depth of section dei

Compression width aci

Unreduced flexural capacity M ui

Approximate Gravity Load Moments

Soil pressure on roof Pr

Weight of structure Wst

Soil pressure on base Pf

Gravity load axial forces in walls Nd

Gravity load moment at top wall Mgt

Gravity load moment bottom wall Mgb

Combined EQ + Gravity Load

E + G Moment top left wall Mal

E + G Moment top right wall Mctr

E + G Moment bottom left wall Mcbl

E + G Moment bottom right wall Mcbr

Approximate Yield Displacement

Diff. between Mcbi and capacity Md#

Shear deflection of structure at yield Ay

Required ductility factor Mdr

0.0049

0.0037

0.228 g

0.0008

1.76

0.0015

0.0053 m

-49 kN m/m

-49 kN m/m

1.16

1.29

-57 kN m/m

-64 kN m/m

60 kN / m

30 kN / m

3.75 MPa

56 kNm/m

2094 mm2 / m

0.250 m

30 mm

148 kN m/m

1047 mm2/ m

0.250 m

15 mm

76 kNm/m

78 kPa

95 kN / m

105 kPa

154 kN / m

57 kNm/m

-84 kN m/m

OkNm/m

-114 kN m/m

-148 kN m/m

20 kNm/m

0.0 kN m/m

5.3 mm

1.00

From Figure 5.3 for Gb = 150 MPa

From Equation (5.3)

Increase until plastic hinge forms

€fd = Efc ad

From Eq 5.10 (Penzien) Structure / Free-Field

Est = Efd Rp
Ast = Est H

Equation (6.2)

Equation (6.1)

From Figure 6.19

From Figure 6.20

Mfc = Mr Fmr
Mrc = Mf Fmf

P =Dst / fs,

Nw =P/2 (H -tu2 -tr/2)/(L- tv)

Priestley et al page 267. Equation (5.3b)

Mc = 103 ftc tw2/ 6

de = tw - (Cs + db2)/1000

aco = (As fy)/(0.85 fc 1000)
No correction made for axial loads

dei = tw - (Cs + d 42)/1000

aci = (Asi fy)/(0.85 fc 1000)
No correction made for axial loads

Pr = Ds Ps 9.81

WSt = 24 (2 H 6 + (L - 2tw)(4 + tr)

Pf = Pr + wst/L

Twice magnitude of EQ axial forces

From frame analysis (+ve sign = clockwise)

From frame analysis

Tension on inside.

Tension on outside.

Tension on outside.

Tension on inside.

Mdif = Mct,1 + Mu

Taken as defln when 1st plastic hinge forms
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Table 7.3 Single-Barrel Box Subway Structure Example: Approximate Ductility Factor Calculation

Item Symbol Value Units Comments or Formula

Soil Input Parameters

Soil layer depth D 50 m

Soil cover depth over structure Ds 4.0 m

Shear modulus at base of soil layer Gb 200 MPa Layer assumed to have parabolic varation of G

Soil density ps 2.0 Vm3
Soil Poisson's Ratio v 0.4

Structure Geometric Inputs

Outside height (overall) H 3.6 m

Outside length (overall) L 3.6 m

Floor thickness 4 0.30 m

Roof thickness tr 0.30 m

Wall thickness tw 0.30 m

Concrete Section Inputs

Young's modulus for concrete Ec 30000 MPa

Concrete crushing strength fc 25 MPa

Reinforcement yield stress 4 300 MPa

Cracked section MOI reduct. factor Fcs 0.50

Concrete cover to reinforcement Cs 40 mm

Outer reinforcement bar diameter d 20 mm

Outer reinforcement bar spacing Sb 150 mm

Inner reinforcement bar diameter dbi 20 mm

Inner reinforcement bar spacing Sbi 300 mm

Calculated Layer Properties

Height bottom of structure above rock Yb 42 m

Height top of structure above rock '4 46 m

Ave shear modulus over structure ht. Gs 43.6 MPa Gs = G JH(YrY,3/(3 02)-Yb+Yb3/(3 [)2))

Shear wave velocity at average Gs Vs 148 m/s VS = Sqrt(Gs 1 000/Ps)

Calculated Frame Stiffness Properties

Cracked wall moment of inertia Iw

Cracked floor moment of inertia If

Cracked roof moment of inertia 'r

Wall stiffness K

Floor stiffness 1<

Roof stiffness K

Ratio roof / wall stiffness r

Ratio wall/ roof stiffness q

Ratio floor / roof stiffness j

Structure flexibility fsi
/25 1 y

Assumed displacement ductility factbE * R
...c e.:·/6/·D . .:... ."t, .w» .>*

Inelastic structure flexibility fsii

Displaced soil block flexibility fs

Flexibility ratio Fr

0.00113 m4/m

0.00113 m4/m

0.00113 m4/m

10227 kN m / m

10227 kN m/m

10227 kN m/m

1.0

1.0

1.0

8.87E-05 m / kN / m

*· 2.03
1.80E-04

2.29E-05 m / kN / m

7.86

Kw= 4 Ec 1000/(H- tr/2- 4/2)

14= If Ec 1000/(L- tw)

Kr = |r Ec 1000/(L- tw)

From Equation (5.4)

74 1
Need to adjust by iterations 1& 0

U:gs. -:  i .i £:<€442<Plt/26ay€

fsii = fsi Md

From Equation (5.9)

From Equation (5.8) Struct. Flexibility / Soil flex

221*.
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Table 7.3 Continued

Calculated EQ Interaction Parameters

1-g free-field shear strain Efl

1-g free-field strain corrected for Gb Efc

Design level peak ground acceln. ad

Design level free-field shear strain Efd

Interaction strain ratio Rp

Structure shear strain Est

Structure shear deflection Ast

EQ moment at top corners Mr

EQ moment at bottom corners Mf

Correction factor for top moments Fmr

Correction factor for bottom moments Fmf

Corrected EQ mom. at top corners Mfc

Corrected EQ mom. at bottom corners Mrc

Equiv horizontal force at top structure P

Approx EQ axial force in wall Nw

Section Flexural Capacity

Tensile strength of concrete in flexure 'tc

Cracking moment of wall section Mc

Ultimate strength tension on outside

Reinforcement area per m length As

Effective depth of section de

Compression width aco

Unreduced flexural capacity M u

Ultimate strength tension on inside

Reinforcement area per m length Asi

Effective depth of section dei

Compression width acl

Unreduced flexural capacity M Ui

Approximate Gravity Load Moments

Soil pressure on roof Pr

Weight of structure Wst

Soil pressure on base Pf

Gravity load axial forces in walls Nd

Gravity load moment at top wall Mgt

Gravity load moment bottom wall Mgb

Combined EQ + Gravity Load

E + G Moment top left wall Mct'

E + G Moment top right wall Mctr

E + G Moment bottom left wall Mal

E + G Moment bottom right wall Mar

Approximate Yield Displacement

Diff. between Mcbi and capacity MdM

Shear deflection of structure at yield Ay

0.0049

0.0037

0.4 g

0.0015

2.04

0.0030

0.0108 m

-100 kN m/m

-100 kN m/m

1.38

1.59

-138 kN m / m

-159 kN m/m

121 kN/m

61 kN / m

3.75 MPa

56 kNm/m

2094 mm2/ m

0.250 m

30 mm

148 kN m/m

1047 mm2/ m

0.250 m

15 mm

76 kNm/m

78 kPa

95 kN / m

105 kPa

154 kN / m

57 kNm/m

-84 kN m/m

-81 kN m/m

-195 kN m/m

-243 kN m/m

-75 kN m/m

-95 kN m/m

5.3 mm

From Figure 5.3 for Gb = 150 MPa

From Equation (5.3)

Efd = Efc acl

From Eq 5.10 (Penzien) Structure / Free-Field

Est = Efd Rp
Ast = Est H

Equation (6.2)

Equation (6.1)

From Figure 6.19

From Figure 6.20

Mfc = Mr Fmr

Mrc = Ivlf Fmf

P = Dst / fsi

Nw =P/2 (H- 42 -tr/2)/(L- tw)

Priestley et al page 267. Equation (5.3b)

Mc =1 ftc 42/6

de = tw - (Cs + db2)/1000

aco = (As fy)/(0.85 fc 1000)

No correction made for axial loads

dei = tw - (Cs + db/2)/1000

aci = CAsi fy)/(0.85 fc 1000)
No correction made for axial loads

Pr = Ds ps 9.81

Wst = 24 (2 Htw+ (L - 24)(tf + tr))

Pf = Pr + wst/L

Twice magnitude of EQ axial forces

From frame analysis (+ve sign = clockwise)

From frame analysis

Tension on inside. Plastic hinge forms

Tension on outside. Plastic hinge forms

Tension on outside. Plastic hinge forms

Tension on inside. Plastic hinge forms

Mdi = Mcbl + Mu

From elastic analysis in Table 7.3
/3?jill#B.
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difficulty in designing to achieve this level of structural ductility but a detailed design of the

joints would be required to prevent serious damage. To obtain good levels of ductility the

design criteria of Fenwick and Deam (2002) for corners between walls and slabs can be

applied.

Pushover Analysis of Box Structure
250

Ultimate displacement du
Yield displacement, dy

200

150

1,

 .-- Ductility Factor=du/dy
... 1 1 1

11

11
11 ...

50 P
11

L....
0 G

0 5

0 Actual performance curve

.. ---- Simplified elasto-plastic curve

- - - - - - -Equivalent inelastic stiffness curve

10 15 20 25 30 35

Displacement, mm

Figure 7.3 Pushover analysis and idealised elasto-plastic response.
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8. CONCLUSIONS

(a) The empirical relationship developed by Wang (1993) for assessing the racking

interaction of rectangular section structures with the surrounding soil during earthquakes

was verified by undertaking a large number of simplified dynamic finite element analyses

and by comparison with analytical expressions recently published. Agreement between

the various relationships was found to be adequate for structural design purposes and in

general the design approach developed by Wang (1993) was found to be applicable under

most conditions likely to be encountered in practise.

(b) The work of Wang was extended by undertaking a large number of simplified dynamic

finite element analyses to determine the sensitivity of the interaction curves to variations

in the main parameters. This produced a number of charts that can be used in the

earthquake design of smaller underground structures where the site information is unlikely

to be known in sufficient detail to warrant more sophisticated analyses. Charts were

prepared for estimating the free-field soil strains and the magnitude of the internal force

actions in the cross-section of the structure. Reliable simple methods of estimating these

parameters have not been previously published.

(c) The finite element method developed for the present study can also be used to analyse

directly large or more complex structures when more detailed site information is likely to

be available.

(d) Application of the Wang design method to several box culverts and pedestrian subway

structures showed that the internal forces from earthquake induced raking deformations

can be large in comparison to actions produced by gravity and water pressure loads. These

earthquake-induced actions need to be considered in the design of most rectangular

underground structures.

(e) A displacement based design approach is required when the structure is loaded beyond

yield levels by the earthquake induced ground deformations. The design process in this

case is rather more complex involving the need for a simple pushover analysis to

determine the structure post-elastic stiffness or flexibility. An example was presented

which outlined a method of determining the ductility demand on the structure when

inelastic deformation was significant.
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