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0 Abstract

A 'finite element structure', which models the observed behaviour of plastic hinge

zones of reinforced concrete frame structures, was developed and implemented into a

nonlinear dynamic computer program.

A series of static and dynamic analytic tests were then carried out on a number of

reinforced concrete frame structures to assess the performance of the hinge structure,

the magnitude of the elongation arising in the beams and the effects of this

elongation on the response of the structures.
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Chapter 1 - Introduction 1

Chapter 1

INTRODUCTION

1.1 The Elongation Phenomenon

In order to survive a severe earthquake most seismically resistant structures are designed

using a combination of both strength and ductility. Ductile structures have the ability to

dissipate energy when loaded into the inelastic region by deforming without collapsing.

To achieve this ductility selected parts of the structure are designed to withstand inelastic

deformation, while the remainder of the structure is proportioned to ensure that the

inelastic actions occur only in the chosen areas. These areas are known as plastic hinge

zones, and have a large influence on the seismic behaviour of the structure.

It is usual practice to design multi-storey frame structures to develop a beam sway failure

mode so that most of the potential plastic hinge zones are located in the beams.

Consequently once yielding has occurred, the dynamic performance of the structure is

largely influenced by the load-deformation characteristics of the plastic hinge zones that

form in the beams.

During severe earthquakes two different types of plastic hinge zones can form, they are

referred to as reversing and uni-directional plastic hinges. In reinforced concrete beam

structures, the large inelastic deformations that develop in both of these hinge forms

cause the associated beams to elongate.

Design engineers have known about this elongation phenomenon for some time, but have

considered it to be a second order effect, consequently its influence on the performance

of seismically designed reinforced concrete structures has been neglected. Recent test

results [1,2,3] however, have shown that member elongation effects can be expected to

have a major influence on the seismic performance of reinforced concrete structures with

respect to; the support of precast floor units and external cladding panels, the
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performance of columns in frame structures, the behaviour of diaphragms and walls in

mixed wall structures, and the seismic gap provided between buildings.

It is therefore important to obtain a better understanding of the mechanisms of this

growth phenomenon and to develop a method of predicting both the behaviour and

consequences of reinforced concrete beam elongation.

1.2 Scope of this Report

A plastic hinge finite element structure which models the reinforced concrete beam

elongation phenomenon was developed and implemented into the two dimensional

nonlinear dynamic computer program DRAIN-2DX.

The hinge structure was then used to predict the magnitude of growth of the beams in

a number of frames and the effect of this elongation on the overall seismic response of

the structures.
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Chapter 2

THEORY

2.1 The Mechanics of Elongation

211 Introduction

When a reinforced concrete beam cracks in flexure, unless the beam is restrained,

elongation of the member will result. lf the beam is designed to behave in a ductile

manner this elongation becomes more pronounced due to the inelastic actions that occur

in the plastic hinge zones.

In beams subjected to inelastic cyclic displacements, two type S of plastic hinge can

develop depending on the magnitude of the spread load supported along their length.

In frame structures where beams support a critical load, Worit or less (see equation 2.1),

along their length, the inelastic deformations that result involve the formation of both

positive and negative rotations at the column faces. Such hinges are referred to as

'reversing plastic hinges'. If however the beams support a load that is greater than the

critical load, 'uni-directional plastic hinges' result, with negative rotations accumulating

at the column faces and positive rotations accumulating in the spans of the beams.

Wcrit = 2(Ma + Mb)/1 (2.1)

In the above equation Ma and Mb are the maximum positive and negative flexural

strengths at the ends of the member, and 1, is the clear span between the column faces

as shown in Fig. 2.1

During severe earthquakes the high inelastic rotations that develop in both hinge forms

inevitably lead to elongations of the associated members.
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Fig. 2.1 Critical Uniformly Distributed Load

2.1.2 The Formation and Behaviour of Uni-directional Plastic Hinges

Uni-directional plastic hinges mostly develop in beams which have been designed for the

dual purpose of providing both gravity and seismic resistance. They form as illustrated

in Figs. 2.2a and 2.2b.

7-4 Th

-111-
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Fig. 2.2a Sway to the Right

1-47
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41
Fig. 2.2b Sway to the Left

As the beam frame structure sways to the right, a negative moment forms at the right

hand column face while a positive moment forms in the span of the beam on the left

hand side of the centre-line. With the reversal of the sway direction, two new hinge
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zones are formed. A negative moment rotation at the left hand column face and a

positive moment rotation in the span of the beam on the right hand side of the centre

line. Every change in sway direction causes an increase in the hinge rotations resulting

in an accumulation of negative moment rotations at the column faces and positive

moment rotations in the spans of the beams. The high rotations produced cause member

elongation by the mechanism illustrated in Fig. 2.3.

-4-1. -rk

-41 -1-
initial shape

r« -

-1= 112liQI -4-

-3 L

-1=
deformed shape

Fig. 2.3 Elongation Mechanism

Tests carried out at Auckland University [2,3] on beam-column sub-assemblies which

formed uni-directional plastic hinge zones concluded that because strains in the

compression zone reinforcement are small they can for practical purposes be taken as

zero. Hence the elongation of a beam, measured at mid-depth is given by the

expression:

elongation = X0(d - 61) 1 1 (2.2)

where (d - d') is the distance between the centroids of the flexural reinforcement

and I0 is the sum of the plastic hinge rotations. Comparisons with elongation values

derived from the above expression and measured experimental values showed good

agreement, except that the elongation is overestimated when the reinforcement starts to

buckle [3].
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2.1.3 The Formation and Behaviour of Reversing Plastic Hinges

Reversing plastic hinge zones can be expected to form in the beams of frame structures

as illustrated in Figs. 2.4a and 2.4b providing the maximum moments form at the ends

of a member and none of the positive bending moment flexural reinforcement is

terminated near the column faces.

rh 27

LU U

Fig. 2.4a Sway to the Right

e--

4-1 41
Fig. 2.4b Sway to the Left

As the structure sways to the right positive and negative moments form in the beam at

the left and right column faces respectively. With the reversal of sway comes an

associated reversal of direction of the inelastic rotations such that a positive moment

forms at the right column face, while a negative moment forms at the left column face.

Tests [1,2,3] carried out on the formation and consequences of reversing plastic hinges

have concluded that with cyclic load reversal, tension zone reinforcement yields to a

greater extent than compression zone reinforcement. Consequently reinforcement that

has yielded in tension in the previous cycle, does not yield back to the same magnitude

as the tension yield, when in the compression loading phase. So with continued cyclic

loading the compression zone reinforcement will effectively lengthen and the cracks in
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the compression zone will remain open. This was found to be a major contributing

factor to the axial extension of the member [1,2,3]. The elongation action described

above, is primarily due to a truss like shear resistance mechanism (see Figs. 2.5a and

2.5b) which develops in the hinge zones. In order for the mechanism to remain in

equilibrium, once the intersecting diagonal cracks have formed, the compression force

sustained by the reinforcement must be smaller than the opposing tension force.

7-777
4499
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Fig. 2.5a Crack and Diagonal Force Pattern
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Fig. 2.5b Truss Mechanism

Another factor that was found to contribute to the member elongation was a wedging

action that is produced by dislocated aggregate particles which fall in the cracks of the

member during cyclic loading. This action hinders complete crack closure and enhances

the tensile yielding elongation phenomenon.

For the reversing hinge the elongation at mid-depth has been empirically derived [1,2,3]

as;

elongation = IG(d - d')/2 + e (2.3)
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where (d - d') is the distance between the centroids of the flexura] reinforcement,

Ee is the sum of the plastic hinge rotations and e is the elongation of the longitudinal

reinforcement in the compression zones of the plastic hinges.

2.2 Modelling the Elongation Phenomenon

2.2.1 Introduction

In this initial research project it was decided to model the elongation which resulted

from flexural behaviour in the hinge region. Thus in order to best represent the

mechanics of plastic hinge elongation with respect to flexure only, a composite element

structure was created for implementation in the nonlinear dynamic computer program

DRAIN-2DX. It employs two new finite elements which represent the more complex

inelastic stress-strain properties of the steel and concrete within the plastic hinge zones.

As a result, both reversing and uni-directional plastic hinges can be modelled.

2.2.2 DRAIN-2DX

Because of the complexity of seismic design, it is important for research purposes to

obtain detailed information about the probable response of a structure during earthquake

loading. As this response involves inelastic actions it is essential that an inelastic model

is used. DRAIN- 2DX is a general purpose computer program developed specifically for

the two dimensional analysis of elastic and inelastic structural systems. It has a flexible

coding format which allows the incorporation of new element types and features with

minimum adjustments.

Static Analyses Procedure

For static analyses DRAIN-2DX employs an 'event-to-event' calculation scheme. An

event is defined to be a significant change in stiffness usually as a result of yielding,

buckling or unloading. Associated with each new event is a yield code, indicating the

type of yielding that is taking place, and an event code, describing the new event in terms
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of the element behaviour, for example; unloading from tension, or yielding in

compression. For the event-to-event procedure, automatically determined load

increments are used so that the next event is always reached and the element stiffness

is updated. Thus if the load-displacement relationship is multi-linear, the solution does

not diverge from the equilibrium path and there is no unbalanced load. The mechanics

of this event-to-event calculation scheme are as follows;

Consider for example the multi-linear load-displacement relationship shown in Fig. 2.6a.

If a load increment, AR, is applied to the element when it is at displacement, r., and

sustaining load, Ro, then a corresponding displacement increment, Arl, is calculated using

stiffness Kl (see Fig 2.6b). Because this displacement increment exceeds that required

to reach the next event at A both it and the load increment are scaled down by a factor

fl, given by:

f
1

where ArA is the displacement increment that ends at the next event. This ensures

that a new equilibrium state is reached at the point A. The remainder of the load,

(1-fl)AR, is then calculated and a new displacement increment, Ar2, is found using

stiffness K2 (see Fig 2.6c). Again this displacement increment exceeds that required to

reach the next event at B, so both it and the load increment are scaled by a factor 4,

given by:

f2

where ArB is the displacement increment that ends at event B. So once again the

solution is in equilibrium. The remainder of the load, (1-fi)(1-f,)AR is then calculated

and a new displacement increment, Ar3, is found using stiffness K3 (see Fig 2.6d). This

time the increment is less than that required to reach the next event and the factor, G

is set to one. The element is now sustaining the load, R.+ AR, and has not deviated

from the equilibrium path in order to reach this final equilibrium state. When an
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element unloads the event factor is set to zero to ensure that the stiffness is updated

immediately. It should also be noted that event factors can be determined using forces

instead of displacements.

A I

LOAD LOAD
C

JK.

AR A AR
K

tj K,

/ 44
1 ¥

7 DISPLACEMENT #-4 DISPLACEMENT
Ar 4

Fig. 2.6a Load Displacement Fig. 2.6b First Event
Relationship

LOAD . LOAD

C

2-".im'*1.-GIA-1 T
(1 -1,)AR 

A- 1

R.+AR

8 4

1 DISPLACEMENT  DISPLACEMENT
84 ar,-ArE

Fig. 2.6c Second Event Fig. 2.6d End of Step

If elements have curvilinear action-deformation relationships, the event definition is

chosen so that the solution remains close to the exact path and the errors that result at

the end of the load step are applied as a correction in the next step. For structures with
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more than one element, event factor calculations are carried out on all the nonlinear

elements, and the loads and displacements are scaled by the smallest event factor. The

static analysis terminates when a specified maximum load, displacement, or number of

load steps is reached.

Dynamic Analyses Procedure

For dynamic analyses DRAIN-2DX uses a similar 'event-to-event' procedure to that used

for the static analyses, but it includes corrections to ensure that energy balance and

equilibrium are satisfied at the end of each load step. The Constant Average

Acceleration step-by-step method is used to perform all integration calculations. It is

followed by velocity and acceleration modification procedures to correct the energy

balance and satisfy equilibrium respectively. To minimise the discretization errors that

are introduced when a dynamic problem is solved by a step-by-step integration method,

DRAIN-2DX provides an automatic time step function. This function basically ensures

a specified level of accuracy for the solution by using either a measure of the mean

equilibrium error or the equivalent impulse error for each step in order to provide a

basis for automatically selecting the integration time step. In this way a compromise is

reached between the accuracy of the solution obtained by selecting very small time steps

and the computational costs which increase with the number of steps employed.

DRAIN-2DX was used to perform all the analyses carried out in this report.

Further details about the solution strategies and procedures employed by DRAIN-2DX

can be obtained from Reference [4].

2.2.3 Structure of the Hinge Model

The structure shown in Fig. 2.7 was devised to model the behaviour of the plastic hinge

zones. It consists of a steel and concrete truss type element placed at the centroids of

the top and bottom steel of the section, a flexural beam type element, and four rigid

beam elements.
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Fig. 2.7 The Hinge Structure

The flexural beam type element is given a very large shear stiffness so that it carries the

shear force, but has a very small flexural stiffness and a release at one end to ensure that

it transfers negligible axial loads and no bending moments. The release is incorporated

into the element by giving it a flexural stiffness equivalent to:

8 0 0
K= -

L 03

The four vertical elements are essentially rigid beam elements. The length of the

'structure' is small: typically one fifteenth of the depth of the member. This enables the

central shear carrying element to be very stiff and so ensures there is only a very small

shear deflection across the hinge zone. The steel and concrete elements are new truss

elements designed specifically to model the concrete and steel within the hinge zones and

are accordingly assigned properties to represent the actual reinforced concrete within

these areas. In order to derive realistic concrete and steel strain values the length of

these truss elements can be artificially scaled to a value more representative of the actual

plastic hinge length. Assembling the elements in this way and giving them these

properties ensures that the elongation of the member will only result from the flexural

deformation properties of the steel and concrete elements.

2.2.4 The Plastic Hinge Steel Element

The elongation of reinforced concrete beams has been shown to be directly related to

the yielding behaviour of the reinforcement in the plastic hinge zones of the member.
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It is therefore important to produce an element which models the yielding properties of

the reinforcement with some degree of accuracy.

The monotonic behaviour of steel is well known (see Fig. 2.8). The initial stress-strain

relationship is linear with an elastic modulus of around 200 GPa, until the proportionality

limit is reached, (point A). At this point the stress-strain relationship differs slightly

depending on whether the reinforcing bar is machined or not.

- -. Machined Bar

Stress· ,/ fn
\Af

I »

€ € e.u € f Strainy sh

Fig. 2.8 Steel Monotonic Stress-Strain Curve

Once the bar has yielded it reaches a yield plateau region, where the stress remains

constant (at the yield value) until the onset of strain hardening. The stress then

increases until an ultimate stress value is reached. Once this value is exceeded the stress

decreases until fracture occurs. The inelastic cyclic behaviour of reinforcement is

perhaps not quite so well known, but there is an accepted stress-strain relationship [5].

For the first half cycle of cyclic loading, the stress-strain pattern is the same as that for

the monotonic loading case. However, once the yield value has been exceeded, if the

load reverses a nonlinear stress-strain relationship develops where there is no definite

yield point (see Fig 2.9). This is referred to as the Bauschinger effect. Every new half

cycle of loading is dependent upon the previous strain history of the steel.
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Stress

l non-linear curve

9

]

Strain

The yield point
no longer exists

Fig. 2.9 Steel Cyclic Stress-Strain Curve

Many researchers have developed equations to describe the stress-strain characteristics

of steel. After comparing a number of these methods with experimental results,

Tjokrodimuljo [5] concluded that with some modifications a model developed by

Menegotto and Pinto [6] was probably the most accurate and was relatively simple. As

a result it was decided to use this modified method to describe the stress-strain

characteristics of the new steel element. The complete modified model, as given by

Trokrodimuljo [5], is summarised below and in Figs. 2.10 and 2.11.

The Improved Menegotto and Pinto Method.

(1) For the initial cyclic loading in the elastic range:

f = Es·E (2.4)

where:

f,£

E

= stress and strain of steel at any point on the curve

respectively

s = elastic modulus of steel
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(2) For the curve where the yield strain is exceeded for the first time:

f = ES Ey for €<ey (2.5)

f =4 for Cy < Ey 5 £sh (2.6)

f =pt for Esh < Ey 5 £su (2.7)

where:

P
m0-e
60(£ - c

sh,

sh

)+2 0 - esh) (60 - m)
+

)+2 2(30q + 1)2

(fsu/9 (30 q + 1)2 - 60 q - 1
m=

15 q2
q = /9 - ish

4 - yield stress of the steel

 = ultimate stress of the steel

ey = yield strain of the steel

esh = strain at the starting point of strain hardening

£su = strain at the ultimate stress

(3) For the curves after the yield strain has been exceeded:

0 f' = be' +
(1 - b) e *

1 + £•R 1/R
(2.8)

where:

C' = 0 - el) / (Co - el)

p = (f- fi)/ 6 -fl)

b = ri /K

R = Y loge trev

Y = 0.40 + 3.6 X -0.9

X = (1Oe £ rev)2 {10& sht + 20) - 2}



Chapter 2 - Theory

t - it-e
rev amp y

V Casc - 0.925 I Edes
Esht -

€
y

4 = 4 co + 6 - 4 el) , stress at the intersection between two asymptotes

tr-fi + K 81 - 1% Cor , strain at the intersection between two asymptotesC =
0

4-4

4 -0.06 -t,is the gradient of the second asymptote
0.06 - ey

K = elastic modulus of the steel

1 , fi = strain,stress at the starting point of the curve

f,r = stress at the origin of the second asymptote

where:

for = 4, for ascending curve, and

for = -nt, for descending curve

cor = strain at the origin of the second asymptote

where:

tr-f
£ =£+ 1 , but will be;or 1 E

S

Cor = cy , if ei + for - 4 > ey for ascending curve , and
K

f -f

Cor = - n ey, if ti +
or 1

<-ne for descending curve
ES y

= a parameter which is influenced by the inelastic buckling conditions of the steel

under compressive loading (i.e. the ratio of the spacing of the buckling

protection and the diameter of the steel): n = 1.0 for a machined bar specimen

which does not undergo inelastic buckling under compressive loading, and n =

1.1 for reinforcing steel which may be subjected to inelastic buckling condition

M
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= stress corresponding to strain 0.06 in the stress-strain curve of the steel under

monotonic loading in tension

, = strain amplitude of the previous half cycle

£ = total strain amplitude for all previous ascending curves after the yield strain has

been exceeded

. = total strain amplitude for all previous descending curves after the yield strain

has been exceeded

A

Stress

fom Second asymptote
E.1-

€ €.h € e. Strain

. 2.10 Improved Menegotto and Pinto Method: Steel Monotonic Stress-Strain
Curve

A

Stress
Ce.,11,)

-ccnd asymptote

C £* , f,t ). fy
i.\

ascending curve /11,11 asymptote .  E,
/ \'r

/ Strain

E. descending curve <
Irst asymptole

/
-1.14 / . . .. C €0.1 f.c)

C elt. fl,)1 -/-ED \i Second as)7nptole

g. 2.11 Improved Menegotto and Pinto Method: Steel Cyclic Stress-Strain Curve

m
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Fig. 2.12b Element Yield Codes Fig.2.12c Element Event Codes

Because of the nature of the event-to-event solution scheme employed by DRAIN-2DX,

it was necessary to define 'events' at different intervals along the unloading and reloading

curves and then to redefine the curves as the set of lines that joined these points. To

ensure that the solution remained close to the improved Menegotto and Pinto hysteresis

path the events are defined in terms of fixed stress values (points; A, B, D, E, F, H, I

and J) as shown in Fig. 2.12a. The associated event strains are then calculated from

Trokrodimuljo's [5] improved Menegotto and Pinto equations using Newton-Raphson

iterations. The yield and event codes that are used to describe the state of the steel
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element, with respect to its position on the hysteresis loop, can be seen in Figs. 2.12b and

2.12c respectively.

The aim of the Newton-Raphson scheme for this problem is to find a value for the strain

at the next event such that;

u = f(£ 9 - fcvt = 0 (2.9)

where:

\

f(e *) = be' + (1 -b) e. (f) - f1

 0 + C.Rf

0 + 4

To do this, a number of iterations are used to solve equation 2.10 until the desired

convergence criteria are achieved and the value for the strain at the next event is

obtained.

e
*+1

= c -f<£) (2.10)
X

ftex)

where:

f (ex) is obtained using equation 2.8, and

af ae*
f /(ex) = - -

88* 8£

/

= b+(1-b)1
. 0 + e•RP

€

(1 +
.R 11 4 -fl
C.R)Jleo - e1

Once the stress and strain values at the next event are known, the stiffness gradient

between the last and the next event can be determined and the force and deflection

increments can then be calculated.

In order to employ the steel element in a structural analysis, the user need only input
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values for; the tensile and compressive yield stress, Young's Modulus, the member cross-

sectional area, the strain at which strain hardening begins and a code value indicating

whether or not the reinforcing bar is subject to inelastic buckling conditions.

2.2.5 The Plastic Hinge Concrete Element

One factor contributing to the elongation of reversing plastic hinges has been shown to

be the wedging type actions that results from dislocated aggregate particles that become

lodged within the cracks of reinforced concrete members during cyclic loading.

Consequently it was necessary to develop a concrete element which effectively modelled

this action.

A large number of methods for predicting the stress-strain behaviour of concrete under

inelastic cyclic conditions have been developed, but in most of these the stress carrying

capacity of the concrete has been neglected in the tensile region, particularly after cracks

have been assumed to form. Research carried out by Bolong et.al. [7] into the effects

of opening and closing cracks, suggests that the compression carrying capacity of concrete

in the tensile strain region can be quite significant, even when cracks in the concrete are

still evident. They discovered that during reloading, as a concrete crack closes it starts

to carry a small proportion of the compression force by transmitting the local pressures

within the crack. As the level of closure increases, so too does the 'contact' compression

force. Bolong et.al. have developed a number of equations to represent the stress-strain

characteristics of concrete under cyclic loading which include these contact effects.

These equations are given below and illustrated in Fig. 2.13.

Bolong et.al. Method.

(1) The monotonic stress-strain curve:

f = (2 ¢ e) / (e. + e)

f = 4' 1 - [200 Ce - e

for

0) for e

e

0

e

£

0
(2.11)

5 ta (2.12)

f = 0.3 41 fore,se (2.13)
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Stress
eq. 2.12

03.2.15 / .- eq. 2.18

eq. 2.11

- eq. 2.15
eq. 2.14.

iq. 2.14 / ' eq. 2,18 'q' 219
eq. 2.14

e. Strain

Fig. 2.13 Stress-Strain Concrete Curve under Cyclic Loading
Proposed by Bolong et al.

(2) The stress-strain curve under cyclic loading:

(a) Reloading Curves

f = L 1 - ccs + eJ
2£ 1 for emin <£<0 (2.14)

f = f £ 12£ ¢ for 06 8, tmax < £0 , tmin< 0 (2.15)4-£.1+1leo + CJ

f=¢|1--
e

e 1 + 1 2£ 1 1 2% 1 f
maxJ < emax + £1  max  £o J max

for 0 Se,eo<e
rnax

(2.16)

f = 2¢ C e _ 0.2 emax 1
for € >0 (2.17)(co + 2 - 0.2 e minmax jl

..................................
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(b) Unloading curves:

f = (2 - 0.2 tmax ax for e
1.8 tmax - e

max 6 20 (2.18)

f - pe_£max / max
\f

for co 5 e rnax

3 £max - 2 e
(2.19)

where:

09 e

CCS = emin  0.1 + (2.20)
0 +  min j|

is the strain where contact effects start

= the minimum strain where the repeated loading startsEmin

Emax, tax = the strain and stress at the starting point of the previous unloading

curve

L = 0.3 ¢ 2 + (£cs /4 - 4
3/4 + 2

(2.21)

is the stress when e = 0, in the reloading curve

Work carried out by Tjokrodimuljo [5] at Auckland University led to a modification of

Bolong et al's equation for the strain at which contact effects begin. This is given in

equation 2.22.

£ = 0.8 co li-- 11 (2.22)

where co is assumed to be 0.002 and emax is the strain at the starting point of the

previous unloading curve. With this modification Bolong et al's equations were shown

to model concrete stress-strain experimental hysteretic curves adequately [5].
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Fig. 2.14b Element Yield Codes Fig. 2.14c Element Event Codes

The contact effects Bolong et.al. describe appear similar to the dislocated wedging type

action found in reversing plastic hinge elongation. Consequently it was decided to

employ the improved contact effect equations in a simplified model to represent the

stress-strain characteristics of plastic hinge zone concrete. The equations and the events

employed to describe this relationship are given below and illustrated in Fig. 2.14a

(points A to G). The yield and event code values used to describe the state of the

concrete element with respect to its position on the hysteresis loop can be seen in Figs.

2.14b and 2.14c respectively.
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For decreasing strains:

f = tr + Kg for e < e < min(ecr,eint) (2.23)

f = 4 ¢ + psh K e for eo <e <e* (2.24)

f = fma, + d00O1 Ec(c - tmax) forecs < e 5 e max
(2.25)

f = L+Ecs e for e <es€ (2.26)
tnt cs

For increasing strains:

f = fmin + EC 0 - Emin) < e < ecrfor £ ms (2.27)

f = 4 + 0·0001 Ec 0 - ecr) for ecr 5 e (2.28)

where

f = tensile stress at which concrete cracks
cr

Ecr = emin +  , strain at which concrete cracks
C

E = concrete modulus
C

-4 f

4 = L + E
C

f¢ - 4 ¢1
psh = 1 I , concrete pseudo strain-hardening factor

Co - 8%,

emax' fmax = maximum strain, stress values from the tensile loading

e min' fmin = minimum strain, stress values from the previous compression loading

f -f
E = 1 CO CS  , contact stress modulusCS

L - es J

le /e)-4
fco = -0.3 ¢ 2 + \ CS' 0,

@cs/82 + 2
, contact stress at zero strain

fyo = fmin - tmin Ec

Ccs = 0.8 co -ZE - 1, strain at which contact stresses startCo

e

(f -f\
= \ co yoj

int 6 - Ecs) , strain intercept value.
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To employ the concrete element in a structural analysis the user need only input values

0 for; tensile cracking and compressive yielding, the cross-sectional area of the member

and a code indicating whether or not contact effects are to be taken into consideration.

.

.
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Chapter 3

PROGRAMMING VERIFICATION

3.1 Introduction

A number of cyclic analytic tests were performed on the new steel and concrete elements

to ascertain the accuracy of their respective programme coding. The composite hinge

structure was also tested to verify the adequacy of its element configuration for modelling

the flexural characteristics of plastic hinges. Descriptions of these tests and their results

are contained within this chapter.

It is important to note that the 'events' that occur during the loading sequences cause

more dramatic load-deformation patterns than would normally be expected, because of

the linear nature of the hysteresis loops employed to describe the behaviour of the

elements.

3.2 Testing of the Steel Element

The test system shown in Fig. 3.1 was used to assess the reaction of the steel element to

a series of cyclic static load tests.

 LoadApplied

Test
/ Element

/llllllllilll

Fig. 3.1 Element Test System
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The element was assigned a unit length so that resulting extensions were equivalent to

element strains and typical steel properties were chosen to describe its stress-strain

characteristics (see Table 3.1).

Table 3.1 Test Steel Element Properties

Steel Properties Values

Young's Modulus, E 200 GPa

Cross-Sectional Area, A 0.00lmi

Length 1m

Yield Stress 430 MPa

Strain at start of start hardening, E,h 0.003

Strain at ultimate stress, Es. 0.25

Ultimate stress, f:u 650 MPa

Inelastic buckling condition parameter for compressive loading, rn

- For machined bar which does not undergo inelastic 1.1

buckling under compressive loading, rn = 1.0

- For reinforcing steel which may be subjected to inelastic

buckling conditions, rn = 1.1

The resulting element force-extension curves from three of these static tests are

illustrated in Figs. 3.2,3.3 and 3.4. As can be seen from the figures the hysteresis loops

generated follow the accepted steel force-extension relationship (see Fig. 2.9) given the

linear nature of the solution scheme. The monotonic curve is traced for the first half

cycle and the Bauschinger effect and its associated stiffness degradation and strain

hardening are incorporated into the remaining cyclic load pattern.

Due to the large extensions resulting from all three tests, the yield plateau region of the

monotonic curve is comparatively very small and consequently hard to distinguish in any

of the figures. However from the yield codes and the force and extension values

obtained from the tests, it is clear that the steel element yields at the expected force of

430 kN and that the yield plateau region does exist before strain hardening begins at the
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Fig. 3.2 Steel Force versus Extension Hysteresis Loops - Demonstrating post yield
elastic loading cycles
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Fig. 3.3 Steel Force versus Extension Hysteresis Loops - Demonstrating inelastic
loading cycles

desired strain value. In Fig. 3.2 the descending curves all remain within the elastic range

and no negative yielding occurs, but in Fig. 3.3 both ascending and descending curves
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Fig. 3.4 Steel Force versus Extension Hysteresis Loops - Demonstrating a
combination of elastic and inelastic loading cycles

have inelastic deformations. The steel hysteresis loop shown in Fig. 3.4 illustrates a

combination of both elastic and inelastic loading cycles, confirming the ability of the

programme code to cope with varied loading sequences. It is evident from all three

graphs that the force-extension values obtained are an acceptable representation of the

experimental results that would be expected from similar loading patterns.

3.3 Testing of the Concrete Element

The test system illustrated in Fig. 3.1 was also used to assess the behaviour of the

concrete element under a series of cyclic static load tests. Once again the element was

assigned a unit length and given typical concrete properties to describe its stress-strain

characteristics (see Table 3.2). The force-extension graphs from three of these load

sequences are illustrated in Figs. 3.5,3.6 and 3.7.
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Table 3.2 Test Concrete Element Properties

Concrete Properties Values

Concrete Modulus, E 29.35 MPa

Cross-Sectional Area, A 0.lm2

Length, 1 1m

Post Crack Stress, fyp 5 MPa

Cylinder Compressive Stress, fc' 44.9 MPa

Contact Stress Code 1

- 0: ignore contact stress

effects

- 1: include contact stress

effects

500

0
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-1000

; -1500

,-2000

-2500

-3000

-3500 0

-4000

-2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

Extension(mm)

Fig. 3.5 Concrete Force versus Extension Hysteresis Loop Excluding Contact Stress
Effects

Fig 3.5 shows a typical concrete force-extension loop for the case when contact effects

are ignored. The concrete element is taken through a'compression-tension-compression'

..................................
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Fig. 3.6 Concrete Force versus Extension Hysteresis Loop Including Contact Stress
Effects
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Fig. 3.7 Concrete Force versus Extension Hysteresis Loops Including Contact Stress
Effects: Demonstrating multiple loading cycles

loading cycle. As can be seen from the graph the concrete does not sustain any

compression load until the 'cracks' in the element are completely closed, that is, until the

..................................
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element starts compressing. Figs. 3.6 and 3.7 illustrate the hysteresis loop generated

when contact effects are included. From both graphs it is clear that the concrete

element starts sustaining compression forces when it is still effectively 'cracked', thus

representing the wedging type action of the aggregate particles. Fig. 3.7 confirms the

ability of the programme code to cope with multiple 'yield-crack-yield' sequences. As

can be seen from all three figures the force-extension magnitudes obtained are within

acceptable bounds for concrete and the patterns of the hysteresis loops are as expected

allowing for the linear nature of the solution scheme (see Fig. 2.13).

3.4 Testing of the Hinge Structure

The single hinge testing system shown in Fig. 3.8 was set up to verify the ability of the

chosen hinge structure to adequately model the mechanics of plastic hinge elongation.

/Inm.Uumin,run,ni:¤I]mum-u:111..m.-

A

Ck:zo Flexural Beam Element 5

E Steel ElementE] Concrete Element  Ii Applied0 Beam Element Moment

0 Node

Fig. 3.8 Hinge Model Testing System

An anti-clockwise moment was applied as shown, then taken through two complete load

reversals. Table 3.3 is a time-table of the events that occurred during the load reversals.

Most of the events occur when the elements are in tension, although the steel elements

do yield in compression before the 'cracks' in the corresponding concrete elements close

enough to begin carrying a compressive load. As is evident from the table the

chronological order in which the element events take place, is as expected for the applied

loading sequence.
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Table 3.3 Time-table of Test Hinge Element Events

Step Event Event Event Group Elem Event Load Event

No. No. Type Factor No. No. Code Factor Description

1 1 1 0.001 2 2 2 0.000984 Bottom concrete cracks in tension: A

1 2 2 0.099 0.1

2 1 2 0.1 0.2

3 1 2 0.1 0.3

4 1 2 0.1 0.4

5 1 2 0.1 0.5

6 1 2 0.1 0.6

7 1 2 0.1 0.7

811 0.0509 121 0.75094 Bottom steel reaches tenSion yield: B

8 2 1 0.0008 1 2 2 0.75169 Bottom steel starts strain-hardening

8 3 2 0.0483 0.8

9 1 2 0.1 0.9

10 1 5 0.1 1 C

1 1 1 0 1 1 1 0.000001 Top steel unloading from compression

1 2 2 0.1 0.1

2 1 2 0.1 0.2

3 1 2 0.1 0.3

4 1 2 0.1 0.4

511 0.065 126 0.46501 Bottom steel loading in compression: D

5 2 2 0.035 03

6 1 1 0.0005 2 1 2 0.50049 Top concrete cracks in tension

6 2 2 0.0995 0.6

7 1 2 0.1 0.7

8 1 2 0.1 0.8

9 1 1 0.0755 1 1 1 0.87547 Top steel reaches tension yield: E

9 2 1 0.0004 1 1 2 0.87585 Top steel begins strain-hardening

9 3 1 0.0067 1 2 7 0.88252 Bot. steel reaches first cyclic yield: -1.lfy: F
9 4 2 0.0175 0.9

10 1 1 0.0963 2 2 0 0.99634 Bottom concrete compressive loading: G

10 2 5 0.0037 1 H

1 1 1 0 1 1 5 0.000001 Top steel starts unloading from tension

1 2 1 0.0039 2 2 2 0.003877 Bottom concrete cracks in tension

1 3 2 0.0961 0.1

2 1 2 0.1 0.2

3 1 2 0.1 0.3

4 1 2 0.1 0.4

511 0.065 116 0.46501 Top steel sustains compressive load: I

5 2 2 0.035 03

6 1 1 0.0013 1 2 10 030132 Bottom steel sustaining tensile load
6 2 2 0.0987 0.6

7 1 2 0.1 0.7

8 1 2 0.1 0.8

911

921

0.0798 1 2 11

0.0027 1 1 7

0.87977

0.88252

Bottom steel reaches first cyclic yield: fy: J
Top steel reaches first cyclic yield: -1.lfy: K

9 3 2 0.0175 09

10 1 1 0.0948 2 1 4 0.99478 Top concrete starts contact stress loading: L
10 2 5 0.0052 1

..................................
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The points A to L, which refer to the element events (see Table 3.3), are shown on some

of the subsequent figures.

A plot of the applied moment against the resulting rotation of the hinge structure is

illustrated in Fig. 3.9.
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Fig. 3.9 Test Hinge Applied Moment versus Rotation Graph

Comparing this figure with the steel and concrete force-elongation loops illustrated in

Figs. 3.10 and 3.11, it is clear that the steel behaviour dominates the moment-rotation

reaction of the hinge structure, as it does in plastic hinge zones. Also the elongation of

the hinge is primarily due to the yielding of the steel element which again, is as the

theory suggests.

The applied moment-elongation graph shown in Fig. 3.12 requires a more indepth

analysis to determine the validity of the mechanisms responsible for its irregular shape.

The moment is initially applied anticlockwise. This puts the bottom concrete element

in tension and causes it to 'crack' almost immediately. The remaining elements behave

elastically from points A to B, with the majority of the compression loading being

sustained by the top concrete element and virtually all of the tension load being carried
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Fig. 3.11 Force versus Elongation Plots for the Bottom Steel and Concrete Elements
of the Test Hinge

by the bottom steel element. At point B the bottom steel yields then begins strain-

hardening to point C and is responsible for the rapid increase in the elongation of the

..................................
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Fig. 3.12 Applied Moment versus Elongation Graph for the Test Hinge

hinge structure. At point C the moment is reversed and the loading on the elements

begins to decrease. At point D the bottom steel begins to sustain compression forces

which leads to a more rapid decrease in the overall elongation of the structure. This is

due to the Bauschinger effect and the resulting stiffness degradation of the steel element.

Soon after this the top concrete element goes into tension and cracks. At point E the

top steel element yields in tension then begins strain hardening. This again causes the

elongation of the hinge to increase significantly. However, the rate of this elongation

nearly halves when the bottom compression steel begins yielding at point F. At this

point both the top and bottom steel elements are yielding, but in opposite directions.

At point G the cracks in the bottom concrete element close and it begins to sustain

compressive loading. Consequently the elongation rate once again increases. Up to this

point the bottom steel sustained all of the compression load. The moment is reversed

for the final time at point H. Soon after, the bottom concrete element is loaded in

tension and cracks. There is virtually no decrease in the elongation of the hinge

structure however, until point I, at which the top steel begins to sustain a compressive

load and there is a corresponding reduction in the element's stiffness, as with points D

to E. At point J the bottom steel reaches tension yield for the second time, causing a
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large increase in the elongation of the hinge. At point K the top steel yields in

compression, greatly reducing the rate of this increase. Finally, at point L, the top

concrete element begins sustaining a compressive load resulting from contact effects and

the elongation rate increases dramatically.

It is interesting to note that, although the pattern of events occurring between points C

and H is practically the same as that from H to L (except that it is reversed), the

reduction in the overall elongation of the hinge is less due to the stiffness degradation

of the steel elements associated with the Bauschinger effect. Also although there has

been a complete load reversal from C to H the elongation of the hinge has remained

virtually unchanged. As can be seen from all the figures, the events that have occurred

and the resulting load-deformation graphs are all acceptable allowing for the linear

nature of the solution schemes.

3.5 Conclusions

It appears from the analyses carried out on the individual steel and concrete elements

and the test hinge, that the elements are working correctly and the hinge structure

provides an adequate means of modelling the flexural behaviour of plastic hinge zones.
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Chapter 4

PORTAL FRAME ANALYSES

4.1 Introduction

In this chapter the results obtained from static and dynamic simulations of ductile

reinforced concrete portal frames, which form either reversing or uni-directional hinges,

are analysed. Comparisons are made between results obtained from frames that are

modelled solely by DRAIN-2DX beam-column elements and those which employ the

hinge structure devised in Section 2.3 to represent the flexural behaviour of the plastic

hinge zones. The effects of the formation of both hinge types and the resulting member

elongations on the performance of the portal frames is also investigated.

4.2 The Portal Frame Structures

As the emphasis of this report is on structural analysis, a number of simplifying

assumptions were made in the design of the portal frames. These assumptions, the

design methods employed and the design forces and hinge element properties used can

be found in Appendix A. Two frame types were subjected to both static and dynamic

loads. One was designed to provide both gravity and seismic resistance and form uni-

directional hinges, while the other was designed purely to sustain seismic loading and

therefore form reversing hinges. In all analyses the cross-sectional dimensions of the

structures were kept constant to ensure the resulting differences were only due to the

loading variations (see Fig. 4.1). Each frame type was modelled in two ways; at first

using only DRAIN-2DX beam-column elements, as in usual practice [11,12,13], and then

employing the hinge structure devised in Section 2.3 to represent the plastic hinge zones

within the frames. For the purpose of this chapter the first model type will be referred

to as a 'beam-column' model and the second as a 'hinge' model.



40 Chapter 4 - Portal Frame Analvses

400mm wide x 600mm deep
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450x450mm

columns 3.4m
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Fig. 4.1 Portal Frame Structure

4.3 Static Analyses

Equal lateral forces were applied at each end of the beam to introduce the equivalent

seismic forces. These were incrementally increased until the lateral deflection of the mid

point of the beam was six times the lateral deflection found in the modal analyses of the

structure. The forces were then reversed twice, until first an equivalent negative and

then an equivalent positive displacement was achieved. The flexural strength of the

columns at the base of the structure was scaled as recommended in the commentary to

NZS 3101 [9]. This increase in strength reduced the displacement ductility to

approximately 3.5 and 4 for the uni-directional and reversing hinge models respectively.

The force-displacement relationships predicted by both the uni-directional hinge frame

and the reversing hinge frame models are illustrated in Figs. 4.2 and 4.3. The graphed

displacement value is the average of the displacements measured at either end of the

frame. For both frame types the displacements predicted by the hinge models are almost

identical to those predicted by the beam-column models. It is also apparent from the

figures that the force required to push the uni-directional hinge frame to the 3.5 ductility

displacement is greater than that required to push the reversing hinge frame to the same

displacement value. This difference occurs because of the extra strength in the uni-
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Fig. 4.3 Force versus Displacement Curves for Static Analysis of Reversing Hinge
Frames

directional hinge frame, caused by the additional axial load in the beam, which results

from the gravity loading.

..................................
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The differences between the two model predictions became apparent when the beam

elongations were calculated. The beam-column model does not predict any beam

elongations for either frame type, while the hinge model showed a 30mm beam

elongation for the uni-directional hinge frame and a 9.3mm beam elongation for the

reversing hinge frame. These values are illustrated in Figs. 4.4 and 4.5. The elongation

obtained from the reversing hinge frame is less than would be expected according to

experimental results [1,2,3]. This anomaly is due to the fact that the hinge structure

employed to model the plastic hinge zones does not allow for the shear resistance

mechanism that develops in these regions, which experimental findings have shown

makes a major contribution to the deformation in reversing hinges.
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Fig. 4.4 Force versus Elongation Curves for Static Analysis of Uni-directional Hinge
Frame

The type of hinge formed is reflected in the pattern of the force-elongation plots. After

the formation of uni-directional hinges, any subsequent load reversals result in an

accumulation of the inelastic rotations sustained by the hinge zones, as discussed in

Section 2.1.2. This leads to a steady increase in the overall elongation of the member

as evident in Fig. 4.4. In reversing hinges, a load reversal results in a reversal of the

inelastic rotations sustained by the plastic hinge zones. Experimental results [1,2,3] have

shown that the longitudinal reinforcement in the compression zone of the hinge does not
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Fig. 4.5 Force versus Elongation Curves for Static Analysis of Reversing Hinge
Frame

fully yield back during each load reversal and so under cyclic conditions there is an

overalllongitudinal elongation from one cycle to the next, as described in Section 2.1.3.

Two factors responsible for this action are firstly a wedging type action of the concrete

aggregate particles and secondly the shear resistance mechanism of the hinge zone.

Although the hinge model employed makes some allowance for the aggregate wedging

action, it does not model the shear resistance mechanism. As a consequence the

compression zone reinforcement yields back to a greater degree than the experimental

test results suggest. Thus the overall longitudinal elongation from one load reversal to

the next does not occur to the same extent. This behaviour is evidenced in Fig. 4.5.

Table 4.1 compares the elongations obtained from the DRAIN-2DX analysis and those

predicted using equations 2.2 and 2.3, as derived by Fenwick and Megget [1,2,3] from

experimental results for both frames types.

The variable 'e' represents the elongation of the longitudinal reinforcement in the

compression zone. As can be seen from the table the results obtained from the DRAIN-

2DX analysis compare favourably with those obtained from the empirical equations.
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Table 4.1 Comparison of Predicted Beam Elongations

Equation Prediction Hinge Model Prediction

Uni-directional Hinge 29.89 mm 30.0 mm

Reversing Hinge 5.91 + e mm 9.3 + e mm

Comparing the maximum column reactions that developed during the static analyses of

the hinge models with those that developed in the beam-column models, increases in

bending moments, shear forces and axial forces of up to 15% were observed.

It is important to note that the Draft Loadings Code [10] allows for displacements of up

to two and a half percent of the inter-storey height. Consequently the portal frame can

deflect up to 85mm and still be within the bounds of acceptability. The displacements

obtained from these static analyses are therefore only 47% of the maximum allowable

displacements. Hence, it is highly probable that the beam elongations resulting from

analyses involving greater frame displacements would be in excess of those obtained

here, as would be the forces induced within the columns.

4.4 Dynamic Analyses

The first 20 seconds of the El Centro 1940, North-South earthquake ground motion

record was employed for the dynamic analyses of the portal frames. A time step of 0.004

seconds was used in all the analyses. The horizontal displacement-time histories,

recorded at both ends of the beam, for both the uni-directional and reversing hinge

model frames, are illustrated in Figs. 4.6 and 4.7 respectively. The resulting beam

elongation is also displayed on both figures.

The total member elongation at the end of the dynamic loading sequence was

approximately 22.4mm for the uni-directional hinge frame and 8.4mm for the reversing
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Fig. 4.7 Hinge Model Displacement-Time History for the Reversing Hinge Frame

hinge frame. The magnitude of the elongation of the beam in the uni-directional hinge

frame falls in the same region as experimental results suggest [1,2,3], however the

magnitude of the elongation of the beam in the reversing hinge frame is significantly less
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than would be expected. This anomaly again arises because the hinge structure

employed to represent the behaviour of the plastic hinge zones is only designed to model

fiexural behaviour and can not represent the shear effects induced within the reversing

hinge zones, as discussed in Section 4.2.
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Fig. 4.8 Beam-Column Model Displacement-Time History for the Uni-directional
Hinge Frame

For the purpose of comparison, the displacement-time histories resulting from tests on

the beam-column frame models are shown in Figs. 4.8 and 4.9. As is evident from both

figures the beam-column element model predicts no overall beam elongation.

Once again, the maximum reactions induced in the columns during the seismic loading

of the portal frames were greater for the hinge models than for the beam-column

models. The most dramatic increase observed was the axial force in the reversing hinge

model frame which exceeded that in the beam-column model by 29%.

As in the static analyses, the maximum displacements obtained are less than half that

allowed by the Draft Loadings Code [10] and the ductilities achieved are approximately

3.5 and 4 for the uni-directional and reversing hinge frames respectively. Thus greater

beam elongations and column forces could be expected if the frames were subjected to
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forces which caused displacements closer to those allowed by the code...................................
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Chapter 5

MULTI-STOREY FRAME ANALYSES

5.1 Introduction

This chapter analyses the results obtained from static and dynamic simulations of ductile

reinforced concrete two bay two storey frames. As in chapter four, two models are used

to predict the behaviour of the frame structures; one that is composed completely of

DRAIN-2DX beam-column elements and one that employs the hinge structure devised

in Section 2.3 to represent the flexural behaviour of the plastic hinge zones.

Comparisons are then drawn between the two sets of results. The effects of the

formation of both reversing and uni-directional plastic hinges and the associated member

elongations on the performance of the frame structures is also investigated.

5.2 The Multi-Storey Frame Structures

As in the portal frame analysis, two types of frame structures were subjected to both

static and dynamic loads. One was designed to sustain gravity loads, provide seismic

resistance and form uni-directional hinges, and the other was designed to sustain only

seismic actions and thus form reversing plastic hinges. Once again the cross-sectional

dimensions of the structures were kept constant to ensure that the resulting differences

were only due to the loading variations (see Fig. 5.1).

Each frame type was again modelled in two ways; initially using only DRAIN-2DX beam-

column elements, and then employing the hinge structure devised in Section 2.3 to

represent the plastic hinge zones within the frames. For the purpose of this chapter, the

first model will again be referred to as a 'beam-column' model and the second as a

'hinge' model.
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Fig. 5.1 Multi-Storey Frame Structure

DRAIN-2DX was used to perform a response spectrum analysis on the basic frame

structure. Firstly the mode shapes and frequencies were obtained from an eigenvalue

analysis. Then the Draft Code response spectrum, corresponding to a structural ductility

factor of one, was scaled to an equivalent ductility six spectrum and utilised in the

response spectrum analysis. The gravity analysis of the frame was carried out using the

computer package PFRAME. As with the portal frame analysis, a number of simplifying

assumptions were made in the design of the frame structures. Appendix B sets out these

assumptions, the design methods employed and the design forces and hinge element

property calculations for both frame types.

5.3 Static Analyses

DRAIN-2DX was used to perform step-by-step equivalent static earthquake analyses.

The seismic forces were calculated according to the Draft Loadings Code [10]. The uni-
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directional hinge frame was initially gravity loaded. Both frames were then incrementally

loaded until the lateral deflection at the intersection point of the level two beams was

six times the lateral deflection obtained at that location from the modal analysis. The

load was applied to the internal and external columns in a ratio of two to one

respectively. The flexural strength of the columns was then scaled as recommended in

the commentary to NZS 3101 [9]. This increase in strength reduced the displacement

ductility to approximately four for the hinge model frames and five for the beam-column

model frames.

The resulting force-displacement graphs for both the uni-directional and the reversing

hinge frames are illustrated in Figs. 5.2 and 5.3 respectively. The graphed displacement

is the average of the displacements at either end of the frame level.
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Fig. 5.2a Uni-directional Hinge Frame Force versus Displacement: Hinge Model

Comparing the graphs it is evident that, although the beam-column model predicts more

angular force-displacement rate changes, the general shape of the curves for both frame

types is very similar. The angularity of the beam-column model graphs can be accounted

for by the fact that the force-displacement relationship associated with the DRAIN-2DX
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Fig. 5.3a Reversing Hinge Frame Force versus Displacement: Hinge Model

beam-column elements is very simple and contains only two possible stiffness variations,

whereas the steel element force-displacement relationship, although piecewise-linear,

approximates a curvilinear relationship and consequently produces a smoother force-

.................................
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Fig. 5.3b Reversing Hinge Frame Force versus Displacement: Beam-Column Model

displacement graph. This difference could also account for the slightly larger forces

required for the hinge model to reach a ductility of four, as opposed to those required

for the beam-column model to achieve a ductility five displacement. In all four graphs

the maximum level two displacement exceeds that of level one by more than 100%,

which is as expected considering the applied load pattern.

Figs. 5.4 and 5.5 show the force-elongation graphs obtained from the uni-directional and

reversing hinge frames respectively. The beam-column model does not predict any beam

elongations, so only the hinge model predictions are illustrated.

The graph predicted by the uni-directional hinge frame appears smoother than that

predicted by the reversing hinge frame. This is because there are twice as many hinge

zones within the uni-directional hinge frame and consequently the yielding that occurs

is dispersed over a greater number of elements resulting in a more gradual change from

elastic to plastic displacements. The maximum elongation obtained for level one exceeds

that obtained for level two by approximately 200% for the uni-directional hinge frame

and 40% for the reversing hinge frame. In the uni-directional hinge frame, this
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Fig. 5.5 Reversing Hinge Frame Force versus Elongation: Hinge Model

difference is partially due to the portal type action produced in level two as a result of

the gravity loading. While in the reversing hinge frame, the rotations occurring within

the level one plastic hinge zones are up to 120% in excess of those experienced by the
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level two hinges, thus accounting for the greater elongation value.

Table 5.1 compares the elongations obtained from the static simulations of the hinge

models with those predicted using equations 2.2 and 2.3, where 'e' is the elongation of

the longitudinal reinforcement in the compression zones of the plastic hinges. The table

clearly shows that the elongations predicted by the hinge model compare very favourably

with those obtained using the experimentally derived equations.

Table 5.1 Comparison of Predicted Beam Elongations

Equation Prediction Hinge Model Prediction

Uni-directional Hinge Level One: 19.7 mm Level One: 20.3 mm

Level Two: 6.5 mm Level Two: 6.7 mm

Reversing Hinge Level One: 13.5 + e mm Level One: 13.9 + e mm

Level Two: 9.8 + e mm Level Two: 9.7 + e mm

After analysing the maximum forces that developed in the columns during the static

loading test, it is clear that the strength demands placed on the columns in the hinge

model greatly exceed those of the beam-column model. In fact, the level one columns

experienced bending moments of 70% and shear forces of 21% in excess of those

experienced by the beam-column model. Once again, it is important to note that the

inter-storey deflections are only about 60% of those allowed by the Draft Loadings Code

[10]. It is highly probable therefore, that both greater elongations and column forces

would develop if the multi-storey structures were displaced to values closer to the

limiting inter-storey deflection imposed by the Code.
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5.4 Dynamic Analyses

The frame structures, as described in Section 5.2, were subjected to the first 20 seconds

of the El Centre, 1940, North-South earthquake ground motion record. A time step of

0.004 seconds was used in all the analyses. The resulting displacement-time histories for

both the uni-directional hinge frames and the reversing hinge frames are illustrated in

Figs. 5.6 and 5.7 respectively.
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Fig. 5.6a Uni-directional Hinge Frame Displacement-Time History: Hinge Model

Comparing the displacement-time histories for both frame models it is apparent that

although the peak displacements arising in the hinge model are slightly greater than

those in the beam-column model, the trends observed in bpth models are very similar.

The displacements resulting from the uni-directional hinge frame are generally slightly

less than those resulting from the reversing hinge frame because of its greater strength.

This is due to the increased axial loads in the beams resulting from the gravity loading.

The level one displacements are less than those obtained for level two as would be

expected.

The elongation-time histories for the uni-directional and reversing hinge frames are
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Fig. 5.7a Reversing Hinge Frame Displacement-Time History: Hinge Model

illustrated in Figs. 5.8 and 5.9 respectively. As can be seen from the graphs the level one

elongations exceed those arising in level two by approximately 130% for the uni-

directional hinge frame and 65% for the reversing hinge frame. These differences occur

..................................
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Fig. 5.8 Uni-directional Hinge Frame Force-Elongation Graph: Hinge Model

as a result of the portal type action arising in the uni-directional hinge frame and the

greater rotations experienced in the level one plastic hinge zones of the reversing hinge

frame, as discussed in Section 5.3. There also appears to be a significant amount of
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Fig. 5.9 Reversing Hinge Frame Force-Elongation Graph: Hinge Model

'elongation-contraction' vibrations occurring in both frames. These vibrations can be

accounted for by the elastic unloading-reloading cycles occurring within the hinge steel

element (refer to Fig. 3.2). The general trend of both graphs is for the elongation to

increase with time, although the rate at which it increases declines dramatically over the

length of the earthquake record. Comparing this trend with the El Centro ground

acceleration record it is clear that the rapid elongation increase over the first five

seconds of the elongation-time history corresponds to the greater ground accelerations

experienced during the equivalent period of the earthquake record. The maximum

elongation of the uni-directional and reversing hinge frames for the twenty second period

occurred at level one and was 13.15mm and 9.05mm respectively. Once again the

elongation of the reversing hinge frame is less than would be expected, because the hinge

structure employed to model the plastic hinge zone only models flexural behaviour, as

discussed in Section 4.3.

As in the static analyses, comparisons of the maximum forces induced in the columns

during the dynamic loading sequences were made. These indicated that forces in the

hinge model were about 5% in excess of those that developed in the beam-column



60 Chapter 5 - Multi-Storey Frame Analvses

model. Although this is not a large increase, it must be noted that not on]y were the

maximum inter-storey deflections about 47% of those allowed by the Draft Loadings

Code [10], but that the ductility demands placed on the structures were only about 45%

of the ductility six displacements that they were designed for. These small values again

lead to the supposition that had the frames reached displacements closer to or in excess

of the values that they had been designed for, then the resulting beam elongations and

column forces would have been far greater than those obtained in this study.

.

.

.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Portal Frame Analyses

The portal frame analyses for the uni-directional hinge frame gave elongations of 30mm

and 22.4mm for the static and dynamic analyses respectively. For the reversing hinge

frame an elongation of 9.3mm was obtained from the static analysis and 8.4mm occurred

in the dynamic analysis. The elongations resulting from both the static analyses agreed

well with those calculated from the empirical equations for predicting beam elongations

[1,2,3] where the effects of shear are neglected. The elongations resulting from the

reversing hinge simulations are considerably smaller than experimental results [1,2,3]

suggest occur because only the flexural behaviour of the plastic hinge zones has been

modelled.

The deflections obtained from the analyses of the portal frame were less than half that

allowed by the Draft Loadings Code, so the possibility exists that larger beam elongations

would have developed if the structures were deflected to values closer to that allowed

by the code. In all the analyses, it was clearly evident that the resulting beam

elongations increased the magnitude of the bending moments and shear forces induced

in the columns.

6.2 Multi-Storey Frame Analyses

For both the uni-directional and the reversing hinge frames, the maximum beam

elongations occurred on level one. For the static analyses these values were 19.7mm and

13.5mm for the uni-directional and reversing hinge frames respectively, and for the

dynamic analyses they were 13.2mm and 9. lmm respectively. These elongations are
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considerably less than expected, even allowing for the fact that only the flexural

behaviour of the plastic hinge zones was modelled. Results obtained by Davidson and

Fenwick [14], suggest that much larger beam elongations (than those obtained in this

study) could occur. However, when reviewing the elongations obtained for the multi-

storey structures in this report, it is important to note that in the static analyses the

structures only reached a ductility four displacement and in the dynamic analyses they

only reached displacements corresponding to a ductility of approximately 2.6. Coupled

with this, the inter-storey deflections obtained in both analyses were up to 53% less than

the allowable Draft Loadings Code values [10]. Finally, it must also be noted that, even

considering the low beam elongation values obtained in this study, the bending moments

and shear forces sustained by the columns still increased.

6.3 The Hinge Model

(i) A computer model of a plastic hinge zone in a reinforced concrete beam has been

developed and incorporated into a dynamic analysis program. It provides a

practical means of predicting elongation effects, which arise due to flexure, in the

dynamic analysis of frame structures.

(ii) The model allows for the change in steel properties of the reinforcement associated

with yielding and the Bauschinger effect. It also allows for limited crushing of the

concrete and the 'wedging action', which arises in beams due to dislocated

aggregate particles which become wedged in the cracks. The properties of the

concrete and steel elements making up the hinge model have been based on cyclic

tests of concrete, reinforcement and reinforced concrete prisms, carried out at

Auckland in a previous research project.

(iii) The model allows for the effect small axial loads have on the flexural resistance

and the elongation that occurs due to flexure.

(iv) The model does not allow for the effects of shear on the behaviour of plastic hinge

zones. Experimental work [1,2,3] shows that shear has a major influence on both
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the load deflection characteristics and the elongation that develops in reversing

plastic hinge zones. Typically this experimental work has indicated that the

elongation associated with flexure is of the order of one third that of the resultant

elongation. To enable realistic elongations to be predicted in reversing hinge zones

the effect of shear must be included in the model.

6.4 Further Work Requirements

(i) Develop the plastic hinge structure so that it models both shear and flexural

behaviour.

(ii) Use the improved plastic hinge structure to perform further analyses to assess more

accurately the magnitude of beam elongations and the effects of these elongations

on the response of the structures.

(iii) Analyse a greater range of structures.

(iv) Examine the factors contributing to beam elongations in more detail and develop

a design method which makes allowances for this phenomenon.
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Appendix A

PORTAL FRAME DESIGN

A.1 Assumptions

1. The portal frame was sized to satisfy seismic related stiffness requirements in the
draft code.

2. Torsional effects were not considered So the analyses could be carried out on a

two dimensional frame.

3. Initial yield strengths used in the analyses were calculated using the Draft

Loadings Code. The yield strengths which could form in a real structure due to

the application of minimum steel quantities required by the steel code were not

taken into account.

4. The concrete strength was assumed to be 30 MPa at 28 days and to have an

average strength within the structure of 39 MPa. The elastic modulus was taken

to be 29350 MPa and the shear modulus as 11740 MPa.

5. The portal frame was assumed to be one employed in a 3-bay, 6 storey building

which has a seismic mass per floor of 5100 kN [14].

6. P-delta effects were not considered.

A.2 Design

A.2.1 Member Properties

Column Properties

Size: 450 mm x 450 mm

A = cross-sectional area = Ag = 450 x 450 = 202500 mm2

SA = shear area = 5/6 Ag = 168750 mm2

.................................
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E = youngs modulus = 4700739 - 29350 MPa

Shear Modulus = 0.4E = 11740 MPa

Beam Properties

Size: 400 mm wide x 600 mm deep

Composite action assumed:

I = second moment of area = Ig/2 - 4627.3x106 mm4

A = cross-sectional area = Ag/2 = 136875 mm2

SA = shear area = 5/6 A = 114062.5 mm2

d = distance between centroids of beam reinforcement = 540 mm

Composite Action

C D  1 175 mm

B / E
600x400rnm

450*450mm beam

columns j

600 mm

3.4m
y - 332.4 mm

A F, 400 mm 450 mm

7m

Fig. A.1 Portal Frame Structure

A.2.2 Laading

Gravity Loads per Floor

Dead Load:

columns = 20 x 24 x 3.4 x 0.452 = 331 kN

beams = 15 x (7-0.45) x 0.6 x 0.4 x 24 = 652 kN

16 x (7-0.45) x 0.6 x 0.4 x 24 = 604 kN

fioor = (0.4 + 0.2 + 0.2) x (28x21) = 470 kN

cladding = 1.2 x 3.4 x (21 + 28) x 2 = 400 kN

..................................
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200 dycore + 65mm topping

= (2.4+ 24 x 0.065) x3x (28-0.4) x (7-0.4) = 2164kN

Total Dead Load = 4621 kN

Live Load:

Seismic Live Load = 5100 - 4621 = 479 kN = 0.815 kPa

From 2/DZ 4203 Qt = D+*L, where *= 0.4

0.815
Total Live Load =

0.4
2kPa

Gravity Load per Bay

Dead Load:

beams = 0.6 x 0.4 x 24 = 5.8

floor = 4x(7- 0.4) = 26.4

sundry = 0.8 x7 = 5.6

Total Dead load/Bay = 37.8 kN/m

From 2/DZ 4203 R = 0.4 +
2.7

47x 21
0.623

Total Gravity Load per Bay = w + *RL = 37.8 + (7 x2x 0.623 x 0.4)

= 41.3 kN/m

Transitional mass per frame

Translational mass per frame =
1

3

5100
X-

9.81
: 173.3

kNs2

m
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A.2.3 Seismic Force

Stiffness of the structure:

P 2 x 173.3 x 1.5 x 0.4
k== =

8 (3.568 x 102 + 3.9209 x 10-9 / 2
: 51653.209 -

The values for P and & were obtained from a static push over test carried out using

DRAIN-2DX

Period of the structure:

T = 2,r

= 271"
173.3

1 51653.209
0.364 sec

Mass proportional damping ratio:

A = 2(w

= 2 x 0.05 x
27r

T
1.7266

From the Draft Loadings Code [10] for a normal soil in the Wellington region and a

structure ductility of six.

Co = 0.2144

Cd = QRZ

= 0.2144 x 1.0 x 0.8 = 0.17152

..................................
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Thus the horizontal seismic force is:

V = CXW

= 0.17152 x 1700 = 291.6 kN

A.2.4 Strain Hardening Properties

After analysing data gathered from numerous tests on ductile structures the following

rules were developed in order to determine the proportion of strain hardening occurring

within a plastic hinge zone.

1. For hinges that form in regions with large moment gradients the post yield

moment increment is 3.75 times the yield moment, per radian of rotation.

2. For hinges that form in regions with small moment gradients the post yield

moment increment is equal to the yield moment, per radian of rotation.

As a result the following formulas were employed to calculate the strain hardening ratios

of the elements within the frames.

BM, Leff
For the columns: a =

3EI

eff

For the beam-column yielding elements: a =
3EI

B Mi Leff
For the steel elements within the hinge structure: a =

d2E A
S-1
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where:

d = distance between the centroids of the top and bottom reinforcement

E = Concrete Modulus

I = Second moment of area

K = Steel Modulus

As = Cross-sectional area of the steel element

Itff =
=

L' =

L,

L' ,
L

2

for all the columns

for the beams

for all unloaded beam-column elements

2M
span , for loaded span hinge beam-column elements=

1 CO

2M
span , for loaded column face hinge beam-column elements= X-

1 w

= L x length scale factor for all the steel hinge elements

w = gravity load/m

x = distance between M and M
column face span

M = the design moment

B = 3.75 or 1.0 depending on the region the hinge forms in,

as described previously

A.2.5 Hinge Structure Property Rules

The following rules were developed in order that the hinge model as a whole have the

same stiffness as the remainder of the frame structure.

For the steel and concrete elements:

1. AC z Asection/2

2. Mi = Astd

3. Asd2n Z I section
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where:

AC = cross-sectional area of the concrete element

fy = yield stress of the steel

n = Es/E

For the shear connection element:

EA

L
shear connection c

EA

L
beam

EI shear connection = EI beam x 10-3

shear connection = 0.35

shear connection = 875

EI

L

EI

beam

beam

A.2.6 Design Moments

The seismic and gravity design moments were calculated using moment distribution. The

gravity load was taken as 41.3kN/m (see Section A.2.2). The centre-line values obtained

are illustrated in Table A.1. Points A to F refer to the positions on the frame where the

moments occur (see Fig. A.1).

Table A.1 Design Moments

Moments-kNm A B C DEF

Seismic -297.94 -197.76 197.76 -197.76 197.76 297.76

Gravity 63.34 126.67 -126.67 -126.67 126.67 63.34

Combined -243.60 -71.10 71.10 -324.43 324.43 361.28

..................................
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A.3 Designing the Reversing Hinge Frames

Beam:

The beam yield moments were taken at the intersection of the column faces.

Beam-column Model:

Mface = 182.052 kNm

Hinge Model:

Mface = 182.052 kNm

Strain hardening values were calculated as outlined previously.

Beam-column Model:

a

3.275
3.75 x 185.052 x

2
= = 0.00279

3 x 2.935 x 107 x 4.627 x 10-3

Hinge Model: -steel element

a
3.75 x 185.052 x 0.02 x 15

=

0.542 x2x 108 x 2.328 x 10-3
= 0.001533

The hinge properties were calculated according to the rules defined previously.

1. Ad 2n Z I

4.6273 x 10-3
- AS =

0.542 x
2 x 108

2935 x 104

= 2.328 x 10-3 m2

2. 4 = (M / Ad)

185.052

2.328 x 10-3 x 0.54

= 147.203 x 103 kPa
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3. A z 0.5 ( 0.6 x 0.4 + 0.45 x 0.075 )

- A = 0.1369m 2

Columns:

The column yield moments were calculated according to the NZS 3101 code [9].

Yielding was prevented at the top of the columns.

Mbase = 297.9 x 00 x w
= 297.9 x 1.4 x 1.0

= 417.120 kNm

Strain hardening was calculated as outlined previously.

3.75 x 297.943 x 3.4
a = = 0.012626

3 x 2.935 x 107 x 0.003417

A.4 Designing the Uni-Directional Hinge Frames

Beam:

The beam yield moments were calculated in the span and at the column faces. The

following results were obtained by interpolation;

Mface = 280.241 kNm

Mspan = 164.948 kNm.

The strain hardening values were calculated again as outlined previously.

Beam-column:

3.75 x 280.241 x 1.8167
Crface - = 0.00469

3 x 2.935 x 107 x 4.627 x 10-3

a
1 x 164.948 x 2.826

- = 0.00114span -
3 x 2.935 x 107 x 4.627 x 10-3

..................................
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Hinge: - steel element

Ctface
3.75 x 280.241 x 0.02 x 15

=

0.542 x2x 108 x 3.955 x 10-3
0.00137

a
1 x 164.948 x 0.02 x 15

=

span
0.542 x2x 108 x 2.328 x 10-3

0.00036

The hinge properties were calculated according to the rules defined previously.

Span hinge properties:

1. Ad 2n 2 I

4.6273 x 10-3
- AS =

0.542 x
2 x 108

2935 x 104

= 2.328 x 10-3 m2

2. 4=pn
Ms

Ad
164.948

2.328 x 10-3 x 0.54

= 131.211 x 103 kPa

3. At 2 0.5(0.6 x 0.4 + 0.45 x 0.075)

". At = 0.1369 m2

Column face hinge properties:

1. ; = 131.211 x 103

( to be consistent with span hinge calculations )

..................................
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2. 4

280.241

131.211 x 103 x 0.54

= 3.955 x 10-3 m2

3. At 2 0.5 ( 0.6 x 0.4 + 0.45 x 0.075 )

- At = 0.1369 m2

Columns:

Once again the column yield moments were calculated according to the NZS 3101 code

[10]. Yielding was prevented at the top of the columns.

M
base = 361.3 x tox w

= 361.3 x 1.4 x 1.0

= 505.80 kNm

Strain hardening was calculated as outlined previously.

3.75 x 505.795 x 3.4
Of = = 0.02143

3 x 2.935 x 107 x 0.003417
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Appendix B

MULTI-STOREY FRAME DESIGN

B.1 Assumptions

1. The multi-storey frame was sized to satisfy seismic related stiffness requirements

in the draft code.

2. Torsional effects were not considered so the analysis could be carried out on a two

dimensional frame.

3. Initial yield strengths used in the analysis were calculated using the Draft Loadings

Code. The yield strengths which could form in a real structure due to the

application of minimum steel quantities required by the steel code were not taken

into account.

4. The concrete strength was assumed to be 30 MPa at 28 days and to have an

average strength within the structure of 39 MPa. The elastic modulus was taken

to be 29350 MPa and the shear modulus as 11740 MPa.

5. The multi-storey frame was assumed to be part of a 3-bay, 6 storey building which

has a seismic mass per floor of 5100 kN [14].

6. The strain hardening of the steel within the columns was assumed to be 10% for

all column yield moment calculations.

7. P-Delta effects were not considered.

B.2 Design

B.2.1 Member Properties and Loading

In order to facilitate the multi-storey frame design, it was decided to retain the same

member properties and loading values as those established for the portal frame.
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B.2.2 Equivalent Static Seismic Force

The following results were obtained from the DRAIN-2DX eigenvalue analysis:

The periods of the first two modes;

Ti = 0.82908s T2 - 0.23431s

The horizontal ductility one displacement;

x=1 = 0.01695 m.

Five percent damping was assumed for both modes in order to calculate the following

damping factors:

The mass proportional damping factor;

2 (i) 1 Q2 (12 - 2 (1)
A=

((A)
2

-390.943

-661.647

= 0.5909

The initial stiffness damping factor;

B = 2(E16)1 - (202)
(04 - 4

-1.9237

-661.647

= 0.0029
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400mrn wIde x 600mm deep

beams
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4

3.4m

ABC D
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columns #4 3.4m
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Fig. B. 1 Position of Beam Bending Moments

400mm wide x 600mm deep

beams

J K L t

3.4m

G H I

DE F

450*450rr,n

columns J 3.4rn

A B C

• 7m • • 7m

Fig. B.2 Position of Column Bending Moments
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From the Draft Loadings Code [10] for a normal soil in the Wellington region and a

design ductility of six:

Co = 0.106651

Cd = QRZ
= 0.10655 x 1.0 x 0.8

= 0.08532

Thus the seismic base shear:

V = QXWG
= 0.08532 x 6800

= 580.18 kN

Therefore the equivalent static lateral forces to be applied at each floor are:

F
Wh

= 0.92 V ' ' ( + 0.08 V for the roof only)level l

E will

where:

W = W = 3400 kN
level 1 level 2

hieve! i = 3,4 m
hkvel 2 = 6.8 m

Thus,

Flevel 1 = 177.92 kN

Fleve! 2 = 402.26 kN

..................................
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B.2.3 Strain Hardening and Hinge Structure Property Rules

The rules associated with the strain hardening of the elements and the hinge structure

properties are the same as those employed for the portal frame design.

B.2.4 Design Moments

The following bending moment values were obtained from the DRAIN-2DX Response

Spectrum analysis and the PFRAME gravity analysis. The values displayed are

representative of the moments found at the centre-lines of the beam column

intersections. Tables B.1 and B.2 illustrate the beam and column bending moments

respectively. Figs. B. 1 and B.2 show the positions on the frames that the points A

through to L refer to.

Table B.1 Beam Bending Moments

Moment kNm Mode One SRSS Gravity SRSS + Grav.

A -310.9 -310.90 -163.05 -473.95

B 285.30 285.34 -185.33 100.00

C -285.30 -285.34 -185.33 -470.67

D 310.90 310.90 -163.05 147.85

E -177.74 -181.71 -137.47 -318.18

F 160.82 163.85 -198.00 -34.15

G -160.82 -163.85 -198.00 -361.85

H 177.74 181.71 -137.47 44.24
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Table B.2 Column Bending Moments

Moment kNm Mode One SRSS Gravity SRSS + Grav.

A -321.00 -324.32 -27.99 -352.31

B -368.56 -371.78 0.00 -371.78

C -321.00 -324.32 27.99 -296.33

D -207.67 -215.15 -55.72 -270.87

E -307.98 -314.20 0.00 -314.20

F -207.67 -215.15 55.72 -159.43

G -103.62 -120.62 -107.33 -227.95

H -262.62 -272.33 0.00 -272.33

I -103.62 -120.62 107.33 -13.29

J -177.73 -182.44 -137.47 -319.91

K -321.65 -327.79 0.00 -327.80

L -177.73 -182.44 137.47 -44.97

B.3 Designing the Reversing Hinge Frames

Beams:

The beam properties were calculated according to the rules described in Appendix A

where:

Asd2n k Isection

4 = 

AC 2 0.5 A3cction

..................................
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#Mie eff

d244
for hinge steel elements

BMiteff
a =

3EI
, for yielding beam -column elements

Table B.3 illustrates the element properties employed in the frame analyses and

calculated using the equations described above.

Table B.3 Beam Element Properties

Level 1 lEvel 2

Mi 291.78 kNm 170.6 kNm

As 0.002328 m2 0.002328 m2

Hinges at fy 233 x 103 kpa 136 x 103 kPa
External

Column Ac 0.1369 m2 0.1369 m2
Faces

asted 0.002418 0.0014136

clement

a
beam-column 0.004398 0.002571

element..................................
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Mi 266.18 kNm 152.74 kNm

As 0.002328 m2 0.002328 m2

Hinges at  212 x 103 kpa 121 x 103 kPa

Internal

Column Ac 0.1369 m2 0.1369 m2
Faces

asteel 0.0022056 0.001266

element

a
hearn-column 0.004012 0.002302

clement

Columns:

The column yield moments were calculated according to the NZS 3101 code [9].

Mdesign = 00 * Mmode 1

where:

00 = beam overstrength factor

1.1 x I Mbeam: SRSS
column: mode 1

(levels 1 and 2)

= 1.4 (ground level)

w = dynamic magnification factor

= 1.0 (ground level and level 2)

= 1.3 (level 1)

The results of these calculations are illustrated in Table B.4.

..................................
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Table B.4 Column Design Moment Calculations

External Columns

EMcol:mode 1 Mbeam:SRSS 00 6) Mool centre line Mcol face kNm
177.73 181.7 1.125 1.0 199.95 158

310.95 310.9 1.1 1.3 296.42 255

321.0 - 1.4 1.0 449.40 450

Internal Columns

IM(oi:mode 1 Mbeam:SRSS 00 W Nicol centre line Mool face kNrn

321.65 327.7 1.12 1.0 360.24 290

570.60 570.68 1.1 1.3 440.40 370

368.56 - 1.4 1.0 515.98 516

The strain hardening of the columns was calculated according to the rules discussed in

Appendix A:

B M € e ff
0 =

3EI

where B = 3.75

teff = 3.4 m

E = 2.935 x 105 MPa

I = 0.003417 m4

M=Mcolumn face

..................................
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The column strain hardening values obtained are shown in Table B.5.

Table B.5 Column Strain Hardening Values

External Columns a Internal Columns a

values values

Level 2 0.0067 0.0123

Top 0.0108 0.0157

Level 1
Bottom 0.0108 0.0157

Ground 0.0191 0.0219

B.4 Designing the Uni-directional Hinge Frames

Beams:

In order to calculate the beam properties it was first necessary to determine the

maximum span moment and where it occurred. Hence, the following calculations were

carried out:

Ma Mb
w/m

Ra x Rb
. 1

1

Fig. B.3 Schematic Drawing for Maximum Span Moment Calculations

-MA - MB + -2J
RB =

L
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The maximum moment occurs at zero shear therefore:

RAL RA
X=-=

w L

Thus the magnitude of the maximum moment is given by:

Mmax = _MA + RAx - .9-

Table B.6 illustrates the values obtained using the above equations in order to calculate

the maximum span moments.

Table B.6 - Maximum Span Moment Calculations

M
A

M
B

R
A RB x M

span

(kNm)

Level 2 361.854 44.293 202.57 86.53 4.905 134.94

Level 1 470.67 147.85 232.91 56.19 5.639 186.08

Thus the beam properties could be calculated according to the rules described in

Appendix A:

Asd2n k Isection

Mid face

 - A,d

AC 2 0.5 ASection

B Mi e eff

d244
for hinge steel elements.

B Miteff
a = . for yielding beam-column elements.

'

..................................
jtl
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Table B.7 gives the element properties employed in the frame analyses and calculated

using the above equations.

Table B.7 - Beam element properties.

Level 1 Level 2

Mi 419.31 kNm 317.321 kNm

As 0.002328 m2 0.002328 m2

Hinges at

Column fy 333 x 6 x 103 kpa 251 x 4 x 103 kPa

Faces

4 0.1369 m2 0.1369 m2

astee 0.00347 0.00263

element

Leff beam-column 2.412 m 2.124 m

clement

beam-column 0.004398 0.002571

clement

Mi 186.077 kNm 134.94 kNm

As 0.002328 m2 0.002328 m2

148.0 x 103 kPa 107.3 x 103 kPa

Span
Hinges A 0.1369 m2 0.1369 m2

asteel 0.000411 0.000298

clement

Leff beam-column 3.002 m 2.556 m

element

0.004012 0.000847

abeam-column

clement

..................................
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Columns:

Once again the column yield moments were calculated according to the NZS 3101 code

[9].

Mdesign - 00 * Mmode 1

where:

00 = beam overstrength factor

1.lxIMbeam: SRSS+ gravity (levels 1 and 2)=

EM column: mode 1

= 1.4 (ground level)

w = dynamic magnification factor

= 1.0 (ground level and level 2)

= 1.3 (level 1)

Table B.8 shows the results of these calculations.

Table B.8 Calculations for Column Face Design Bending Moments

External Columns

E M 00 w Mcol:mode 1 Mbeam:SRSS col centre line Mcol face kNm

177.74 319.18 1.975 1.0 351.02 281

311.25 473.95 1.675 1.3 452.11 382

321.0 - 1.4 1.0 449.40 450

Internal Columns

IM(ol:mode 1 Mbeam:SRSS col centre line col face kNm00WM M

321.65 327.70 1.121 1.0 360.57 290

570.60 570.67 1.10 1.3 440.40 370

368.56 - 1.4 1.0 515.98 516

..................................
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The strain hardening of the columns was calculated according to the rules discussed in

Appendix A:

B Mie eff
a =

3EI

where:

0 = 305

reff = 3.4 m

E = 2.935 x 107 MPa

I = 0.003417 m4

M = column face design moment

The strain hardening values obtained are shown in Table B.9.

Table B.9 - Column Strain Hardening Values.

a for External Columns a for Internal Columns

Level 2 0.0067 0.0123

Top 0.0162 0.0157

Level 1
Bottom 0.0162 0.0157

Ground 0.0191 0.0219
..................................


