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Abstract

A four-state hidden Markov model is used to develop 1-day probability forecasts for
earthquakes in the Killini region of Greece. The model allows the rates in each state,
and the transition probabilities between states, to be estimated from the earthquake
occurrence data. Forecasts proceed by using the model to estimate the current state
probabilities, and using these to estimate the forecast probabilities for the next 1-
day period. The data used is provided by the National Observatory of Athens,
and comprises all events over local magnitude 3.2 in the Killini seismic zone. The
forecasts are prepared initially for the region as a whole, and then partitioned out
over a spatial grid covering the observation region, and into magnitude classes. The
final results therefore consist of daily forecasts for each grid in the spatial region and
for each magnitude class. The forecasts from the hidden Markov model are compared
to forecasts obtained from applying a temporal ETAS (Epidemic Type Aftershock
Sequence) model to the same data and region. The hidden Markov model appears
to have advantages when the data is clustered, and the clusters only partially follow
the traditional main-shock, aftershock pattern.
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1 Introduction

The development of earthquake forecasts on an on-going basis is a long-term project.
It involves considerable resources for measurement and monitoring of the underly-
ing physical processes, researches into the character and patterns of earthquake
occurrence, and, finally, the development and testing of algorithms for earthquake
probability forecasts. At the present stage in the evolution of this process, two over-
lapping needs are for the development of suitable models to produce forecasts from
available data, and the adaption of a broadly standard forecast framework to allow
different forecasting procedures to be assessed and compared.

The present paper is intended to illustrate a simple candidate model for producing
earthquake probability forecasts, and to outline the steps needed to bring this model
to the stage where the forecasts are available in a format similar to that being used
in earthquake forecast testing centres such as the RELM centre in California (see
Schorlemmer and Gerstenberger 2007b).

The model used here is simplistic in several respects, and we would not like to give
the impression that forecasts from these procedures would be suitable for use in
publicly released statements. On the other hand the results may be comparable
with forecasts from other initial models currently being considered for the European
and other testing centres, and illustrates issues which are likely to arise in most
candidate procedures.

Two issues in particular are addressed in this study: the effectiveness of simple
hidden Markov models as a possible class of candidate models for daily earthquake
forecasts; and the problems inherent in extending forecasts from a regional character
to a more detailed character in terms of space, time and magnitude requirements.

The study builds on previous work by Orfanogiannaki, Karlis and Papadopoulos
(2008), denoted by OKP in the sequel.

2 The hidden Markov methodology

Hidden Markov models (HMMs) represent a flexible class of models that have been
used with considerable success in a range of different application areas, such as
voice recognition technology, analysis of IT traffic, mathematical genomics. Their
key assumption is that there is an underlying Markov process (past history influ-
ences future development only through the current state), say {Xn}, which is not
observable as such, but which influences the distributions of the quantities which
can be observed. The HMM methodology allows characteristics of the hidden pro-
cess, such as the transition probabilities from one state to another, to be estimated
from the directly observable data. Accounts of the methodology are available for
example in Macdonald and Zucchini (1997); see also the notes on associated R pro-
cedures in Harte (2008(a) (b)), and the discussion in OKP. Further applications to
the earthquake context are in Granat (2002), Ebel et al (2007).
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In the earthquake context the hidden process might represent the state of a re-
gional stress field, or in the case of deep or volcanic earthquakes, the temperature or
pressure fields at critical locations and depths. The directly observable data might
consist of the occurrence times, locations and magnitudes of earthquakes recorded in
a regional earthquake catalogue, possibly coupled with ancillary data such as GPS
strain measurements.

The underlying model supposes that the hidden regime can exist in a small, finite
number of states, here k = 1,2,3,. . . and that each state is characterized by an un-
derlying Poisson process rate, say λk, when the process is in state k. Progress of the
hidden process Xn from state to state is controlled by a transition matrix T , where

Tij = Pr{Xn+1 = j | Xn = i}.

Again for simplicity, we suppose here that the process evolves in discrete time (day
by day), so that pij represents the probability that, given the hidden process is in
state i today, it will be in state j tomorrow. λk represents the expected number of
events that will occur during the day, given that the underlying process is in state
k. Observations (for the full Killini region) comprise the numbers, un, of events
occurring during successive days n = 1, 2, . . . , N .

If the state history is known (which in reality it is not), it is easy to write down the
complete likelihood for both the set of observations un, and the sequence of states
Xn. Several approaches are then available to obtain the actual likelihood, which
is just the complete likelihood averaged over all possible state histories. The E-M
algorithm, which was used in OKP, iteratively calculates sets of “forward, αn(k),
and backwards, βn(k), probabilities”

αn(k) = Pr{Xn = k and Um = um , m = 1, 2, . . . , n},

βn(k) = Pr{Xn = k and Um = um , m = n + 1, n + 2, . . .N},

based on a current set of parameter values λk, pkj. The likelihood, assuming this
set of parameter values, is then given, for any n, by

L =
∑

k

αn(k)βn(k) =
∑

αN(k).

Expectation (E-) and maximization (M-) steps are then used to produce an updated
set of parameter values, the process being repeated until the likelihood stabilizes at
its maximum.

An alternative method is based on a matrix representation of the likelihood. We
shall not give further details of the algorithms here, but refer to the references
already quoted above.

Both methods yield formulae for parameter estimates. An important point for the
sequel is that the forward and backward probabilities may also be used to produce
estimates of the state probabilities

πm(j) = Pr{Xm = j | u1, . . . , uN} =
αm(j)βm(j)

∑

k αm(k)βm(k)
(1)
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for both current and past times. Such estimates may be used to gain an approximate
representation of the state history X(t). They also provide the basis for calculating
probability forecasts based on the model, as we briefly consider.

Given data up to time point N , the probability φ̂N+1 that an event will occur in
day N + 1 can be found from averaging the probabilities that an event will occur
when the system is in state k over the probabilities that the system is in state k in
day N + 1. Denoting the probability that an event will occur during the day when
the system is in state k by

p̂k = 1 − e−λk ,

we have

φ̂N+1 =
∑

k

πN+1(k) p̂(k)

=
∑

j

∑

k

πN (j)Tjk p̂(k),

the probabilities πN(j) being found from (1) with m = N .

3 Data and fitted results for the Killini region

Figure 1: Greek Earthquakes, M ≥ 5, 1990-2004
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Figure 1 shows the general seismicity rate for Greece for the period of the study,
1990-2004. Here the data are restricted to events with ML ≥ 5. Note that the
magnitudes here are the local magnitudes determined by the National Observatory
of Athens, Institute of Geodynamics, Greece (http://www.gein.noa.gr).
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Figure 2: Overall map of Greece; rectangle denotes the Killini region.

The basic data used in the present study are the same as those used in OKP (2008).
They are restricted to shallow events (depth ≤ 60km) having magnitudes ML ≥ 3.2
from the Killini area in Greece. Figure 2 shows the Killini area, as defined by the
grid points used in the forecasts. The actual region used in the original study is
somewhat larger and more irregular than that suggested by the rectangle (see Fig
1 of OKP). The epicentral map for the events in the Killini region that were used
in the present analysis is shown in Figure 3. The different circle sizes represent
different magnitude classes. The 4 magnitude classes that appear on the map from
smaller to bigger circle size are: [3.2,4.0),[4.0,4.5),[4.5,5.0),[5.0,5.5].

Monthly counts for events from the Killini region with magnitudes ML ≥ 3.2 are
shown in Figure 4. The average occurrence rate over this period for events with
ML ≥ 3.2 is 0.1474 events/day, or about 50 events/year.

Several HMM models were tried for this data, with varying numbers of states. The
HMM model selected (using the Akaike Information Criterion (AIC); see OKP for
further details) had 4 states, with vector of intensity rates

λ = (0.0595 0.2319 1.7838 11.5862)

The mean interval lengths vary from 16 days in State 1 to just over 2 hours in the
most active state, State 4.
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Figure 3: Epicentral map for the data in the Killini region
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Figure 4: Monthly Count Data for Killini Region, Mag ≥ 3.2, 1990-2004
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The estimated matrix of 1-day transition probabilities T is

[, 1] [, 2] [, 3] [, 4]

[1, ] 0.9953 0.0002 0.0045 0.0000

[2, ] 0.0290 0.9210 0.0477 0.0023

[3, ] 0.0000 0.4780 0.4990 0.0230

[4, ] 0.0000 0.0000 0.3600 0.6400

The elements in the first row represent the probabilities, given that the process starts
from state 1, of remaining in state 1 the next day, or transferring to one of the states
2,3,4. The entries in each row sum to unity. The high value for T1,1 implies that
the process has a high probability of remaining in that state. The sojourn times
are geometrically distributed with means determined by the diagonal entries. The
mean sojourn times (in days) τ̄j in the different states are given by

τ̄1 = 212.765957 τ̄2 = 12.658228 τ̄3 = 1.996008 τ̄4 = 2.777778

The average numbers of events occurring while the system remains in a given state
are given by

(12.659574 2.935443 3.560479 32.183889)

We see that the majority of events are generated either when the process is in a
quiet state (for a long time) or in the very active state.

After many days, the n-day transition matrix T n converges towards the matrix of
stationary probabilities. This matrix is given by

[, 1] [, 2] [, 3] [, 4]

[1, ] 0.8395 0.1361 0.0221 0.0023

[2, ] 0.8395 0.1361 0.0221 0.0023

[3, ] 0.8395 0.1361 0.0221 0.0023

[4, ] 0.8395 0.1361 0.0221 0.0023

Note that the entries are independent of the initial state: after a long time, mem-
ory of the initial state gets lost. The entries represent the stationary probability
distribution for the chain,

p∞ = (.8395, .1361, .0221, .0023).

The average daily rate, when the process is in the stationary regime, is

(p∞)Tλ = 0.1474,

in keeping with our overall estimate.
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4 1-day forecasts from the HMM model

Producing forecasts from such models involves first finding the forecasts conditional
on the process being in a given state, and then averaging these over the current
state probabilities. We consider first the forecasts for the Killini region as a whole.

As a simple but key example, consider the probability that no event occurs during
the coming day. Interpreting the vector of rates as the parameters in a set of Poisson
distributions, the 1-day no-event probabilities for the different states are given by
the values e−λk , namely the vector

pf = (0.9422 0.7930 0.1680 0.00000929).

We suppose that forecasts are given at midnight, at which time the probabilities
of the process being in any given state state for the day following are known. For
a particular example, suppose that the current state probabilities are those for the
stationary distribution. Then the no-event probability for the coming day is given
by the inner product

p0(1) = (p∞)T pf = 0.9026,

which is the stationary value of the no-event probability over a single day.

The no-event probabilities for the next day are given by

(p∞)TT pf

which has the same value 0.9026 since the distribution p∞ is stationary, invariant
under T. To find the stationary value of the probability p0(2) that there are no
events either today or tomorrow, write D for the diagonal matrix with entries given
by the elements of pf . Then we have

p0(2) = (p∞)TDT pf = 0.8268948,

Similarly, the stationary value of the probability that there are no events for a full
week is given by

p0(7) = (p∞)T(D T )6 pf = 0.5647341.

The probability that at least one event occurs during the current day is 1− p0(1) =
0.0974 and the probability that there is at least one event during the coming week
is 1 − p0(7) = 0.4353. Probabilities of other combinations of events and no-events
can be calculated in similar ways.

Replacing the stationary distribution p∞ by the current set of state probabilities,
we obtain the probability forecast for no events during the day, given the state
probabilities just after midnight. The next day, the EM algorithm can be used to
update the state probabilities to include the most recent information, and the process
repeated. Thus, starting from some initial set of probabilities, we can systematically
build up a continuing sequence of forecasts.

For many purposes it may be more convenient to replace the no-event forecasts
or their complement, by forecasts of the expected number of events. Much as in
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computing the no-event probabilities, we take the rate vector λ, and average these
by the current state probabilities. In the stationary regime, the expected number
of events for the current day is m1 = 0.1474. The expected number of events in a
week, starting from an initial probability vector p∗, is the sum

m7 =

7
∑

r=1

(p∗)TT r λ.

Again, starting from some set of initial probabilities, we can build up a continuing
sequence of forecasts for the expected numbers of events by updating the state
probabilities.

day

m

09/02/1994 20/05/1994 28/08/1994 06/12/1994 16/03/1995 24/06/1995

0
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0
0.

5
1
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5

2

Figure 5: HMM (top) and ETAS (bottom) daily expected numbers for Killini region,
Jan 1994-June 1995

HMM forecasts for the expected numbers of events have been built up in this way
for the entire observation period. Some portion of these, namely for the time period
from 09/02/1994 to 24/06/1995 are displayed in the upper part of Figure 5.

A shorter set of day-by-day forecasts, for the week that immediately follows the
observation period, are listed in Table 1. The initial set of state probabilities that
were used to produce the forecasts are:

(9.950675 · 10−01 4.467819 · 10−03 4.647253 · 10−04 2.389992 · 10−11)
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The upper row gives the expected numbers of events; the lower row gives the non-
event probability.

Table 1: Daily forecasts of probabilities and expected numbers of events for the
Killini region, 01/01/2005 – 07/01/2005.

01/01/05 02/01/05 03/01/05 04/01/05 05/01/05 06/01/05 07/01/05
m 0.937475 0.9353893 0.9338857 0.9326691 0.9316067 0.9306363 0.9297275
p0 0.06962336 0.07505072 0.07915733 0.08245557 0.08523447 0.08766497 0.0898522

1500 1600 1700 1800 1900 2000

0.
0

0.
5

1.
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1.
5

ETAS Model: Killini Conditional Intensity 09/02/1994−24/06/1995

days since 01/01/1990

 λ
(t)

Figure 6: ETAS Intensity for Killini data, Jan 1994-June 1995

5 Comparison with the ETAS model

The lower plot in Figure 5 is included by way of comparison. It was obtained
from fitting an ETAS model to the same data and using the fitted ETAS model to
produce the forecasts. The ETAS (Epidemic Type Aftershock Sequence) model is
a continuous-time point process model with conditional intensity (rate conditioned
by the past history)

λ∗(t | Ht) = µ +
∑

i:ti<t

Aeα(Mi−Mcf(t − ti). (2)

This represents the current value of the intensity as the sum of a background in-
tensity µ and contributions from previous events, weighted in accordance with their
magnitudes Mi, and decaying in time after their occurrences by a power law prob-
ability density

f(x) = (p/c)/(1 + x/c)1+p.
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The quantities µ, A, α, p, c are parameters of the model. Many further details about
the model, likelihood estimation methods, etc, can be found, for example, in Ogata
(1988), or Daley and Vere-Jones (2003, Chapter 6).

To produce 1-day forecasts from this model, it was first fitted to the Killini data,
taking Mc = 3.2, and giving the parameter values

µ = 0.029545, A = 1.35743, α = 1.54556, p = 1.11751, c = 0.05886632.

Then the expected number of events for a given day was first estimated by taking

m1(n) =

∫ n+1

n

λ∗(u)du,

where we interpret the time n as midnight before the day for which the forecasts are
required, and n + 1 as midnight the following day. These are the quantities shown
in the lower panel of Figure 5. The conditional intensity itself is shown in Figure 6.

An interesting feature is that during the active periods, the HMM model seems
to produce better forecasts than the ETAS model. This is shown more clearly in
Figure 7, which shows the log probability gain for the HMM as compared to the
ETAS model. By the probability gain we mean the ratio of the probabilities of the
actual outcome as forecast by the two models. For example, if the actual outcome
on a given day is that no event occurs, and the HMM probability forecast of no
event is p0(HMM), and the ETAS probability forecast of no event is p0(ETAS) the
log probability gain for that day is

log
[

p0(HMM)/p0(ETAS)
]

Successive ratios of this general type are shown in Figure 7.
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Figure 7: Time variations of the log probability gain of HMM versus ETAS
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The good performance of the HMM model is the more surprising in that the method
we have used for obtaining the forecast probability for the ETAS model offers an
advantage to the ETAS model insofar as, being a continuous time model, it can
incorporate into its forecasts information arising during the current day. In partic-
ular if an event occurs during the day, it will cause an immediate increase in the
conditional intensity, which then give a high probability for short-term aftershocks
occurring during the same day. No such possibility of incorporating information
during the day is available to the HMM model. In such a situation we would expect
the ETAS model to outperform the HMM model and this is shown clearly in the
short-term downwards spikes in Figure 7. The surprising fact is that no similar
advantage appears for the major sequence indicated by the increased intensity in
the center of Figure 6.

An alternative method for producing the ETAS forecasts is to base the forecasts
only on the information available when the forecast is made, that is to say restricting
the summation in (2) to events before midnight on the day in question while still
integrating over the 24-hour period. This eliminates the advantage to the ETAS
model, but replaces it with an even more serious disadvantage, as the continuous
time version used here optimizes the parameters for the short-term, continuous-time
situation, and a different optimization procedure would have to be used to find the
best ETAS model for such 1-day forecasts. This reversal of circumstances is shown
in Figure 8. The short-term advantages of the ETAS model have been lost, and its
disadvantages greatly emphasized.
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Figure 8: Time variations of the log probability gain of HMM versus the modified-
ETAS

Overall, the relative performance of the two models presumably lies between the two
extremes illustrated in the Figures 7 and 8. At the very least, and for this data in
particular, the HMM model shows itself to be a candidate worth further exploration.

There are other factors in the data which may also be at play here. Not all the

13



high activity periods in the Killini data are associated with traditional aftershock
sequences. There are several examples where the largest event does not occur at or
near the beginning of the sequence. The sequence shown in the middle of Figures
7 and 8 is of such non-standard type. The ETAS model is not designed to fit such
variable clustering patterns. The best method for producing forecasts for such non-
standard or mixed systems is not clear, and requires further investigation. All we
can say here is that the HMM model seems to handle such non-standard sequences
better than the ETAS model.

6 Forecasts by grid and magnitude cells

To adopt the forecasts to the format similar to that required for the forecast testing
centres in California or New Zealand (see for example Schorlemmer et al 2007a,
2007b), spatial locations and magnitudes have to be figured into the forecasts.
The only simple way of doing this with the current model is to assume that the
space-time-magnitude intensity can be represented as a product of time, space and
magnitude factors.

Let i, j denote the coordinates of the grid cell, and Mk a half-unit magnitude cell
(e.g. 5.5 < M ≤ 6). We then assume that we can write

λ(n, i, j, k) = λ∗(n)f(i, j)g(M),

where λ∗(n) is the overall forecast rate (expected number of events) for day n, as
described in the previous section, and {f(i, j)} and {g(M} are probability distribu-
tions over the grid cells and the magnitude cells respectively. In each case we assume
that f , g are independent of time and hence of the state of the hidden Markov chain.

This spatial information is summarized by the average values at the points of the
Killini spatial grid, shown in Figure 9. A smoothed version of the spatial distribution
over the period of the study is shown in Figure 10 for the region around and including
Killini. The spatial probabilities fi,j are condensed from this smoothed seismicity
map, and summarized as a set of proportions {fij} in Table 2.

Table 2: Spatial Proportions fij

37.4 37.5 37.6 37.7 37.8 37.9 38.0 38.1

21.0 0.0235 0.0257 0.0310 0.0355 0.0373 0.0292 0.0096 0.0022

21.1 0.0201 0.0314 0.0295 0.0503 0.0688 0.0476 0.0157 0.0031

21.2 0.0148 0.0221 0.0173 0.0347 0.0479 0.0274 0.0090 0.0045

21.3 0.0113 0.0170 0.0189 0.0372 0.0280 0.0105 0.0078 0.0061

21.4 0.0043 0.0112 0.0252 0.0413 0.0232 0.0091 0.0081 0.0050

21.5 0.0038 0.0088 0.0167 0.0162 0.0113 0.0060 0.0065 0.0044

21.6 0.0022 0.0036 0.0029 0.0026 0.0034 0.0034 0.0036 0.0021
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Figure 9: Forecast Grid for Killini Region
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Figure 10: Smoothed seismicity map for Killini region
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Examples of the daily forecasts, refined down to specific spatial and grid cells, are
included in the next two tables. The second of these illustrates also the further
effect of cutting down the forecasts to specific magnitude cells.

Table 3: 1-day probability forecasts for the space grid cells defined in
Figure 9

37.4 37.5 37.6 37.7 37.8 37.9 38.0 38.1

21.0 0.0220 0.0241 0.0291 0.0333 0.0349 0.0274 0.0090 0.0020

21.1 0.0189 0.0295 0.0276 0.0472 0.0645 0.0446 0.0147 0.0029

21.2 0.0138 0.0208 0.0162 0.0325 0.0449 0.0257 0.0084 0.0042

21.3 0.0106 0.0159 0.0177 0.0349 0.0262 0.0098 0.0073 0.0058

21.4 0.0040 0.0105 0.0236 0.0387 0.0217 0.0086 0.0075 0.0047

21.5 0.0035 0.0082 0.0156 0.0152 0.0106 0.0056 0.0061 0.0041

21.6 0.0020 0.0034 0.0027 0.0024 0.0032 0.0032 0.0034 0.0020

Table 4: Forecasting rates for 1 day ahead at each grid point for the
magnitude range: Pr(4.0 < M ≤ 4.5)

37.4 37.5 37.6 37.7 37.8 37.9 38.0 38.1

21.0 2.06·10−6 2.26·10−6 2.73·10−6 3.12·10−6 3.27·10−6 2.56·10−6 8.41·10−7 1.89·10−7

21.1 1.77·10−6 2.76·10−6 2.59·10−6 4.42·10−6 6.04·10−6 4.18·10−6 1.38·10−6 2.74·10−7

21.2 1.30·10−6 1.94·10−6 1.52·10−6 3.04·10−6 4.21·10−6 2.41·10−6 7.91·10−7 3.96·10−7

21.3 9.96·10−7 1.49·10−6 1.66·10−6 3.27·10−6 2.46·10−6 9.18·10−7 6.83·10−7 5.39·10−7

21.4 3.73·10−7 9.87·10−7 2.21·10−6 3.62·10−6 2.04·10−6 8.01·10−7 7.07·10−7 4.36·10−7

21.5 3.32·10−7 7.69·10−7 1.46·10−6 1.42·10−6 9.95·10−7 5.26·10−7 5.72·10−7 3.86·10−7

21.6 1.91·10−7 3.20·10−7 2.54·10−7 2.29·10−7 2.97·10−7 3.02·10−7 3.17·10−7 1.83·10−7
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7 Concluding remarks

The study presented here was prepared rather as a case study than to claim especial
advantages for the HMM procedures, particularly in the elementary form presented
here. Nevertheless the following points may be made.

• The hidden Markov model is based on well-established and flexible procedures,
including software and software packages.

• It is easy to use in predictive mode, and as the basis for regular predictions.

• Although the particular model illustrated here is limited, extensions to the
basic form to include joint space-time and space-time-magnitude dependencies,
for example, are the subject of further research.

• The comparisons with the ETAS model raise issues about the scope of the
ETAS model and its effectiveness as a forecasting tool. The character of the
seismicity and the use of continuous-time models to produce regular, discrete-
time forecasts are among these. Further research is needed to clarify these
points.

• After this study was largely completed, we became aware of the work by Ebel
et al (2007), in which a similar hidden Markov model is used to produce daily
forecasts for events in the California region. The main difference is that Ebel
et al apply the model to a declustered data set, whereas our study includes
the clustered data as a major element of the data and the model.
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