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Abstract

Uncertainties in data and parameter values have often been ignored
in hazard estimates based on recurrence-time modelling of fault zone

rupture. Here, a mixture ofdistributions approach is used to handle un-

certainties in parameters estimated from the geological and historical

earthquake record of a fault zone, while a mixture of hazards approach

is used for parameters estimated from a set of similar faults and for

data uncertainties. The former approach admits updating of the dis-

tributions for uncertainty as time passes, whereas the latter approach

does not.

The proposed methods are described in detail for the exponential

and lognormal models. A formula for the expected hazard, when the

time of the most recent event is uncertain, is derived for the lognormal

model. The methods are applied, by way of illustration, to selected

faults, namely the Mojave segment of the San Andreas fault, California

and the Wellington-Hutt Valley segment of the Wellington fault, New

Zealand. The resulting hazard is presented as a single value which

takes account ofboth data and parameter uncertainties, not a range of
values.
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1 Introduction

Recurrence-time models are commonly used to estimate the hazard due

to the possibility of future large earthquakes occurring in known fault

zones (or along known faults). The method involves estimating the

recurrence time of faulting either by direct determining of the timing

of past earthquakes based on geological studies (i.e. trenching, uplifted

Holocene marine terraces) or the historical record, or by estimating the

average recurrence interval based on consideration of the single-event

displacement size and average slip rate. Combined with a knowledge

of the time of the most recent events, recurrence-time models can then

give an estimate of the current hazard in the zone. Typically, due to

a lack of data on earthquake recurrences on any individual fault or

segment, a generic distribution is estimated by combining data from

many zones (e.g. Nishenko and Buland, 1987; Jacob, 1984). Sometimes

a more elaborate stochastic model is assumed (eg Kiremidjian and

Anagnos, 1984), but the data to validate such refinements are even

more seriously lacking.

The lack of data makes uncertainties more important, yet meth-

ods used to date have tended to ignore uncertainties in many of the

estimated quantities, whether geologically based estimates of rupture

chronology, or parameters of the statistical distribution. In most cases,

they have been geared to point estimates of times ofpast events inferred

from geological data. In practice the uncertainties associated with such

estimates are usually large, and may be highly skewed. Davis et at.

(1989) have shown the importance of taking parameter uncertainties

into account in this context. That paper comes closest, in the literature,

to the philosophy of the present study.

In some cases where the uncertainties of parameters have been con-

sidered the results have been presented as a range of hazard estimates

(e.g. Rhoades and Millar, 1983; Brillinger, 1982). These can be helpful

in indicating lack of robustness but are often difficult to use in practice,
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particularly when the range is wide.

The approach taken here is to try to integrate all important un-

certainties into a single estimate for the hazard, rather than produce

a range of hazard estimates based on alternative values of uncertain

quantities. Uncertainties to be dealt with include those associated with

determining the times of occurrence of past earthquakes, the size of sin-

gle event displacements, the elapsed time since the most recent event,

and the parameters of the recurrence-time distribution. The emphasis

of this report is on the appropriate statistical methods for estimating

hazard in a recurrence-time modelling framework, whether a history

of directly determined fault movements, or only the long-term average

slip rate and single event displacement is known. More fundamental

questions about the appropriateness of recurrence-time modelling in

general are not addressed. Primary responsibility for the results rests

with Rhoades for the statistical analysis, and with Van Dissen for the

assessment of the geological data and their uncertainties.

2 Mathematical formulation of hazard

Seismic hazard may be considered to vary with time t, size ofearthquake

(often characterised by the magnitude) m, and location z, which may

be a point representing hypocentral location or the centroid of the

earthquake source, or some discrete zone supposed to enclose the

whole source region. Mathematically, hazard may be represented by

its conditional intensity (e.g. Rhoades, 1989) or by probabilities. The

conditional intensity is a function of time, magnitude and location which

is conditional on certain information / (which may include modelling

assumptions, parameter estimates and any relevant data). Integrated

over a domain of magnitude and location it estimates the instantaneous

rate ofoccurrence ofearthquakes within the domain at time tconditional

on /. Probabilities can be readily derived from conditional intensities.

Let us denote the conditional intensity by A(t, m. zI/) and the probability
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an earthquake occurs in the time interval (ti, 12), magnitude range

(mi, m2) and spatial domain Z by P[E('1,'2),(mt,m,),ZL Then we have
r12 t'n2

P[E(41'2), Jh Jmt JZ
1 - exp[- / /  2(t, m, zI/)dzdmdth (1)(m,*,2),zill =

In the case of geologically-based estimates of hazard, the location

variable is usually dealt with in terms of discrete fault zones, presumed

independent. In tracing the history of earthquakes in a single fault

zone, it is natural to consider the sequence of the largest events (as

measured, in the case of prehistoric earthquakes, by the length of the

rupture and the size of the displacement) which have occurred within

the zone and to estimate future hazard by extrapolating the statistical

properties ofthis sequence into the future. From the fault displacement

history the typical or "characteristic" size of the largest events on the

fault can be estimated. If the "characteristic" magnitude is represented

by the magnitude range (mi, m2) and the fault zone is denoted by Z,

then the rate of occurrence h(tl/) of "characteristic" events in the fault
zone at time t is

f mu

hul/) =/ / 1(t, m. zl/)dzdm. (2)
Jmj JZ

This leads to the following simpler version ofequation 1:

712

PIE(,1.'2)|4 =1- exp[- I h(tl/)dil (3)
J tl

where PIE(,1,,2) 1/] is the probability of a «characteristic" earthquake
occurring in the fault zone during the time interval (tl, t2).

The function h( tl/) is called the hazard function. Suppose that t iS

measured from the time of the most recent "characteristic" earthquake

and that T is the random variable representing the time between

the most recent and the next "characteristic" earthquake in the zone.

Let IT(4/) denote the probability density function of T and FT(tl/) the

cumulative distribution function, i.e.

rt

FT(40 = 1 /7-(sl/)ds.
JO
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Then the hazard function satisfies

h(tl/) =
fr(tl/)

-1 -FT(t|/)
(4)

The information / on which the hazard estimate is conditioned has, in

general, three important components: a model, data, and parameter

estimates.

2.1 Model

There are many possible different modelling approaches to hazard

in a fault zone, of which only two will be considered here, namely

the exponential and lognormal recurrence-time models. The model

represents a working hypothesis about the state of nature. One of

the purposes in making hazard estimates is to carry out performance

tests to confirm or reject particular models (Rhoades and Evison, 1989).

The other is for risk assessment and mitigation. In the latter case, it

may sometimes be expedient to regard the model as uncertain and to

average hazards over several different models. It is not the purpose of

this paper to pursue either of these matters in any detail.

2.2 Data

The relevant data typically consist of the dates of historical and pre-

historic fault rupture events in the zone, or the average fault slip rate,

the displacement associated with a "characteristic earthquake" and the

time of the most recent event. These data are usually subject to signif-

icant uncertainties, which are nevertheless commonly ignored when it

comes to evaluating the hazard. It is a major purpose of this paper to

take account of data uncertainties wherever possible. This will be done

by describing the data by probability distributions, which are carried

through into the estimates of hazard.
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2.3 Parameters

The parameters are particular to a model and are estimated from the

data. For given data, parameter estimates have a level of uncertainty,

sometimes indicated by a variance-covariance associated with point

estimates of parameters by standard statistical estimation procedures.
When uncertainties in the data are taken into account, the estimated

uncertainty in the parameters is increased. Here we shall not be

concerned with point estimates at all, but rather with the whole (joint)

distribution of parameter values.

2.4 Handling parameter uncertainties

Let e denote the vector of parameters (associated with a model a) to be

estimated from data z. In the simplest (and most unrealistic) case, the

data, model and parameter estimates are all regarded as exact and the

hazard h(t) is taken to be h(tle, 2, a). Probabilities are then estimated

by

r tz

PIE(,1,12)|e,z. al = 1-exp[-  h(tle,2, a)dil. (5)
J tl

Bayesian statistical methods (e.g. DeGroot, 1963) take account of

uncertainties in parameters by regarding the parameters as random

variables. In Bayesian terminology, the posterior distribution is the

distribution for e given z (and a). Ikt the density of this posterior dis-

tribution be denoted/(812. a). Then the probability of a "characteristic"

earthquake can be calculated in one of two (non-equivalent) ways:

1. Mixture of distributions approach

Calculate the conditional hazard function h(tlz, a) given by

f(tlz, a) (6)h(t|z, a) =
1 - F(tlz, a)

where

f(tlz, a) = f(tle, z, alf(elz, a)de. (7)
8



Then

rt2
PIE(4,12)|x, al= 1 -exp[-  h(42. a)dil (8)

J 4

2. Mixture of hazards approach

Calculate

p[Em,'2)12, al = P[E(,1,;2)|8'z, af( 81=,a)de. (9)
This is equivalent to calculating

h(tlz, a) = h(tle, z, alf(elz. a)de. (10)

The difference between these two approaches is as follows. In the

mixture of distributions approach, the distribution for e is considered

to change as time passes without the earthquake occurring; this is

appropriate if e is estimated from the rupture history of that fault alone.

In the mixture of hazards approach, the distribution for e is considered

not to change as time passes without the earthquake occurring; this

is appropriate where the distribution for e is estimated from data

across a range of faults considered to have the same recurrence time

distribution. In both cases, the non-occurrence of an earthquake on

a particular fault is, in principle, new information which may have a

bearing on the value of 8, but the distinction is that in the first case the

value of e is considered to be different for different faults, whereas in

the second case it is not. Thus, in the first case the impact of the new

information is likely to be appreciable; in the second case it is likely to

to be negligible.

2.5 Handling data uncertainties

The above formulation assumes both the data and the model to be given.

The next step is to take account of the uncertainties in data values, i.e.,

instead of observing a data vector :r, we observe its probability density
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(or distribution if z is discrete)&04 'Ib take account of the uncertainty

in x, we then calculate

PIE(,t,)la] =  PIE(,1·'2)|x' al&(z|a)dz. (11)

The mixture of hazards approach is the only option in dealing with

the uncertainty of the data because no information on new data can

influence the uncertainties associated with past data; past data can

only be influenced by improving the techniques used to measure them.

2.6 Handling model uncertainties

Finally, in principle the model itself could be regarded as uncertain. If

there are n alternative models {04. i= 1 '..., n} to describe the hazard

in a fault zone, where probability P( a) has been assigned to model m,

then we might calculate

n

P[E(,1,/2)1 - 62 PIE(,1,12)|ai]P(ai) (12)
i= 1

However, it is difficult to see how the probabilities could be assigned,

other than subjectively

3 Recurrence time distribution modelling

Different distributional models for the recurrence time differ in the

shape of their hazard functions. The differences are most marked at
the extremes of the distribution. The choice of distribution most affects

the estimates of hazard immediately after the occurrence of an event

and in the upper tail of the distribution, i.e., when the time since

the last event is much greater than the mean recurrence time. For

times in the middle ofthe distribution, the choice of model is relatively

unimportant. The upper tail probabilities cause a particular quandary

because, by definition, there is hardly any data to support an estimate

of the shape of the tail.
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We now brielly review some common distributional models (Fig-

ure 1). The Weibull distribution has been advocated by some authors

(e.g. Brillinger, 1982; Sieh et al., 1991) because of its increasing hazard

function for values of the shape parameter greater than 1; this shape

is considered to be consistent with the fault coming under increasing

stress as time goes by without an earthquake occurring. The lognormal

distribution has in recent years come into prominence, largely through

the work of Nishenko and colleagues (Nishenko, 1985, 1991; Nishenko

and Buland, 1987), who have used it to describe a generic distribution

for a selection of fault zones on which they have been able to construct

fault rupture histories from geological and historical evidence. The

initially rising, and then subsiding, hazard function of the lognormal

model, is reasonable if one considers that the gradually accumulating

stress may be relieved in some other way than by a "characteristic"

earthquake, say by a number of small earthquakes, aseismic slip or

redistribution ofstress within a region. Then again the simplest model

of all, the exponential distribution, which has a constant hazard func-

tion, has appeal as a model if the timing of events is governed by an

essentially chaotic process, where complexity in fault zone strength,
redistribution of the stress, and fluctuations in fluid pressure result in

effective randomness of events.

It is not the purpose of this paper to lend credence to, test, or

favour any of these models. The exponential and lognormal models are

cons idered below, but only as examples of a methodology for dealing

with uncertainty in parameters and data.

4 The nature of geological uncertainties

The three most important parameters when using a recurrence-time

model (or renewal model) are the elapsed time since the last event, the

mean recurrence interval, and the deviation of individual recurrence

intervals from the mean. In this section we discuss, using examples

11
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Figure 1: A comparison of Exponential, Ignormal and Weibull haz-
ard functions. All three distributions shown have the same mean;
the Lognormal and Weibull distributions have the same coefficient of
variation.

from New Zealand and California, how geologists ascertain elapsed time

and recurrence interval, and indicate the nature of the uncertainties

and assumptions involved. Later we will attempt hazard estimations
for some of the faults discussed here.

4.1 Elapsed Time

There are several ways one can hope to determine elapsed time since

the last event.

1. Historical record: In the Wellington region the historical record is

relatively short, and the Wairarapa fault is the only fault for which

the historical record can be used to determine elapsed time. 135

years have elapsed since the magnitude 8+ Wairarapa earthquake
in 1855.
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2. Constrained by faulted or unfautted geological deposits of known

or inRrred age: For example, Figure 2 is the log of one wall of a

trench excavated across the Ohariu fault. Unit 1 is the youngest

faulted unit exposed in the trench. Because unit 1 is cut by the

fault, it must be older than the most recent surface rupture event.

If we knew the age of unit 1, we would know a maximum age

for the most recent rupture event (large earthquake) along this

portion of the fault. A carbonaceous sample (sample P) from unit 1

was collected, and is dated at 1170 * 70 yr BP (radiocarbon years

before AD 1950). Thus the most recent event along this portion of

the Ohariu fault is younger than 1170 1 70 yr BP, or 960-1160 cal

BP (calendar years before AD 19501). This interpretation assumes

that sample P was part of unit 1 before unit 1 was faulted, and

that sample P is uncontaminated. Given the field relations (not

described here), these are not unreasonable assumptions.

'Ib complete the elapsed time story for this portion of the Ohariu

fault, we would like to know the age of the oldest unfaulted deposit.

This would constrain the timing of the last event to be younger

than 960-1160 cal BP, and older than the as yet undated oldest

unfaulted deposit. No dateable material in an "old" unfaulted

deposit has been found along this fault; however, it is known from

the historical record that this fault has not ruptured within the
last 150 years.

iCarbon-14 dating is one of several dating techniques available for fault studies; a
discussion oferrors for thistechniqueisgiven by Pearson and Stuiver(1986) and Stuiver
and Pearson (1986). Resolution varies from technique to technique, but commonly the

age results are accompaniedby some uncertainlyterm. Lab oriented techniquesusually
use standard deviation to report uncertainties. Field oriented techniques often handle
uncertainty by giving a range of values. The range of values may reflect an "absolute"
range, or some sort of "most likely" estimate. The line that separates these two types of

estimates is not always clear. For formal incorporation of such data uncertainties into
the hazard estimates it is necessary that their meaning be made clear.

13
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4.2 Recurrence Interval

The three most common ways to assess earthquake recurrence intervals

are using the historical record, geological studies regarding the timing

of past events, and inferences based on fault slip rate and size of

assumed "characteristic" single event displacement.

1. Historical record: Where the historical record is long, and the

rates of faulting are high, a rather informative record of the

timing of past earthquakes on a specific fault can be obtained from

the historical record. In places with a long recorded history there

may be a record of several earthquakes rupturing a single fault.

In New Zealand, however, where the historical record is relatively

short, most active faults have not yet ruptured in a maximum

magnitude event, and those that have, have only ruptured once.

2. Pateoseismicity studies: Geological studies are increasingly be-

ing used to extend the earthquake history on a fault beyond the

historical, and have added greatly to our knowledge of the peri-

odicity and size of past fault movements. A primary aim of these

studies is to directly determine the timing of past rupture events

(assumed to represent past large earthquakes). Two examples are

given below.

For example, Figure 3 is the log of a trench excavation across the

Wellington fault near the south coast. Unit 4 is the youngest unit

exposed in the trench that is deformed by faulting. Unit 4 is thus

older than the faulting event, and a wood sample taken from unit 4

has an age of 790-930 cal BR Unit 5 is undeformed by the faulting

that bounds unit 4, thus it must be younger than the faulting

event. A wood sample from unit 5 has an age of 560- 670 cal

BR These relationships demonstrate that surface rupture along

this section of the Wellington fault occurred sometime between

the two constraining dates of 560-670 cal BP and 790-930 cal

BP; that is, rupture occurred sometime between 560 and 930

15



cal BR From evidence elsewhere along the fault, we can further

constrain the timing of this event to 670-830 cal BR We have

also identified a younger event at 300-450 cal BP. If we knew the

timing of several other older events we would be able to calculate

an average recurrence interval based on geologically determined

timings of past events.

One of the classic paleoseismicity studies comes from Pallett

Creek along the Mojave segment of the San Andreas fault. Using

geological methods (trenching), and high- resolution carbon-14

dating, workers have been able to constrain the timing of the past

dozen or so earthquakes (Figure 4). From these data, Sieh et

al. calculate an average recurrence interval of faulting of about

132 years. This recurrence interval assumes that no earthquakes

have been missed.

3. Inferences based on slip rate and size of single event fault displace-

ment: Ideally, in order to determine average recurrence interval

for a particular section of fault, one would like to know the tim-

ing of the most recent earthquakes along that section of fault.

Unfortunately, the historical record in New Zealand is relatively

short, and productive trenching sites are not easy to find. Along

the Wellington-Hutt Valley segment of the Wellington fault about

half a dozen trenches have been excavated and about a dozen

radiocarbon dates obtained, but still there are constraints on the

timing of only the two most recent earthquakes (Van Dissen et al.,

1992). In lieu of a complete history of recent earthquake timing,

a general estimate of the average earthquake recurrence interval

for a given fault can be inferred by dividing what is considered to

be the "characteristic" single event displacement size by the fault's

average slip rate. An example from the Wellington fault, using

data from Berryman (1990) is given below.
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A faulted Holocene river terrace sequence at 'Ib Marua (Figure 5),

near Upper Hutt, records lateral offsets associated with the last

five movements along the southern portion of the Wellington fault.

The first terrace above river level (Tl) is not displaced and must

have formed after the latest faulting event. Two channels on the

next highest terrace (T2) are right-laterally offset by 3.7 and 4.7 m

(I-I' and J-J'). The riser to the next highest terrace (R2) is laterally

offset by 7.4 m (K-K'). The 3.7 and 4.7 m offsets represent the

most recent single-event displacement; the 7.4 m offset probably

represents a two-event offset. Under the assumption that similar

displacements occur in successive earthquakes, the c. 11 m

difference between the R3 or R4 offset (c. 18.5 m, L-L' and M-M'),

and the R2 offset (7.4 m) probably represents three individual fault

movements. This interpretation would indicate that single-event

horizontal displacements at D Marua range from about 3.2-4.7

m.

The Wellington fault at Emerald Hill, also near Upper Hutt, is

interpreted to have a relatively constant average lateral slip rate of

6.0-7.6 mm/yr (Figure 6), based on three faulted terraces that are

laterally displaced by 104* 10,437*20, and 940*40 m, and have

assigned ages of 14 * 4 ka, 70 * 5 ka, and 140 £ 10 ka respectively

(where 1 ka = 1,000 years). The uncertainties associated with the

displacements reflect the difficulties in measuring the offsets in the

field. Uncertainties can arise from difficulties in correlating offset

features across the fault, and projecting offset features into the

fault. The terrace ages were assigned based on loess and tephra

stratigraphy and correlations with climatic events of "known"age.

The terraces were not directly dated. The uncertainty associated

with their age reflects how well the age of a given climatic event

can be constrained, and does not reflect the possibility that the
terraces were miss-correlated.
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Because there is no evidence that the fault is creeping, it is

assumed that offsets are the result of coseismic (earthquake) dis-

placements. By dividing the 'Ib Marua single- event displacement

of 3.2-4.7 m by the Emerald Hill slip rate of 6.0-7.6 mm/yr a fault-

rupture recurrence interval of 420- 780 years is calculated. The

360 year range of this interval reflects uncertainties associated

with both size of single event displacement, and slip rate. This

range does not provide any direct measure of the variability of

individual recurrence intervals about an average value; there is

no way of directly determining the coefficient of variation of the

recurrence time distribution.

The above illustrates the kind of assumptions that must be made

in order to use single event displacement size and slip rate to estimate

recurrence interval. In the Wellington case there is an assumption that

the slip rate calculated at Emerald Hill, based on offsets ranging in age

from 14 ka to 140 ka, also applies to the faulted terraces at Te Marua

that are all younger than several thousand years. The close proximity

of these two sites (within 1.5 km from each other), the constant strike

and simple trace of the fault in this area, and the observation that the

slip rate at Emerald Hill has been constant on the scale of several tens

of thousands of years (Figure 6) give some support to the assumption

that the slip rate has been constant over the last several thousand
years. There is also the assumption that earthquakes on this fault have

a "characteristic" size of 3.2-4.7 m as measured at Te Marua for the

past five earthquakes. Such assumptions are bound to be regarded as

reasonable by some and as unreasonable by others.

Several general points emerge from the preceeding discussion and

examples regarding the nature of geological uncertainties.

• Not all uncertainties in paleoseismicity data can be expressed as

a standard deviation; some can only be expressed as a range with

some uncertainty about the endpoints. The sampling methods
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Figure 6: Slip rate on the Wellington fault at Emerald Hill. The points
represent the best estimates of offsets and ages. Boxes approximate
95% confidence limits. From Figure 7 ofBerryman (1990).
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used below for handling data uncertainties can easily cope with

the various cases that arise in practice.

• Earthquake history data is incomplete for the vast majority of

faults in New Zealand. Recurrence interval data obtained from

directly determining the timing ofpast rupture events is rare, and

difficult to obtain. In applying models other than the simplest (i.e.

exponential) it is necessary to assume a value or distribution for,

say, the coefficient of variation and to be prepared to investigate

the sensitivity of the hazard to the value of this parameter.

5 Uncertainties in the exponential/Poisson model

If the recurrence-times in a fault zone are independent and identically

distributed exponential random variables with mean 1/v, then the

sequence of rupture events is a Poisson process with rate parameter g.

The recurrence-time distribution has density

Ati#) = #exp(-pt) (13)

and constant hazard function

h(tip) = u (14)

If the available data z consist of a sequence of past recurrence inter-

vals, Ti, i= 1,...,k, then, assuming a non-informative prior for *, the

posterior density for u is proportional to the likelihood function, i.e.,

k

f047'1· ···, Tk) oc Kkexp(-#  Ti) (15)
i= 1

This density is independent of the individual intervals; it depends only

on the total time and the number of events. Thus the same density

applies if the total time and number of events are the only available
data.
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In the latter case the number of events is, in practice, uncertain

also, commonly being estimated from the total displacement ofuknown"

age and an estimated displacement in a characteristic event. There are

at least two ways in which the data errors could be handled, depending

on the way the data are deduced from the geological information.

1. A discrete distribution could be estimated subjectively by the

geologist for the number of events over the time period and a

distribution for the time period uncertainty determined from the

dating procedures.

2. A distribution for the size of the "characteristic" earthquake could

be estimated (again subjectively), and a distribution for the total

displacement over a given time period. These distributions deter-

mine the distribution for the number of events over the period.

6 Uncertainties in the lognormal model

If the recurrence times in a zone are independent and identically

distributed lognormal random variables with mean y and coefficient of

variation 8, then the sequence of events may be either more regular

(most values close to the mean) or more clustered (most values much

less than or much greater than the mean) than a Poisson process

according to whether 8 < 1 or 8 > 1. Thus the lognormal family can

represent a wide range of distribution shapes (Figure 7) as can other

families such as Weibull and Gamma. On the other hand, the tail

shape of the lognormal, and hence the hazard at times much longer

than the mean recurrenee interval, is particular to that distribution, as
discussed above.

The lognormal density is given by

f(4#, a) = [tdia]-1 exp[-1 (logt - #)2J (16)
2 c2

where p and a are the mean and standard deviation of the (normal)

distribution for the logarithm of recurrence intervals. An alternative
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Figure 7: Log normal hazard funtion for different values of the coeffi-
cient of variation, 8-0.5, land 2.

parameterisation is in terms of the mean y and coefficient of variation

6, where y = exp(/1 + 02) and 8 = vexp< 02) - 1. Maximum likelihood
estimation of p and a (for the normal distribution), by the sample

mean and standard deviation, is equivalent to maximum likelihood

estimation of y and 8 (Johnson and Kotz, 1970, p119).

6.1 Case where past events on fault are dated

Let us consider the problem of estimating the densityf(#,all'l, ···,Tk).

If, in the Bayesian formulation, we choose a non-informative prior (i.e.

a prior distribution which weights all values of the parameter equally),

then the posterior density is proportional to the likelihood function, i.e.,

f(#, aITi, ···.Tk) Oc a-'1 1-1 exp[-
i= 1

1 (log Ti - 002
2 02

(17)

Davis et al. (1989) incorporated the time since the last earthquake

(the drought) into the likelihood function. An alternative approach,
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adopted here, is to use equations 6 and 7 with the density f(elz; a)

given by equation 17; the additional information on the drought is

then incorporated automatically by the hazard function, which changes

the weighting of the possible values of e as time passes without an

earthquake occurring.

Davis et al. ( 1989) also gave a method for incorporating the data

uncertainty into the hazard estimate, but their method did not allow

for dependence which arises because the interevent times are linked

across a common boundary The method adopted here allows for this

dependence by sampling from the distribution of uncertainties in each

independent dating interval. In some cases the date of a particular

event may be represented by, say, a normal distribution centred on

a best estimate. In other cases the date of an event may only be

known to lie between two such dates, each having its own uncertainty.

Because of the diversity of situations that may arise, the proposed

sampling procedure for handling data uncertainties is considered more

satisfactory than using an oversimplified model which can be handled

analytically.

6.2 Case where past events on fault are not dated

If past fault movements are not individually dated, i.e, if only the

average slip rate and size of "characteristic" event can be estimated

from geological evidence, then one is in the position of having to use

a generic distribution, estimated, say, from faults in a similar tectonic

setting. Only the mean of this distribution can be estimated from data

pertaining to the fault zone at hand; the coefficient of variation would

have to be obtained from the generic distribution. The selection of

similar fault zones for estimating the generic distribution is a matter

for expert geological judgement, not dealt with here. The spread

parameter a (or, equivalently, the coefficient of variation 8) is now

estimated independently of the fault zone at hand, so its distribution is

not open to adjustment as time passes without an earthquake occurring
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in the zone. However, the distribution of ji (which, together with a or

6, determines the mean y) is open for adjustment, since it is estimated

using data from the fault zone. The procedure is thus different from

the case above. Now we have

44 = I I hlt\G, zjfla, z)dadz (18)
31 J C

where

f(t|o, 2) = for/1, a, zlf(ula, z)£41 (19)
J,U

In other words, the usual mixture of distributions approach is used for

B, and the mixture of hazards approch for a. There are several possible

approaches to obtaining an approximate likelihood function for K. Two

approaches are given here, but others are possible.

1. Large k: normal approximation

If the total interval Ill Ti for a large number of displacements k
has been estimated, then the central limit theorem ensures that

(7 - y)/Var(T) has approximately a standard normal distribution

(where T = ITi/k) and hence

10'18, ITi) oc 1 exp[-
1

2k
]. (20)

2. Small k: an ad hoc approach

For the case where the number of displace ments k is small, the

question of how to estimatef(#la, 2) is answered here (somewhat

tentatively) in a rather ad hoc and pragmatic way It is possible

that a theoretically more consistent approach can be developed.

Ideally, if we choose a non-informative prior, the posterior distribu-

tion would be proportional to the lognormal likelihood for /1, based

on the total of k recurrence intervals. However, this is not very

tractable as the lognormal likelihood depends on the unmeasured

quantity IL log Ti rather than Ill Ti· Instead, it is proposed to
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approximate the lognormal likelihood by a gamma likelihood, the

gamma distribution having the convenient reproducing property

that the sum of independent gamma random random variables

is a gamma random variable. The gamma density, like the log-

normal, is capable of assuming a variety of shapes depending on

parameter values. Forcing the mean and coefficient of variation to

be the same as the desired lognormal distribution should ensure

that the shape of the distribution used is not too different from

the desired distribution (Figure 8).

\, Log Normal

Gammal \

.X

t

Figure 8: A comparison of density functions of Gamma and Ignormal
distributions with the same mean and coefficient of variation.

The gamma density can be written in terms of two parameters a
and A, thus:

Xa
f(tla, 1) = -t-1 exp(-At). (21)

r(a)

This distribution has mean a/A and coefficient of variation 1/VS.

The sum of k independent Gamma(a, A) random variables is a
Gamma(ka, A) random variable. Hence, if the time over which k
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fault movements have occurred is Eli Ti, and the coefficient of
variation 8 has been estimated from external information, then

a is estimated by 1/82 and the density for A (assuming a non-

informative prior) satisfies

k k

f(Ala, I Ti) oc Aka exp(-4 I Ti). (22)
i= 1 i=1

Changing variables, the density for the mean y (= odA) of the

recurrence time distribution then satisfies

k k

fC y| a, / 71) oc y
-ka-2 exp(-a I Tily)· (23)

i= 1 i=1

Changing variables again to the lognormal parameters u and a,
we have

k

f(#la, I Ti) oc ,(p, a) -ka-1
exp[-

i=1

/11L
82(a)701. a)

] (24)

where 701, a) = exp[# + 2] and 8(a) = exp< 02) - 1.

6.3 Case where the time of the last movement is only

known vaguely

Sometimes it may not be known when the last movement occurred on a

fault. If there is no information on the time of the last movement then

the current hazard under the lognormal model is the same as under

the exponential model (i.e., it depends only on the mean recurrence

time). However, if it is known that the time since the last movement is

between a and b (where b may be x), then the following result may be

used to compute the expected hazard.

For lognormal recurrence times, the expected hazard given that the

time since the last movement is between a and b is given by

E[h(t)la <t<b]=
®( 19[;=2 ) _ *(193=£ )

b[-1 - ®Cloglze)] - a[1 - *(!9g;zU!)] + 7[*Clogb-r-02) - ®Cloga Q

1 .m1 q
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where * is the standard normal probability integral and y is the mean
of the distribution.

This result is proved in the Appendix.

In order to exploit the above result, which does not admit mixing

of distributions, it is necessary to use the method of hazards approach

for both parameters. When the time of the last event is not known

with any precision, the amount of new information (about B) derived

from the persistence of the drought is relatively small. Hence it may be

acceptable to use the mixture of hazards approach for u as well as for
a. Thus

FIE(,1.t2)1 - L L jrp[E(4,12)1#, a, 21/(#,a, z)d#dadz. (26)

Where it is considered unacceptable to use the mixture of hazards

approach for both parameters, the uncertainty in the elapsed time since

the last fault rupture can be handled by sampling, as for other data.

7 A description of numerical sampling of distri-

butions

The estimation of hazard under the general approach outlined above

formally involves the evaluation of multiple integrals which could oc-

casionally be accomplished analytically but more often by resort to

numerical integration. In order to give maximum flexibility in coping

with a variety of special cases which may arise in practice, it is conve-

nient to carry out the the integration approximately by taking averages

over samples generated to conform to the the relevant distributions for

the data and paramaters. The precision of the integration depends on

the size of the samples chosen. First, a sample zi,...,En is drawn

from the distribution of data with density f(z). For each z: a sample

8, ,... ek is drawn from the conditional distribution of parameters with
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densityf(elz:). The densityf(tlz,) is estimated (c.f. equation 7) by

f(tl z j ) = IL-lf(4 8:,Zj) (27)
k

Then, using equation 12 we estimate P[E(,1,,2)] by

PIE(4,12)1 -
I;= 1 P[E(fl.f2)| jl

(28)
n

Equivalently, the hazard function h(t) is estimated by

- U.1 h(tizj)
h(tia) = . (29)

n

The method used to generate the samples in the examples below is
now described.

7.1 Generating random samples from a distribution

Let f be a probability density for a vector random variable Y =

C yl...., Y.) Cora function, such as a likelihood function, which is propor-

tional to this density). We wish to generate a pseudo random sample of
size m conforming to the densityf. This may be done as follows.

1. For each Yi find an interval (ai, bi) such that f takes on negligibly

small values when Yi is outside (ai, bi).

2. Find a numberlu which is Z the maximum value off.

3. Generate a uniform pseudo-random vector y in the n-dimensional

box defined by{(ai, bi),i= 1,...,n}.

4. Evaluatef(y).

5. Generate a uniform(0,1) pseudo random number u.

6. Include y in the sample if u <fly)/f.., otherwise not.

7. Repeat steps 3-6 until a sample of size m has been obtained.
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In the case of parameter uncertainties, other approaches could have

been adopted. For example, numerical integration might have been

attempted, or a weighting of each sample of parameter values by the

likelihood function. However the above sample selection procedure

leads to the more straightforward numerical procedures, which only

involve simple averaging. It also allows a similar approach to be used

for generation of samples from data and parameter distributions.

7.2 Summary of steps for the hazard estimation

1. Obtain sample A,...,2,1 from data distribution flx).

2. For each xj,j = 1,...,n

• Obtain sample A ,...,4 from parameter distribution f(el zj )

• Perform distribution mixing

f(tlz j) =
Iif(481; 2,)

k

• Calculate hazard function

h(tlzj) =
f( 11 z j )

-1 - F(fl zj)

3. Perform hazard mixing

h( t) =
Ijh(tlzj)

k

4. Calculate probability of earthquake in time period of interest

rt2

P[Eul,d =1- exp[- / h(t)dt]
J tl
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The details of the procedure differ depending on the nature of the

data but the general procedure is always the same. The only qualifica-
tion is that in some cases a parameter value estimated externally from

the data ofthe fault zone being studied is included in the "data", not in

the «parameters".

8 Examples

By way of illustration, the above methods are applied to two examples:

the Mojave segment of the San Andreas fault, California, where indi-

vidual events at Pallett Creek have been dated (Sieh et al. 1989); and

data from the Wellington-Hutt Valley segment of the Wellington fault

where, except for the last two displacements, the individual events have

not been dated (Van Dissen et al 1992). Both of these fault segments

were discussed in Section 4 above.

8.1 Pallett Creek

The past dozen or so movements on the San Andreas fault at Pallett

Creek have been dated by Sieh et al. (1989), as in 'Ihble 1. Apart from

the two most recent movements, the dates of which are known from

historical records, the dates are determined from geological information

and are given by Sieh et al. (1989) as middle estimates and 95%

confidence intervals. They are interpreted here by us as independent

normal estimates * 2 standard deviations. These uncertainties may

not be the uncertainties which we would use if we were interpreting the

geological evidence ourselves; in particular it is doubtful that the dates

can realistically be considered as independent in all cases. However,

for the purposes of illustration the dates are regarded as independent

and normally distributed with standard deviation as given in the last
column o f Table 1.
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'Ihble 1

Estimated dates ofoccurrence for events at Pallett Creek

(from Table 3 of Sieh et al., 1989).

Event Date (A.D.) 95% confidence interval std dev'n
Z 1857. 1.9 NA 0

X 1812.12.8 NA 0
V 1480 (1465-1495) 7.5

T 1346 (1329-1363) 8.5

R 1100 (1035-1165) 32.5

N 1048 (1015-1081) 16.5

I 997 (981-1013) 8
F 797 (775-819) 11

D 734 (721-747) 6.5

C 671 (658-684) 6.5

B before 529 NA NA

For sampling from the distributions of data and parameters, an

arbitrary sample size of 50 has been chosen. Although much smaller

than the sample sizes used in some simulations, this seems large

enough to ensure robustness in the results for the present examples.

Fifty simulations of date sequences for events C to Z were made, the

date for each event being generated as a pseudo-random normal random
variable with mean as in the second column of Table 1 and standard

deviation as in the last column. Event B was ignored because there is

insufficient information given for us to derive a distribution for its date

of occurrence. For each simulated sequence, the interevent times were

computed and fifty simulations generated for the parameters of each

of the exponential and lognormal recurrence time models, following

the procedure of section 7.1 above. The hazard for each simulation of

the event time data was computed by mixing the distributions as in

equation 7 over the simulated parameter values and the hazard for each

model computed by mixing the hazards over the simulated event time
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data sets (as in equation 7). The results are shown in Figures 9-14.

Fixed data. maximum likelihood estimate
--

Variable data, va[*31?-ermerS.-0 --fi*28*ZiWidEIJ parameters
3
0

0 200 400 600 800 1000

t

Figure 9: Pallett Creek hazard functions based on the exponential
model for recurrence intervals. Time t iS reckoned in years from the

time of the last fault movement. The hazard h(t) is measured in events
per year. The recommended curve is that for variable data, variable

paranneters.

In Figures 9 and 12 our variable data, variable parameter estimates

of hazard are compared to two previously published estimation meth-

ods: the common fixed data, maximimum likelihood method, which

does not account for uncertainty in either the data or the parameters,

and the fixed data, variable parameter method, similar to that proposed

by Davis et al., which allows for uncertainty in the parameters but not

in the data. Davis et al. also produced an estimate which purported to
allow for uncertainties in the data as well as the parameters but did this

by assuming the interevent times were independent (clearly untrue)

and made no apparent distinction between the hazard mixing which is

appropriate for data uncertainties and the distribution mixing which

is appropriate for parameters. Our variable data, variable parameter
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Figure 10: Pallett Creek hazard functions based on the exponential
model for different randomly sampled data sets allowing for uncertainty
in parameter values.
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Figure 11: Histogram of exponential hazards for different randomly
sampled parameter values, using central estimates of rupture times at
Pallett Creek.
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Figure 12: Pallett Creek hazard functions based on the lognormal
model. The recommended curve is that for variable data, variable

parameters.
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Figure 13: Pallett Creek hazard functions based on the lognormal model

for different randomly sampled data sets allowing for uncertainty in
parameter values.
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Figure 14: Pallett Creek hazard functions based on the lognormal
model for different randomly sampled parameter values using a fixed
data set

estimate is thus more satisfactory in its handling of data uncertain-

ties, but still can be improved upon by a more careful and detailed

interpretation of the geological information and its uncertainties. The

important thing to realise is that our general approach permits such

detailed information on distributions and their interdependencies to be

incorporated into the estimates of hazard; there is no longer the need

to oversimplify the data distributions to conform to ideal statistical
models.

In Figure 10 the sensitivity of the hazard (under the exponential

model) to uncertainties in the data is displayed by plotting the hazard

functions for different randomly sampled data sets. Figure 11 shows the

sensitivity to parameter uncertainty In this case, since the individual

hazard functions are constant for fixed parameters, the variability

is better displayed by a histogram. Figures 13 and 14 show the

corresponding sensitivity analyses for the lognormal model. It is notable
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that, in the Pallett Creek case, the sensitivity of the hazard to parameter

uncertainties is greater than the sensitivity to data uncertainties. This

can be seen by the relatively wide spread of hazard levels in Figures 11

and 14 compared to the spread in Figures 10 and 13 respectively It is

also interesting to compare the recommended curve for the exponential

model in Figure 9 with that for the lognormal model in Figure 12. The

lognormal curve starts at a lower level (actually zero) and rises to a

higher value than the exponential curve between t = 50 and t = 100,

but then drops away more rapidly The dropping hazard under the

exponential model (Figure 9) is due to adjustment to the parameter

distribution as the elapsed time since the last earthquake increases.

Another feature is that the differences between the exponential and

lognormal curves calculated according to the recommended method to

take account of uncertainties in data and parameters are relatively

small compared to the differences between the curves calculated with

fixed data and maximimum likelihood estimates (Figures 9 and 12).

This is reflected also in the rather similar probabilities for these two

cases in Table 2, which shows conditional probabilities ofrupture within

the the next 50, 100, 200 and 300 years from 1990 A.D.
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Table 2

Conditional probability of rupture from 1990 A.D. at Pallett Creek

years 50 100 200 300

Exponential Fixed data,

Model maximum likelihood .32 .53 .78 .90

Fixed data,

variable parameters .30 .51 .75 .86

Variable data,

variable parameters .31 .52 .76 .87

Log normal Fixed data,

Model maximum likelihood .41 .64 .86 .94

Fixed data,

variable parameters .36 .56 .77 .86

Variable data,

variable parameters .30 .48 .68 .78

8.2 The Wellington fault

Data from the Wellington-Hutt Valley segment of the Wellington fault

can be summarised as follows (Berryman, 1990; Van Dissen et al.,

1992):

• The age and displacement of the oldest dated terrace (near Upper

Hutt) are 140 * 10 ka and 940 * 40m, respectively.

• Two younger terraces have ages and displacements of 14 * 4 ka,

104 1 10 m, and 70 * 5 ka, 437 1 20 m respectively.

. Along the same portion of the fault, single event displacements

range from 3.2 to 4.7 m.
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• The most recent rupture event is estimated to have occurred

between 340 and 490 years ago.

Berryman (1990) states that the above uncertainties regarding the

ten'ace ages and displacements approximate 95% confidence intervals.

In what follows they are regarded as *2 standard deviation limits of

normally distributed estimates. Similarly the interval for the single

event displacements is regarded as a *2 standard deviation limit for

the mean single event displacement, assumed normally distributed.

Only the most recent two events have been approximately dated on

this segment, so it is not possible to estimate directly the coefficient of

variation of interevent times. However the reasonably consistent size

of single-event displacements measured at ld Marua, and the relatively

constant slip rate calculated at Emerald Hill gives us reason to believe

that the earthquake recurrence time on the Wellington-Hutt Valley

segment of the Wellington fault is likely to be somewhat regular rather

than purely random; a coefficient of variation less than 1 thus seems

likely. In what follows the distribution for the coefficient of variation is

"borrowed" from the Pallett Creek data2, i.e.

fla) a a -MI-Iexp[- C log 7-#)21 (30)i= 1

where L. i = 1, .... n are the Central estimates of the interevent times

at Pallett Creek and A is the maximum likelihood estimate of the

lognormal parameter u using these central estimates.

Again the hazard is estimated both for the exponential and lognor-

mal recurrence time distributions. For illustration we demonstrate and

compare the results of two different approaches using different data.

The procedures are as follows.
Method A:

1. Generate 50 pseudo random samples from the distributions for

age of the oldest dated terrace I Ti (where Ti now refer to the

2The maximum likelihood estimate of the coefficient of variation at Pallett Creek

was 0.84
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interevent times on the Wellington fault), the corresponding total

displacement D, and the mean single event displacement Dl.

In the case of the lognormal model we also generate 50 random

samples from the distribution for coefficient ofvariation described

above.

2. For each sample pair (Dr,Di), estimate the number of displace-

ments n as the integer nearest to DT/D. Given I Ti and n (which is

quite large, being of order 200), the uncertainty of the exponential

parameter, and of the remaining lognormal parameter, is small

and therefore ignored.

3. In the case ofthe exponential model estimate the rate parameter u

by nl I Ti for each sample pair (ITi,n); this coincides with the (con-

stant) value of the hazard function. Estimate the unconditional

hazard by the average over the 50 samples.

4. In the case of the lognormal model, for each sampled triple

(I Ti, n. a) estimate the parameter y by I Tiln and hence calculate

B = log(y) -  al Hence calculate the expected hazard function
E[h(tla < t < b; 01, a)] using equation 25, where a refers to 340 years

ago and b to 490 years ago. Calculate the unconditional hazard

function as the mean over the 50 samples.

The results for method A are seen in Figures 15-17. Figure 15 is

a histogram of the (constant) hazard functions obtained for 50 samples

of I Ti and n using the exponential model. Figure 16 shows the hazard

functions obtained from 50 samples ofITi, n and a using the lognormal

model and Figure 17 shows the result of averaging them. Overall

the hazard is higher under the lognormal model for the period shown
because the time since the last event is much less than the estimated

mean recurrence interval. The hazard is fairly constant under the

lognormal model for the period plotted because the full width of the

time-scale is only a fraction of the mean recurrence interval.
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Figure 15: Histogram of Wellington fault hazards based on exponential
model (Method A), for different randomly sampled data sets.

In the second approach we use the age and displacement data from

the youngest of the three dated terraces. Since the value of n is much

smaller than in Method A the parameter uncertainties are larger and

cannot be ignored. Also it is not possible to use equation 25 in the

lognormal case to handle the uncertainty in the timing of the most

recent event because the mixture of distributions approach must be

used for B and the mixture of hazards approach for the time since the

last event. In detail, the second approach is as follows.
Method B:

1. Generate 50 pseudo random samples from the distributions for

age of the youngest dated terrace I Ti, the corresponding total

displacement DT, the mean single event displacement D 1 and the

time of the last event T (as uniform on the period from 340 to 490

years ago). In the case of the lognormal model generate also 50

random samples from the distribution for coefficient of variation
as described above.

41<44*t.....
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Figure 16: Wellington fault hazard variation with time based on the
lognormal model (Method A), for different sampled triples (I Ti, n, a).
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Figure 17: Wellington fault hazard variation with time using the
lognormal model (Method A), averaged over sampled data sets.
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2. For each sample pair (Dr, Dl), calculate the number of displace-

ments n as the integer nearest to DT/Dl.

3. In the case of the exponential model, for each sample triple

(I Ti. n, I) generate 50 samples for the the rate parameter B and

calculate the hazard h(tl I Ti, n) by a mixture of distributions over

the values of u. Determine the unconditional hazard function as

the average over the 50 samples.

4. In the case of the lognormal model, for each sampled quadru-

ple (I Ti, n, a, T) generate 50 samples of the lognormal parameter

p using the gamma distribution approximate method described

above. Calculate the hazard function h(tl I Ti, n, a, T) using a mix-

ture of distributions over values ofg. Determine the unconditional

hazard function as the mean over the 50 samples of. I Ti, n, aandr.

The results for method B are shown in Figures 18-23. In this

case the effect of taking account of uncertainties in both data and

parameters is seen to be quite small, at least over the time period for

which the hazard functions are plotted. The hazard under method B

is generally slightly higher than under method A, due to the slightly

faster estimated slip rate associated with the youger dated ten'ace.

Again the hazard is somewhat higher for the lognormal model than

for the exponential model but the difference is not great when the

imponderable uncertainties associated with the assumptions necessary

for recurrence-time modelling (discussed in section 4) are considered.

The conditional probabilities of rupture within the next 50, 100,200

and 300 years from 1990 A.D. under each method are tabulated in Table

3.
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Figure 18: Wellington fault hazard variation with time based on the
exponential model (Method B).
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Figure 19: Wellington fault hazard variation with time based on the
exponential model for different randomly sampled data sets allowing
for uncertainty in parameter values (Method B).
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Figure 20: Histogram of exponential hazards for different randomly
sampled parameter values, using fixed data (Method B).
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Figure 21: Wellington fault hazard variation with time based on the
lognormal model (Method B).
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Figure 22: Wellington fault hazard variation with time based on the
lognormal model for different randomly sampled data sets allowing for
uncertainty in the parameter values (Method B).
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Figure 23: Wellington fault hazard variation with time based on the
lognormal model for different randomly sampled parameter values
using a fixed data set (Method B).
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Thble 3

Conditional probability of rupture from 1990 AD for Wellington.

years 50 100 200 300
Method A

Exponential Variable data

Model Variable c.v. .08 .16 .29 .40

Log normal Variable data

Model Variable c.v. .11 .21 .37 .50

Method B

Exponential Fixed data,
Model maximum likelihood .09 .17 .31 .43

Fixed data,

variable parameters .09 .18 .32 .44

Variable data,

variable parameters .10 .18 .33 .45
Ikg normal Fixed data,

Model maximum likelihood .12 .23 .41 .55

Fixed data,

variable parameters .12 .23 .41 .54

Variable data,

variable parameters .12 .23 .40 .53

Figure 24 shows the preferred hazard curves, allowing for vari-

able data and variable parameters, under each method and model for

comparison.

Neither of the above estimations for the Wellington fault using the

lognormal model can be regarded as a definitive estimation of hazard

for the Wellington fault; the question of what is the real distribution

for the coefficient of variation cannot be answered from existing data.

The use of the lognormal model in such circumstances is scientifically

49



o Method B,!Ranormal

O --- Method A, log normal

3 - Method B, exponential
Method A exponential

-

0

8-
0

1 1 1 1 1 1 1

1850 1900 1950 2000 2050 2100 2150

t (years AD)

Figure 24: Wellington fault hazard functions allowing for variable data
and variable parameters under each of Method A and Method B and
based on exponential and log normal models

relevant only to the question of sensitivity It is legitimate to ask: what

if the coefficient of variation is the same as for some other fault, or the

same as in the generic distribution of Nishenko and Buland (1987), to

see if the hazard is materially different from that under the exponential

model. If there is no practical difference between the two models for

the period of interest, then the coefficient of variation is a matter of no
practical interest for that particular fault. If it turns out that there is
a difference, then the extent to which estimation of hazard based on an

assumed coefficient of variation should be given credence is a matter of

expert judgement and debate.

0030
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9 Implications for future geological studies

This study has implications for the way in which data should be

presented in geological studies related to fault-zone hazard. It is

important that uncertainties in estimated quantities such as ages, slip-

rates and displacements are reported fully so that the best use can be

made of this type of data in future hazard studies for specific sites,

or regions, or for earthquake loadings code purposes. In some cases,

where estimates of fault rupture times and displacements are given,

the information on data uncertainties is insufficiently detailed to allow

these methods to be properly applied. This is particularly so when the

timing of past ruptures has not been directly determined. Considering

the effort and cost that goes into an active fault investigation, skimping

on the description of uncertainties cannot be justified. Field geologists

should seek expert statistical advice when nonstandard situations arise

in the estimation of any of the above quantities.

10 Conclusion

The study enables important improvements to the quality of hazard

assessment (in fault zones) based on geological information. The use

of all relevant information, including that on uncertainties, in applying

particular models willlead to more soundly-based comparisons between

models and more informed assessments ofmodel performance. Bringing

together all the uncertainties into a single estimate, rather than a set

of conditional estimates, allows easier interpretation of the results and,

again, better comparisons between alternative models.

The examples given here have been purely for the purposes of

illustration of the general method, and should not be regarded as

definitive estimates of hazard.
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Appendix

Proof of Equation 25

rb

E[h(t)la <t<b]=  h(Op(t)dt
JQ

where p(t) is the probability density for the time elapsed since the

last movement given the cumulative distribution function F(t) for the

recurrence time. Since the probability that the drought exists for time

t is 1 - F(t), p(t) or l - F(t). Hence

E[h(t)la <t<b]
1 -b

ff[1 - F(t)]dt Ja h(t)[1 - F(t)]dt

F(b) - F(a)

.C[1 - F(t)]dt

If F is lognormal(B, a), then, making a change of variable to u =

(log t - u)/0 and integrating by parts we have, for the denominator,

fb log,-B
1 [1 - F(t)]dt = g:B [1 - *(u)]ae'+audu

Ja
0

log b-B

logb- g loga - u= b[1 - (D< a )1 - a[1 - ®( a )] + al 0(u)/+audu
0

where ¢ is the standard normal density The last integral on the right

hand side can be written as

e#

-Im j

e#+ li /
=

4*ic

 e#+10-2

11&=8

 ' e- 2 e du
121.Z=e

0

!21.f=2

I 0 e- (U-0)2(il,
Jial.-0

0

®C log b - B - 02 loga- B - a
0 6

2

where the last step is the result of a change of variable to v = U - 0.

Collecting up terms in the denominator, and noting that the numerator
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is given by

log b- u loga- B

Equation 25 follows.
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