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Executive Summary 
Developing a robust structural assessment framework which can rapidly provide a quantitative 
seismic assessment of buildings and infrastructure at a regional scale enhances community resiliency 
by helping to identify critically vulnerable structures and lifelines. Central to the work developed in 
this project is the use of machine learning driven computational methods to efficiently cluster 
buildings into typologically similar groups and select representative indicator structures that can be 
used to estimate the response of a larger building set. Indicator buildings were used following the 
Christchurch earthquakes to limit the number of structural inspections of damaged buildings 
following aftershocks. These buildings were selected to include representative typologies in 
Christchurch and were reinspected following the aftershocks to determine if additional damage 
occurred. The intention here is to select indicator buildings before the occurrence of ground shaking 
to allow for the installation of structural instrumentation and development of detailed numerical 
models that can be used for scenario planning pre-event and can provide situational awareness 
post-event. Wellington was used as the region of study for this research due to the existence of a 
comprehensive database of buildings within the CBD. First, additional structural and site 
characteristics were added to the database including the estimated building periods and site 
periods. Next, three machine learning clustering methods were developed to cluster buildings in the 
database into typologically similar groups and select representative indicator buildings. Then, a 
range of numerical models were generated for the indicator buildings, and the response across all 
buildings was evaluated using the 2016 Kaikōura earthquake as a case study. Results from the case-
study suggest that the indicator building approach can be effective in estimating building drifts and 
accelerations across a range of buildings. Ongoing work is focused on continued database 
development and refinement of the indicator building approach for regional seismic response 
modelling. 

Technical Abstract 
This research is focused on the development of a multi-level seismic impact framework for regional 

seismic response and damage assessment. The work presented here uses a detailed database of 

buildings in Wellington. First, structural and site characteristics that were necessary for 

development of response frameworks were added to the database including the estimated building 

periods, design accelerations and site periods. Next, a one-DOF framework that can be used to 

roughly identify structures where the seismic demands may have exceeded the design accelerations 

was presented and demonstrated using a small earthquake in Wellington. Then, machine learning 

driven computational methods to cluster buildings into typologically similar groups and select 

representative indicator structures were evaluated. Two prominent unsupervised machine learning 

clustering approaches are utilized to cluster the mixed categorical and numerical building database: 

namely k-prototype and k-mean. A novel autoencoder deep learning neural network is also 

designed and trained to convert the mixed data into a low-dimensional subspace called latent space 

and feed this into k-mean algorithm. The autoencoder method is demonstrated to be more effective 

at clustering buildings into useful typological clusters for seismic response analysis. Then, the 

concept of using indicator buildings for regional response modelling is introduced. Indicator 

buildings within each cluster were selected and modelled, with supplementary models generated by 

modifying the stiffness of the base indicator building models account for building flexibilities across 
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each cluster (for a total four models per cluster). A case-study was undertaken using the 2016 

Kaikōura earthquake, and the response of the models are utilized to estimate the seismic response 

of all buildings in the database. Results from the case-study suggest that the indicator building 

approach can be effective in estimating building drifts and accelerations across a range of buildings. 

Ongoing work is focused on developing methodologies to correct for building flexibility across each 

building cluster, developing more detailed structural models and instrumenting indicator buildings, 

and applying additional machine learning techniques for damage and response estimation. 

Key Words 
Regional Seismic Response Analysis, Representative Buildings Selection, Seismic Vulnerability 
Archetypes, Unsupervised Machine Learning Clustering, Deep Learning Autoencoder Neural Network, 
Latent Space 
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1. Introduction 

Buildings and infrastructure systems in New Zealand are vulnerable to damage and disruption from 
seismic events. Developing a robust structural assessment framework which can rapidly provide a 
quantitative assessment of these systems at a regional scale enhances community resiliency by 
helping to identify critically vulnerable structures and lifelines. A number of research and commercial 
initiatives have been undertaken world-wide to develop regional impact tools for scenario planning 
and/or loss estimation following seismic events. These tools commonly utilize a fragility-based 
approach to estimate fatalities, damage and economic loss, based on a general prediction of the 
dominant behaviours of structures subjected to seismic hazards (e.g. [1]). However, using such tools 
it is difficult to pinpoint specific critically deficient structures for retrofit, evacuation or inspection. 
 
There is an interest in developing a framework to provide building-specific nonlinear response and 
damage predictions following earthquakes. However, traditional numerical methods for evaluating 
the nonlinear seismic response of structures are computationally expensive, making it difficult to scale 
these methods to evaluate the performance of all structures within a community. This can make it 
impractical to perform detailed structural resilience analysis at community scale (where hundreds of 
numerical runs are required for each structure in the community), and difficult to provide rapid 
community-wide performance assessments immediately following seismic events. 
 
To overcome these deficiencies, this project provides the building blocks for next generation tools for 
performing regional seismic resiliency and scenario assessments as well as rapid performance and 
damage estimations following earthquakes. A key concept of this study is the development of linked 
data sets that can be used to inform the seismic response and damage of a large number of buildings 
using multiple response and damage evaluation methodologies. The research worked in conjunction 
with aligned projects supported by QuakeCoRE and RNC2 to compile the information required to 
develop several regional seismic impact tools. Two tools were developed here: (1) a one-DOF 
framework that compares the design and imposed spectral accelerations, and (2) a more detailed 
machine learning driven computational method to efficiently cluster buildings into typologically 
similar groups and select representative indicator structures that can be used to estimate the 
response of structures at a regional scale. The following sections of this report provide a summary of 
the completed work and the report is organised as follows:  

• Section 2 provides a summary of the Wellington Building Inventory (WBI) including the 
building-level structural and site characteristics that were added as part of this work. A one-
DOF framework that can be used to roughly identify structures where the seismic demands 
may have exceeded the design accelerations is also presented and demonstrated for a small 
earthquake recorded in Wellington in 2020. 

• Section 3 introduces machine learning driven computational methods to cluster buildings into 
typologically similar groups and select representative indicator structures for regional 
response modelling. Indicator buildings within each cluster were selected and modelled, with 
supplementary models generated by modifying the stiffness of the base indicator building 
models account for building flexibilities across each cluster, and the indicator building 
approach is demonstrated and evaluated using the 2016 Kaikōura earthquake as a case study. 

• Section 4 evaluates the efficacy of multi-fidelity nonlinear structural modelling using recorded 
earthquake data to provide insight into the level of structural modelling required to 
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adequately capture nonlinear structural response to develop training data for deep learning 
surrogate models. 

• Section 5 discusses recent advances in developing nonlinear structural surrogate models using
deep learning model architectures. Two deep learning approaches are recommended for
further evaluation and use in the proposed indicator building regional framework.

• Section 6 provides key findings and conclusions, and Section 7 provides a brief overview of
ongoing and future work.

2. Wellington Building Inventory and One-DOF Rapid Assessment Framework

The building dataset used in the research is the Wellington Building Inventory (WBI) which was 
developed in-part through collaboration between QuakeCoRE and Wellington City Council [2]. Figure 
1 shows a snapshot of Wellington CBD and the buildings included in the WBI as of 2021. The WBI 
consists of several different databases with buildings in the Wellington CBD, including Building Seismic 
Assessment, Hollowcore Floors, Targeted Damage Evaluation, 1935-1975 RC Buildings, CityScope, 
Earthquake Prone Buildings, and WCC Heritage, which have been combined in a master database and 
evaluated using a comprehensive site survey. Additionally, the database is enriched by a building 
drawing database which consists of building drawings and consents for a large number of buildings in 
the wider database. The readable access to the structural drawing of buildings facilitates the 
extraction of building structural properties and forms the foundation for further investigation in this 
research. This work focuses on medium to high rise concrete buildings located at the Wellington CBD. 
The most important building parameters in the WBI for the purpose of this work were the geographic 
location, number of storeys, above ground height, year of design and construction, lateral load bearing 
system, floor system, presence of vertical/horizontal irregularity, use category, and footprint area. 
However for the purpose of performing a response analysis, additional parameters were necessary to 
estimate the design forces and seismic demands, namely the site class, site period, building period, 
and strong motion station. These parameters were added to the WBI as part of this work and are 
discussed in more detail below. 

Figure 1. Wellington building inventory [2] 
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2.1 Estimating Building Design Accelerations 

Several important parameters required to estimate the design spectral accelerations for each building 
were not included in the original WBI, namely the site subsoil class and structural period. This research 
utilised the available site subsoil class maps for central Wellington presented by Kaiser et al. [3] to 
identify the buildings' soil types based on the geographic location. Figure 2a shows the Wellington 
CBD including the boundaries of different site subsoil classes according to NZS 1170.5 [4], where soil 
type B is for Rock, C is for shallow soil, and D is for deep or soft soil, while Figure 3a shows the number 
of buildings in the database assigned to each site class. The building period is essential for the 
evaluation of earthquake design action. Consequently, this research used the analytical approach 
proposed in the Commentary of NZS1170.5 [5] to estimate the approximate period of the building 
based on the height. Adding site subsoil class and building period to the database, the design 
acceleration of each building is calculated in accordance with NZS 1170.5 [5] and added to the 
database for use in the framework. 
 
2.2 Strong Motion Stations 

The other important parameter which was not available in the original WBI are the building site 
periods, which are used to link strong motion stations to individual buildings to estimate seismic 
demand. Since the Wellington CBD has very dense site period contours, the change in site periods of 
buildings over very short distances can be extreme. Hence, the geotechnical characteristics of 
buildings are more related to building site periods than relative geographic location to the nearest 
strong motion station. For this reason, the site period contour map of the Wellington CBD from Kaiser 
et al. [3] was modified (by adding additional contours) and used to link buildings to the appropriate 
strong motion station, where the nearest geographic station with the closest site period was linked to 
each building. Figure 2b shows the Wellington CBD including the boundaries of different strong motion 
stations, while Figure 3b shows the number of buildings in the database assigned to each strong 
motion station. From Figure 3b, it is clear additional strong motion stations should be added to central 
Wellington to provide a better estimate of individual building-level seismic demands following 
earthquakes. These findings prompted an aligned pilot project that has been funded through 
QuakeCoRE (agreement number 3723086) that was focused on evaluating the optimized locations for 
strong motion stations in urban environments with rapidly changing site conditions. That work has 
been completed, and additional work will be required before any recommendations can be made. 
 

 
(a) 

 
(b) 

Figure 2. (a) Site class and (b) strong motion station boundaries in the Wellington CBD [6] 
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(a) 

 
(b) 

Figure 3. Distribution of (a) site subsoil class and (b) strong motion stations within the WBI [7] 

 
2.3 One-DOF Rapid Assessment Framework 

Using the building period, year of construction, site class, and strong motion station, a one-DOF rapid 
assessment framework was developed as illustrated in Figure 4a. Within this framework, the design 
accelerations for each structure (as estimated using historical data or based on site class and location) 
are compared to the spectral accelerations at the fundamental period of the structure recorded by 
the strong motion station that has been linked to each building. The initial version of the framework 
is designed as an offline webpage platform that can display the percentage of the measured spectral 
acceleration at the fundamental period of the structure to the design acceleration. A trial of the 
framework was created for the relatively small Foxton 5.8 Mw earthquake occurred at 24 May 2020, 
19:53:33 UT. The buildings of central Wellington database are shaded according to a colour scale to 
represent the ratio of measured earthquake acceleration to the Ultimate Limit State (ULS) design 
acceleration as shown in Figure 4b. The map is designed interactively which enables the user to click 
on each building and view the building name and the corresponding demand ratio, T1,design/ T1,measured. 
This map also includes the locations of Wellington strong motion stations and allows the user to access 
information about each station including the name and site subsoil class . As shown in Figure 4b, the 
map displays a set of spectrum for each strong motion station, including design ULS and Serviceability 
Limit State (SLS) spectral acceleration spectrum for the corresponding soil type, as well as the spectra 
for both components of acceleration measured at the station for the earthquake. 
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(a) 
 

(b) 
Figure 4. Distribution of (a) overview of one-DOF analysis approach and (b) snapshot of near real-time output 

following the 2020 Foxton Earthquake. Note the blue footprint indicates data is not available. 
 
3. Machine Learning Driven Building Clustering for Regional Seismic Response and 
Damage Analysis 

This section presents a machine learning driven framework to cluster buildings into typologically 
similar groups and select indicator buildings for regional seismic response analysis. The framework 
requires a robust database of buildings to provide high level structural and site information of 
buildings. Here, a reduced data set of 234 reinforced concrete buildings from the WBI were used to 
demonstrate the concept. First, key structural and site parameters that contribute to the seismic 
demand and structural response of each building were extracted from the database. Extracted 
parameters include three numerical and five categorical attributes of each building including year of 
construction, height, period, lateral load resisting system, floor system, site subsoil class, importance 
level, and strong motion station. The relative frequency of these attributes across the reduced building 
set of 234 buildings is illustrated in Figure 5. Next, two prominent unsupervised machine learning 
clustering approaches were utilized to cluster the mixed categorical and numerical building database: 
k-prototype on the mixed numerical and categorical database and k-mean on principal components 
numerical subspace adopted from Factor Analysis of Mixed Data (FAMD) (herein referred to as k-mean 
on FAMD). A novel autoencoder deep learning neural network was also designed and trained to 
convert the mixed data into a low-dimensional subspace called latent space and feed this into k-mean 
for clustering (herein referred to as k-mean on latent space). An overview of the neural network 
architecture developed here is shown in Figure 6, where IL, FS, LS, ST, and SMS represent importance 
level, floor system, lateral system, site subsoil class, and strong motion station respectively. Detailed 
information on the clustering techniques developed and implemented in the work can be found in 
Ghasemi and Stephens [8]. 
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Figure 5. Relative frequency of building attributes in the database. (a) Lateral System (LS), (b) Floor System (FS), 
(c) Soil Type (ST), (d) Importance Level (IL), (e) Strong Motion Station (SMS), (f) Period, (g) Year, and (h) Height. 

 

 
Figure 6. Architecture of designed autoencoder neural network [8] 

3.1 Clustering Results – Data Science Methods 

The results of three clustering methods were investigated and compared using common data-science 
methods including principle components (Figure 7) and t-Distributed Stochastic Neighbour embedding 
(Figure 8). A detailed description of these comparison methods and a more complete discussion 
regarding the data-science comparison of the building data is included in Ghasemi and Stephens [8]. 
What is important to note here are the distinct clusters developed using the novel autoencoder deep 
learning approach in both cases, which demonstrates that this method is most effective at clustering 
buildings based on the selected site and structural parameters. 
 

(a)1 (b)2 (c) (d)

(e) (f) (g) (h)

1Lateral systems:: CW&CMF: Concrete Walls and Concrete Moment Frame, CMF: Concrete Moment Frame, CW: Concrete Walls, SMF: Steel Moment Frame,
CWwCW: 'Core Wall with Concrete Walls, CoW: Core Wall, LT: Light Timber, MSR: Masonry
2Floor systems:: UnKn: Unknown, S&B: Slab and Beams, PH: Precast Hollowcore, FS: Flat Slab, CIPJ: Cast In Place Joists, FSwDP: Flat Slab with Drop Panels, PDT:
Precast Double T , CTSD: Concrete Topping on Steel Deck, POS: Precast Other Systems, Sba: Slab and Beam, WS: Waffle Slabs
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Figure 7. Scatter of buildings on principal component space (a) FAMD space for k-prototype, (b) FAMD space 
for k-mean on FAMD space, and (c) PCA space for k-mean on latent space clustering technique. Cluster labels 

identified by different colors [7]. 

 
Figure 8. Scatter of buildings on the 2D t-SNE subspace adopted from (a) 34D FAMD space for k-prototype 

clustering, (b) 18D FMAD space for k-mean FAMD space clustering, and (c) latent space for k-mean clustering 
on latent space clustering. Cluster labels identified by colors [8]. 

 
3.2 Clustering Results – Engineering Comparison 

The dominant structural and site characteristics in each cluster were evaluated to determine how the 
clusters could efficiently be used for regional seismic response assessment. Figure 9 shows the 
clustering results comparing the numerical data year, height, and period, where again the data points 
are coloured based on the cluster label. From Figure 9, it is clear that the k-prototype and k-means on 
latent space method results in distinct clusters with regards to year, height, and estimated periods, 
while the k-means on FAMD method results in significant overlap in buildings in different clusters. This 
suggests that the k-prototype and k-means on latent space methodologies are more effective when 
clustering buildings for the purpose of seismic response analysis, as structural response is highly 
dependent on height and period as well as the era of design, which can be identified based on the 
year. 
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Figure 9. 3D Scatter of buildings on year, height, and period axes and colours in accordance with the 

clustering labels from (a) k-prototype, (b) k-mean on FAMD space, and (c) k-mean on latent space. 
 
To further evaluate how the different methods clustered the numerical attributes, the relative 
frequency distribution of height and year within each cluster are illustrated in Figure 10. From Figure 
10, it is clear that the clusters developed using k-prototype and k-means on FAMD  include a larger 
range of building heights, and years than clusters developed using k-means on latent space. The 
difference is especially significant in the distribution of year where the bin widths in k-mean of latent 
space are mush shorter than the two other methods. The tighter bin widths for the numerical data in 
the clusters developed using k-means on latent space demonstrate that this method is more useful 
for seismic response analysis, where the seismic demands are dependent on the fundamental period 
(which is in-part based on height), and vulnerabilities are commonly linked to year of design. 
 
The categorical attributes in the clustering results were also investigated using relative frequencies of 
each attribute in the clusters. Figure 11 shows the relative frequencies of LS and FS in the unpacked 
clusters of each method. In particular these attributes have been selected for investigation here since 
they most significantly influence seismic response and damage. From Figure 11 it is clear that in 
general a majority of buildings in each cluster use either CW and CMF lateral systems while the 
dominant floor systems are S&B and PH, which is consistent with the distribution of the input data. 
The k-means on latent space method resulted in a significant number of wall buildings (>40%) in four 
clusters (Cluster 0, 1, 2, and 4), with a relatively wide distribution of lateral systems in Cluster 3. The 
k-prototype method resulted in a significant number of wall buildings in three clusters (>40%) (Clusters 
0, 2, and 4) and concrete moment frames (~50%) in two clusters (Clusters 1 and 3). The k-means on 
FAMD method resulted in a significant number of wall buildings (>40%) in Clusters 0, 1, and 3 and 
concrete moment frame (~60%) in Cluster 3. The distribution of lateral systems in Cluster 4 of this 
method is fairly distributed. The distribution of floor systems in each cluster reveals that k-mean on 
latent space has S&B as the significant FS (>50%)) in three clusters (Cluster 0, 1, and 2), precast PH 
(~40%)) in Cluster 2 and relatively distributed floor systems in cluster 4. For k-prototype, Clusters 0, 2, 
and 4 have S&B as the significant value (>50%) and Clusters 1 and 3 have PH as the significant floor 
system value (~50%). The k-mean on FAMD also resulted in three clusters (Cluster 0, 3, and 4) with 
significant number of S&B (>40%), Cluster 2 with significant number of PH (~60%), and Cluster 1 with 
nearly 40% of S&B and PH separately.  

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(c)(b)(a)
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Figure 10. Relative frequency of height (top) and year (bottom) for buildings in each cluster of each adopted 

clustering technique. Columns represent cluster number and rows represent the clustering technique. 
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Figure 11. Distribution of  lateral system  (top) and  floor system (bottom) for buildings in each cluster of each 
adopted clustering technique. Columns represent cluster number and rows represent the clustering technique. 
 
3.3 Selection of Representative ‘Indicator’ Buildings 

Using each of the clustering methods, buildings can be sorted by their distance to the corresponding 
cluster centroid which leads to a prioritized list of typologically representative buildings for each 
cluster. Indicator buildings were used following the Christchurch earthquakes to limit the number of 
structural inspections of damaged buildings following aftershocks. These buildings were selected to 
include representative typologies in Christchurch and were reinspected following aftershocks to 
determine if additional damage occurred. The intention here is to select indicator buildings before the 
occurrence of ground shaking to allow for the installation of structural instrumentation and 
development of detailed numerical models that can be used for scenario planning pre-event and can 
provide situational awareness post-event. Table 1 lists the attributes of the selected representative 
buildings as selected using each clustering technique. To evaluate how well the selected 
representative buildings in each cluster reflect the dominant structural and site characteristics, the 
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distribution of numerical and categorical attributes across the entire data set (shown in Figure 5) and 
within each cluster (shown in Figure 10 and Figure 11) are used. Note that the most frequent bin(s) in 
numerical attributes, i.e. year and height, are selected as the dominant ranges of numerical attributes 
and the values with relative frequency greater than 20% in categorical attributes, i.e., lateral systems 
and floor systems, are referred to as the dominant categorical values of each cluster. The dominant 
range of buildings year and height and the dominant values of LS and FS in each cluster are tabulated 
in Table 1. 
 
Table 1. Characteristics of selected representative buildings and dominant ranges/values in each cluster from 
each adopted clustering technique. Numbers in parenthesizes indicate the percentage of corresponding value 
in the cluster adopted from Figure 11. 

 

  Representative buildings Dominant cluster ranges/values 

Clustering 
technique 

Cluster Year 
Height 
(m) 

LS* FS* Year 
Height 
(m) 

LS* FS* 

M
et

ho
d 

I: 
K-

pr
ot

ot
yp

e 

0 1971 58.7 CW S&B [1982-1988] 
[47-52] 
[60-65] 

CW (78%) S&B (51%) 

1 1984 36.8 CW&CMF PH [1985-1987] [28-36] CMF (59%) PH (45%) 

2 1969 28.5 CW S&B [1960-1964] [24-29] CW (79%) S&B (67%) 

3 1979 78.2 CMF S&B [1984-1990] [26-37] CMF (61%) 
PH (45%) 
S&B (38%) 

4 1926 24.6 CW S&B [1923-1935] [20-32] 
CW (45%) 
CMF (30%) 

S&B (70%) 

M
et

ho
d 

II:
 K

- m
ea

n 
on

 
FA

M
D 

sp
ac

e 

0 1952 27.6 CW S&B [1959-1965] [20-32] CW (65%) S&B (47%) 

1 1958 69 CoW WS [1980-1985] [60-68] 
CW (46%) 
CMF (35%) 

S&B (38%) 
PH (37%) 

2 1996 41.4 CMF CTSD [1979-1986] [27-33] CMF (65%) PH (62%) 

3 1956 25.7 CW FSwDP [1954-1960] [30-35] CW (70%) S&B (78%) 

4 1976 68 CW CTSD 
[1963-1971] 
[1980-1988] 

[37-43] 
CoW (38%) 
CMF (25%) 

S&B (50%) 

M
et

ho
d 

III
: K

-m
ea

n 
on

 la
te

nt
 

sp
ac

e  

0 1963 32.2 CW&CMF S&B [1962-1965] [25-30] CW (61%) S$B (70%) 

1 1926 23 CW S&B [1926-1930] 
[19-24] 
[29-34] 

CW (44%) 
CMF (30%) 

S&B (65%) 

2 1986 34 CMF PH [1985-1988] [28-34] 
CW (50%) 
CMF (39%) 

PH (40%) 

3 1972 88.8 CoW PH [1982-1987] [76-86] 
CW (34%) 
CMF (30%) 
CoW (25%) 

S&B (52%) 
PH (30%) 

4 1981 59.8 CW S&B [1981-1987] [59-65] 
CW (53%) 
CMF (30%) 

PH (36%) 
S&B (34%) 

* LS and FS values are explained in the legend of Figure 5. 

With regards to numerical attributes, the representative buildings selected using k-means on latent 
space were more reflective of the characteristics within the clusters than the buildings selected using 
k-prototype and k-means on FAMD. For k-prototype and k-means on FAMD, only one representative 
building out the five clusters had a year of construction within the dominant range within the cluster, 
while for k-means on latent space three buildings had a year within the dominant range. Similar trends 
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can be observed for building height, where only one representative building had a height within the 
dominant range of the cluster for k-prototype and k-means on FAMD, while three buildings were 
within the dominant height range using k-means on latent space. Further, it should be noted that 
when using k-prototype and k-means on FAMD the representative buildings with numerical attributes 
outside the dominant ranges tended to be well outside the dominant range (e.g. the height of the 
representative building for Cluster 3 was 78.2m while the dominant height range in the cluster was 
26-32m). In contrast for the representative buildings selected using k-means on latent space with 
attributes outside the dominant range tended to be relatively close to that range (e.g the year of 
representative building for Cluster 3 was 1972 while the corresponding dominant year range in the 
cluster was 1982-87). These comparisons highlight the advantage of k-mean on latent space in that it 
results in narrower ranges of numerical attributes across the clusters while also selecting indicator 
buildings that better represent the buildings within each cluster for seismic response and vulnerability 
assessment. 
 
The other important attributes in seismic vulnerability of buildings such as LS and FS were also better 
reflected in the representative buildings of k-mean on latent space. According to Table 1, k-means on 
FAMD was not effective in selecting representative buildings within the dominant LS and FS across the 
clusters, e.g., FS of cluster 1 representee building was waffle slab which had a very negligible relative 
frequency and FS of cluster 0 representative building was concrete wall which had the lowest relative 
frequency in that cluster. It can be concluded that k-prototype and k-mean on latent space were fairly 
effective at selecting truly indicator buildings in terms of the categorical attributes. Moreover, the 
better performance of k-mean on latent space in selecting more effective representative buildings in 
terms of numerical attributes was also concluded previously. Consecutively, the representative 
buildings of k-mean on latent space were selected for further investigation on regional vulnerability 
archetypes which is discussed shortly. Note that in cases where there are multiple attributes with 
larger than 20% representation in a single cluster, it may be necessary to select multiple 
representative buildings for response and damage analysis, e.g. for cluster 1 where concrete walls and 
moment frames had more than 30% relative frequency. 
 
3.4 Application of ‘Indicator’ Buildings for Regional Response Evaluation 

The key parameters influencing the seismic response and vulnerability of each cluster resulting from 
k-mean on latent space clustering was investigated to evaluate how effectively representative 
buildings can be used to estimate the seismic behavior of all clusters in terms of response (e.g. drift 
and accelerations) and damage (based on previously defined vulnerabilities). Here, the attributes most 
likely to affect the seismic response were taken as the year, period, and LS. From Table 1, it is clear 
the year and periods of the representative buildings effectively represent the years and periods within 
each cluster more broadly. However within clusters 1, 2, and 4, there are multiple LS with greater than 
20% representation within the clusters, which would make it difficult to select a single representative 
building to estimate the seismic response and damage across the cluster (e.g. Cluster 1 with CW and 
CMF which consist 44% and 30% of buildings LS respectively ). In these cases, it may be necessary to 
select additional representative buildings to ensure all dominant lateral systems are captured by the 
representative building response. This will be the topic of study in later work. However, additional 
buildings were selected from the prioritized list to include representative buildings with the dominant 
characteristics in each cluster. These additional buildings have been summarized in Table 2 and were 
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selected to accurately represent the cluster in terms of all important attributes. 

To address the effectiveness with which the representative buildings would be expected to capture 
the damage and failure modes across all buildings in each cluster, vulnerabilities defined in the New 
Zealand RC buildings in Section C5 of the New Zealand Seismic Assessment Guidelines [9] were used. 
According to C5, five major categories for seismic vulnerability of reinforced concrete buildings in New 
Zealand are categorized as: (1) buildings prior to 1970s, (2) non-ductile columns from 1982 to 1995, 
(3) precast floors after 1980, (4) shear walls in 1970s and 80s, and (5) buildings with plan/vertical 
irregularity. Note that the importance of building floor system in seismic vulnerability of buildings is 
emphasized by these identified archetypes which was also considered here as one of the effective 
attributes. Table 2 links the dominant attributes of the clusters developed using the k-means on latent 
space approach to the C5 vulnerabilities. From this table, it is clear the selected indicator buildings 
have effective attributes, i.e., year, LS, and FS, which matches the applicable seismic vulnerability of 
the corresponding cluster. Moreover, the C5 vulnerabilities have been distributed well across each 
cluster, with each cluster containing one or two distinct vulnerabilities (with the exception of plan or 
vertical irregularities, which were not incorporated into development of the clusters here). It could be 
claimed that the proposed clustering technique in this paper is able to identify similar seismic response 
and vulnerability typologies across the entire building database and self-select representative 
buildings as indicator of each typology. 
 
Table 2. Dominant cluster and representative buildings attributes of Method III and corresponding C5 
vulnerability category. 

 Dominant range and values Representative buildings 
C5 vulnerability category 

Cluster Year 
Height 
(m) 

LS FS Year 
Height 
(m) 

LS FS 

0 [1962-1965] [25-30] CW (61%) S&B (70%) 1963 32 CW&CMF S&B Prior to 1070s 

1 [1926-1930] 
[19-24] 
[29-34] 

CW (44%) 
CMF (30%) 

S&B (65%) 
1926 23 CW S&B Prior to 1970s 

1927 28 CMF S&B Prior to 1970s 

2 [1985-1988] [28-34] 
CW (50%) 
CMF (39%) 

PH (40%) 

1986 34 CMF PH Precast floors after 1980 

1986 32 CW PH 
Precast floors after 1980 
Non-ductile columns 1982-
85 

3 [1982-1987] [76-86] 
CW (34%) 
CMF (30%) 
CoW (25%) 

S&B (52%) 
PH (30%) 

1972 88 CoW PH Precast floors after 1980 

1984 92 CMF S&B 
Non-ductile columns 1982-
85 

4 [1981-1987] [59-65] 
CW (53%) 
CMF (30%) 

PH (36%) 
S&B (34%) 

1981 56 CW S&B Shear walls in 1970s and 80s 

1985 64 CMF PH Precast floors after 1980 

3.5 ‘Indicator’ Building Models 

The five top-ranked buildings from each cluster identified in the previous section were selected as 
candidate indicator buildings for evaluation in a case-study. From the top five ranked buildings in each 
cluster, the selection of an indicator building was primarily based on the floor plans, structural 
systems, and building period. Detailed CAD drawings were developed for Ground Floor and Typical 
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Floors layouts for each building to help in selection of the indicator buildings for detailed modelling. 
The selected indicator building in each cluster was modelled in CSI ETABS using linear modelling 
procedures with concrete stiffness modification recommendations in ASCE-41. A demonstration of 
the indicator building selection procedure for Cluster 0 is shown in Figure 12, where Figure 12a shows 
the ground floor layouts for the top five buildings, Figure 12b shows the selected indicator building, 
and Figure 12c shows a rendered sketch of the building model in CSI ETABS. A more detailed overview 
of this procedure can be found in [10].  

 
Figure 12. Cluster 0 (a): top five ranked buildings floor plans, (b): the selected indicator building floor plan, and 

(c): the rendered sketch of ETABS model for indicator building. 

 
To provide additional models to reflect the period ranges in the buildings across each cluster (period 
ranges for each cluster shown in Figure 13), supplementary models were generated by modifying the 
stiffness of components in the base indicator building models. This was done using statistical analysis 
on cluster period distributions and adjusting the stiffness modification coefficients in the base 
indicator building models. Estimated building periods for all buildings in each cluster were calculated 
using approximate methods from NZS 1170.5 Commentary [4]. A total of three supplementary models 
were developed for each cluster based on the mean and standard deviation of building periods in the 
clusters, resulting in a total of four models for each cluster. The stiffness modification coefficients on 
the primary structural elements in the models were modified to target building periods equal to the 
mean period of all buildings within the cluster as well as the mean plus one standard deviation and 
the mean minus one standard deviation. These models were created to generate response estimates 
for a range of periods in each cluster for more accurate response estimation of all building in each 
cluster. Figure 14 shows the fundamental periods of all models developed for each cluster, where ULS 
represents the base indicator building model. 
 
3.6 Instrumentation of Indicator Buildings 

In aligned work funded by QuakeCoRE (agreement number ADMIN-2021-SF-15) and conducted in 
collaboration with Canterbury Seismic Instruments, 15 buildings in Wellington were temporarily 
instrumented (including the selected indicator buildings) to determine the actual fundamental periods 
for model validation and comparison to periods calculated using the simplified approach in 1170.5. 
The buildings were instrumented using a single accelerograph with a 120dB resolution and a 10ug RMS 
noise floor, and ambient vibration measurements were taken on a windy day to capture the excited 
state of the structures. The measured and estimated periods as calculated using 1170.5 are 
summarised in Table 3. The measured periods were unexpectedly low, suggesting the measurement 
time was too short or additional instruments were required – this is the focus of ongoing work as 
instrumenting the selected indicator buildings is essential to the development of the framework 

(a) (b) (c)
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presented here. Due to the errors in the measured building periods, they have not been used for model 
validation in the following section. 
 
Table 3. Estimated and Measured Periods for 15 Buildings in Wellington 

Building Name 1170.5 
Period - X 

1170.5 
Period - Y 

Measured 
Period - X 

Measured 
Period - Y 

% Difference X % Difference Y 

Plumbers Building  0.74  0.92  0.49  0.51  -34  -45  
The Wakefield  0.93  1.16  0.40  0.32  -57  -72  
Hope Gibbons Building  0.63  0.79  0.26  0.74  -60  -7  
2-8 Maginnity Street  0.53  0.66  0.57  0.58  9  -12  
Colenso House  0.88  1.10  0.78  0.91  -11  -18  
EMC Building  0.84  1.05  1.33  0.55  59  -48  
Tower Building  1.14  1.42  0.59  0.51  -49  -65  
Council Administration 
Building  

1.09  1.37  0.68  0.98  -38  -29  

Grant Thornton Building  1.85  2.31  1.75  1.84  -5  -21  
49 Boulcott Street  1.88  2.35  1.44  0.89  -23  -62  
Todd Building  1.12  1.41  1.22  1.74  8  24  
17 Whitmore Street  0.70  0.88  0.41  0.58  -42  -34  
38 Waring Taylor Street  1.15  1.44  0.49  0.59  -58  -59  
St Helens Apartments  0.58  0.72  0.28  0.68  -52  -6  
VUW School of 
Architecture and Design  

0.31  0.39  0.32  0.25  0  -36  

Endeavour Apartments  0.59  0.74  0.25  0.28  -58  -63  

 

 
Cluster 0 

 
Cluster 1 

 
Cluster 2  

Cluster 3 

 
Cluster 4 

 
 
 

 
 
 

Legend 
Figure 13. Building period distribution in all clusters 
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Figure 14. Period distribution of models developed for each cluster 

3.7 Regional Response Analysis using ‘Indicator’ Buildings - A Case Study 

A case study was conducted using the 2016 Kaikōura Earthquake, which was an Mw 7.8 earthquake 
that had an epicenter approximately 200 km from Wellington [11]. The nearest location of fault 
rupture occurred approximately 50 km South of Wellington and caused significant structural damage 
to many buildings [11]. Time series acceleration data for this earthquake was obtained using the linked 
several strong motion stations (SMSs) in Wellington [12]. A linear time history analysis was conducted 
for the four models in each cluster, where the time history data used for each building was assigned 
based on site period rather than geographic distance to the SMS as previously stated. Using the 
maximum drift and acceleration of four different models in each cluster, two methods were utilized 
to estimate the response parameters of all buildings within the cluster. In Method I, the maximum 
drift from the indicator building in each cluster was applied to all buildings in that cluster. In Method 
II, a linear regression model was developed based on the response parameters and periods of the 
numerical results from the four models in each cluster. The developed model was used to estimate 
the maximum drift and maximum acceleration of all buildings in each cluster according to building 
periods (e.g. the response was corrected based on period). Figure 15 shows the estimated drifts for 
Method I (a), and Method II (b) for the reduced building set in the WBI for the Kaikōura earthquake 
case study. This comparison demonstrates that Method I tends to result in an underprediction of drift, 
while a preliminary analysis of Method II indicates that these drift estimates are consistent with 
response and damage observed during the earthquake. However additional work is necessary to 
validate this approach. 
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Figure 15. Drift maps using two methods; (a) Method One: drifts driven from indicator buildings (b) Method 

Two: drifts driven from linear regression response model. 

The results of the case study demonstrated several important considerations regarding the influence 
of structural and demand parameters when using indicator buildings to represent the response of a 
wider cluster of buildings. In particular, the range of periods across each cluster and the shape of the 
response spectrum of the input motion can have a large impact on the estimated response and must 
be accounted for. This is clearly demonstrated by comparing the responses of Clusters 2 and 0 for the 
Kaikōura case study. Figure 16 shows the estimated storey drifts, storey accelerations, and response 
spectra of the input motions used in each cluster. From this figure, it is clear that period correction is 
not necessary when the input response spectrum is relatively constant across the period range of the 
cluster (Cluster 0) but is required when the input response spectrum varies significantly across the 
period range of the cluster (Cluster 2). Ongoing work is focused on developing robust methods to 
ensure spectral characteristics of the input motion are accounted for when using indicator buildings 
to evaluate the response of a wider range of structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)
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Figure 16. Comparison of Cluster 0 and Cluster 2 modelling results for case study 

 
4. Evaluation of Various Nonlinear Modelling Approaches for Regional Response Analysis 

This section presents a study that evaluates the effectiveness of a range of nonlinear numerical 
analysis methods in capturing the nonlinear response of structures. In the context of this study, this 
task was undertaken to evaluate the complexity of model required to generate training data for 
machine learning surrogate models, however the results are useful even in a context where traditional 
analysis methods are to be used for a large number of structures. Here, six common nonlinear analysis 
methods for concrete buildings were used to model the response of three instrumented buildings for 
which damaging earthquake records were available. The analysis methods are summarised in Table 4 
and range from phenomenological (highly simplified) cases to more physical macro modelling 
approaches. The focus of this study was concrete moment frame buildings, and included a full-scale 
four-storey building tested on the E-defence shake table in Japan [13], a seven-storey building located 
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in Van Nuys CA [14], and a 6-storey building located in Wellington, NZ [15]. An overview of these 
buildings and the instrumentation locations are shown in Figure 17. 
 
Table 4. Analysis methods 

Phenomenological • Level 1: Equivalent SDOF model 
 • Level 2: Simplified MDOF model 

• Level 3: 2D frame model with moment-rotation hinges 
• Level 4: 2D frame model with zero length fibre hinges 
• Level 5: 2D frame model with distributed plasticity fibre elements 
• Level 6: 3D model with moment rotation hinges 
• Level 7: 3D model with zero length fibre element hinges 

Physical • Level 8: 3D model with distributed plasticity fibre elements 

 

 
Figure 17. Instrumented study buildings 

4.1 Overview of Modelling Approaches 

This section provides a brief description of the analysis methods summarised in Table 4. All models 
were developed in the opensource structural analysis software OpenSeesPy. Detailed descriptions of 
the models can be found in Scaria and Stephens [16].  

Equivalent Single Degree of Freedom Method 

The equivalent single degree of freedom (SDOF) modelling approach simplifies a structural frame into 
a point mass, spring and damper system. This formulation seeks to simplify a frame building into an 
equivalent SDOF system and analyse the response-history of the structure for the applied ground 
motion. This method extends the nonlinear static capacity spectrum method proposed by Freeman 
[17] to enable nonlinear dynamic analyses using an equivalent conversion procedure such as that 
proposed by Kuramoto et al. [18]. Effectively, this method utilises the nonlinear monotonic pushover 
characteristic of a Multi-Degree of Freedom (MDOF) system to define the cyclic force-deformation 
response of the equivalent mass corresponding to the first mode of vibration of the structure. 

Simplified Multi Degree of Freedom Method 
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Commonly known as the ‘fishbone’ model, the equivalent multi-degree of freedom system is a 
simplified two-dimensional representation of a building frame whereby a single column element 
represents all the participating columns of a storey, and two half-span beams extending either side of 
the column at every storey is a condensed representation of the beams at each floor level. Sliding 
supports are assigned at the ends of the half-beams Khaloo & Khosravi [19]. The two major simplifying 
assumption in this analysis are equal joint rotations at beam-column connections at any given floor, 
and negligible axial elongation of columns. 

2D and 3D Modelling Using a Lumped Moment-Rotation Hinge Approach 

In a single-component model of concentrated plasticity, two inelastic springs are assigned at the ends 
of frame elements [20]. The overall flexibility of an element using this model is the sum of the 
flexibilities of the inelastic springs and the elastic beam element. On the other hand, a two-component 
model has a nonlinear element in parallel with an elastic element, from which the individual stiffness 
contributions are directly additive. The inelastic element develops plastic hinge only once the yield 
moment is exceeded at the hinge location [21]. Here, moment rotation hinges were defined based on 
beam and column cross sections using hinge definitions in ASCE 41. 
 
2D and 3D Modelling Using a Lumped and Distributed Fibre Based Approach 

When using a fibre based modelling approach, both finite-hinge-zone model and distributed flexibility 
models were evaluated. In the finite-hinge-zone model, the length of the plastic hinge is 
predetermined, and the flexibility of the member is assumed constant between the end hinges. In 
contrast, for a variable flexibility model, the relation between member end-moments and rotations 
are functions of the assumed curvature distribution along the length of the member [22]. Lumped 
fibre-hinges can be assigned at member ends, with a linear beam-column element between the hinges 
to develop a finite-hinge-zone model. On the other hand, variable flexibility distributed plasticity 
models can be developed using nonlinear beam-column elements based on a force or displacement-
based formulation, which are assigned fibre sections at discrete Gaussian integration points. The total 
response of the component is then analysed by integrating sectional deformations over the length of 
the element. 
 

4.2 Comparison of Recorded and Numerical Data 

The response of the study structures recorded during damaging earthquakes was compared to 
numerical results generated using each of the modelling approaches described above. Only the E-
Defence results are presented here for brevity, however the results from all buildings followed similar 
trends and can be found in Scaria and Stephens [16]. The E-Defence structure was subjected to 
motions recorded during the 1995 Kobe earthquake scaled to varying intensities [13]. Figure 18 shows 
the maximum recorded and numerical drifts for input motions scaled 25%, 50%, and 100% of the 
earthquake motion, while Table 5 summarises the maximum storey drifts and percent errors for the 
100% scaled motion. InTable 5, the models are ranked by their representative error margin to identify 
their reliability in accurately predicting drift, which is a common metric to determine expected 
structural damage. From these results, it is clear significant care must be taken when developing 
structural models for the purpose of developing training data for surrogate models as relatively 
significant errors were observed even for the most detailed fibre-based models. Additional work is 
required on this topic to better quantify the uncertainties in modelling assumptions, constitutive 
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models, etc. associated with these errors to provide more confidence in the baseline data used for the 
purpose of surrogate model training. Further, structural instrumentation should be used to constrain 
and validate any models that are to be used for developing training data. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Maximum storey drifts recorded for the E-Defence building for the Kobe earthquake scaled to (a) 
25%, (b) 50%, and (c) 100% 

 
Table 5. Ranking of multifidelity models based on Kobe 100% ground motion input 

Parametric 
level 

Description Maximum interstorey drift ratio % Error Average 
(% 

Error) 

Ranking 

L1 L2 L3 L4 L1 L2 L3 L4 

1 SDOF equiv. 0.01300 0.01367 0.01000 0.00333 60 61 45 61 56.9 6 

2 MDOF equiv. 0.01484 0.02313 0.02367 0.01079 55 34 30 27 36.5 4 

3 2D-
Concentrated 

0.01973 0.02140 0.01301 0.00513 40 39 28 40 36.8 5 

4 2D-Fiber 
sections 

0.02123 0.02734 0.01325 0.00700 35 22 27 18 25.7 2 

5 3D-
Concentrated 

0.01920  0.02085  0.01404  0.00618  41 41 23 27 33.1 3 

6 3D-Fiber 
sections 

0.02052  0.02875  0.01478  0.00835  37 18 19 2 19.1 1 

Observed Experimental 
data 

0.03282 0.03521 0.01819 0.00851         - - 
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5. Machine Learning Surrogate Models for Structural Response Modelling 
 
One of the original concepts of this work was the development of machine learning surrogate models 
to replace conventional finite element analyses to simulate the nonlinear response history of buildings 
at a community scale. Through compilation of the data required to complete this task, several 
practicality issues emerged, the largest being the ability to rapidly generate finite element models and 
training data for a large number of buildings. Although tools exist to generate simplified numerical 
models which can give a good approximation of structural response, the errors observed in these 
methods are too large to justify their use for training surrogate models (as illustrated in Section 4 of 
this report). However, the ‘indicator’ building approach demonstrated in Section 3 of this report has 
shown significant promise in approximating city-scale structural response. Therefore it is 
recommended that detailed models of the indicator buildings, coupled with instrumentation and 
recorded data from these buildings, could be used to generate training data to develop machine 
learning surrogate models for those buildings. Those models could then be used to rapidly evaluate 
regional structural response both for scenario planning and near real-time information following 
events. The following provides a brief review of promising research focused on the development 
machine learning surrogate models for estimating structural response and damage. In follow-on 
research to this work, these methods will be evaluated using data generated from detailed models 
and instrumentation data from the selected indicator buildings. 
 
This topic is focused on developing machine learning models that can emulate a structural system and 
predict the seismic response. Work in this area can be segregated into two groups based on the data 
used to generate the models and the purpose of the models: (1) machine learning methods to identify 
component failure modes, capacities, and constitutive behaviours (e.g. [23], [24], [25], [26]) and (2) 
machine learning methods to that use structural parameters and ground motion inputs to predict 
global structural response. As this work is focused on predicting the seismic response of buildings, 
methods focused on the later are most relevant here. Deep learning approaches (and in particular 
artificial neural nets, ANNs) have been shown to be effective in capturing linear and slightly nonlinear 
structural response of buildings subjected to earthquakes (e.g. [27], [28], [29], [30], [31]).  However 
more recent work completed in the last few years has shown promise in capturing the response of 
buildings for large earthquake demands and high levels of inelasticity. Zhang et al. [32] introduced a 
deep learning approach known as a long short-term memory (LSTM) network to predict the seismic 
response of a non-linear hysteretic system, an instrumented 6-storey concrete moment frame 
building, and synthetic data from a 3-storey steel moment frame building. Results demonstrated that 
the LSTM network could accurately capture the nonlinear response of the building. In follow-on work, 
Zhang et al. [33] developed a modified deep learning approach known as a physics guided 
convolutional network (PhyCNN) that utilises the laws of physics to provide constraints to the network 
outputs, alleviate overfitting, and reduce the need for large training data sets. This model architecture 
was shown to accurately capture the nonlinear response of the 6-storey concrete moment frame 
building used in previous work. Both of these methods have shown very promising results in 
accurately capturing nonlinear structure response. The model architectures are freely available on 
GitHub and will be evaluated for the selected indicator buildings when detailed numerical and 
experimental data is available for those buildings. This is a topic of ongoing work. 
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6. Conclusions and Key Findings 
This project developed the building blocks for a next generation tool for use in performing regional 
resiliency and scenario assessments as well as rapid performance and damage estimates following 
seismic events in Wellington. Key to this work was compiling and linking data sets that can be used to 
estimate the seismic response of a large number of buildings. These datasets include relevant 
structural, site, and demand information. The outputs of this project include (1) an enhanced 
Wellington building inventory with additional information required for seismic response estimates, 
(2) a rapid framework to compare measured ground motions and design level accelerations in 
buildings across the Wellington region, (3) a novel machine learning driven clustering methodology 
for clustering buildings into typologically similar groups and selecting representative indicator 
buildings, (4) a demonstration of the use of indicator for regional seismic response evaluation, and (5) 
a study on the accuracy of different nonlinear modelling techniques, and (6) a pathway and 
recommendations towards developing deep learning surrogate models of selected indicator buildings. 
Key findings from the work are broadly broken into these categories following a brief comment on 
priorities for future instrumentation plans in Wellington. 
 
Free-field Strong Motion and Building Instrumentation in Wellington 

• Due to the varying site conditions in Wellington, free field strong motion stations need to be 
strategically placed to supply accurate demand information for seismic response estimation 
of structures. The current placement of the Geonet strong motion stations in Wellington are 
not adequate for this purpose, as 66% of buildings within central Wellington are currently tied 
to a single strong motion station based on site period. The locations of the existing strong 
motion stations should be revisited, or preferably additional strong motion stations should be 
added to central Wellington. The locations of any additional strong motion stations in 
Wellington should be selected based on site period to maximise accurate seismic demand 
coverage of the building stock. 

• Building instrumentation is essential to validate and update numerical models for seismic 
response and damage estimation. Buildings identified as indicator buildings using the 
methodology described in Section 3 should be targeted for permanent instrumentation for 
this purpose. Aligned work funded through QuakeCoRE (agreement number ADMIN-2021-SF-
15) which attempted to temporarily instrument many of the identified indicator buildings in 
collaboration with Canterbury Seismic Instruments demonstrated that this will be a very 
difficult task, as most building owners are reluctant to agree to instrumentation. To overcome 
this obstacle, researchers and policy makers need to develop a strategy to encourage wider 
building instrumentation in Wellington. 
 

Wellington Building Inventory 
• The Wellington Building Inventory is a useful tool that combines information from disparate 

building databases to improve seismic resiliency by informing strategic retrofit prioritization 
through the identification of critical structural deficiencies which can lead to building failures, 
and quantifying the downstream economic and social impacts of these failures. The curation 
and continued development of this database is ongoing, and needs continued support from 
researchers and stakeholders. 
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Rapid One-DOF Framework 
• The Rapid One-DOF framework requires limited structural information and can be used to 

quickly identify buildings where the earthquake demands exceeded the design demands 
following seismic events. 

• Depending on the spectral shape of the applied ground motion, the estimated demand in this 
framework can be very sensitive to the building period. The fundamental period estimates for 
the buildings in this framework have been calculated using the approximate approach 
outlined in NZS 1170.5.  
 

Building Clustering and Indicator Buildings 
• Machine learning driven clustering of buildings into typologically similar groups for indicator 

building selection and seismic response and damage assessment shows promising results. 
• The k-means on latent space clustering approach is more effective at clustering numerical 

attributes than the k-prototype or k-means on FAMD methods. The latent space approach 
resulted in narrow year, height, and period bands within each cluster, while wide distributions 
of these attributes were observed when using the other methods. 

• The k-means on latent space method is more effective at clustering categorical data, however 
all approaches had difficulty due to unbalanced data distribution for the categorical label in 
the Wellington dataset which has also resulted in more than one dominant attribute in each 
cluster.  

• When selecting representative buildings, the k-means on latent space method selected 
buildings that were both more representative of the dominant typologies in the clusters and 
provided a relatively good distribution of attributes across the entire dataset. 

• In cases where there are multiple dominant attributes within a cluster that can influence 
response and/or damage, multiple indicator buildings may be necessary within a single 
cluster. This is the focus of ongoing work. 

• Common vulnerabilities in concrete buildings in New Zealand were well distributed across the 
clusters developed using the k-means on latent space method, with a maximum of two 
vulnerabilities across any given cluster. 

• The indicator building approach demonstrated promising results in estimating the seismic 
response of buildings within typologically similar groups when using the Kaikōura earthquake 
as a case-study. 

• When using indicator buildings, care must be taken to correct the estimated building 
responses based on the period ranges of buildings within each group to account for 
differences in spectral shape of the input motion. This is the focus of ongoing work. 

• It would be beneficial if the selected cluster typologies and indicator buildings were evaluated 
by experienced practicing engineers in the region of interest (Wellington in this case). Several 
attempts were made to schedule a workshop for this purpose as part of this work, however 
the work shop was postponed and eventually cancelled due to COVID-19 restrictions. 

Development of Training Data for Machine Learning Surrogate Models and Deep Learning 
for Structural Response Modelling 

• Significant care must be taken when developing building response training data for machine 
learning surrogate models using traditional finite element models. Even detailed fibre-based 
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macro-models demonstrated relatively significant errors in estimated drifts and accelerations 
in this study. It is therefore recommended that building instrumentation data be used in 
conjunction with traditional finite element approaches when developing training data for 
surrogate models. Indicator buildings selected according to the clustering techniques 
developed here should be targeted for building instrumentation and detailed modeling for 
the purpose of training surrogate models. 

• Several promising deep learning approaches for nonlinear response modelling of structures 
have been proposed in the last few years including LSTM and PhyCNN networks ([32], [33]). 
These methodologies should be evaluated for machine learning surrogate modelling of the 
selected indicator buildings. 
 

7. Future Work 
• Continued development of the Wellington Building Inventory as additional structural, site, and 

demand information is made available. Detailed drawings from an additional 200 buildings 
were recently obtained from WCC. Data from these drawings will be extracted to expand the 
number of buildings for which detailed structural information is available.  

• Obtaining more granular seismic demand information in the Wellington CBD through 
partnerships with commercial and government entities that are providing seismic 
instrumentation. Discussions on this topic are ongoing. 

• New PhD student Alex Kirby (funded by a University of Auckland Doctoral Scholarship) has 
been selected to continue the development of the regional response framework discussed 
here. His work will continue the evaluation of machine learning driven techniques for building 
clustering and indicator building selection, and will also focus on developing accurate data for 
surrogate model training through detailed modelling and building instrumentation. 
 

8. Impact 
This project developed the building blocks for a next generation tool for use in performing regional 
resiliency and scenario assessments as well as rapid performance estimations following seismic events 
in New Zealand. While pieces of the framework were developed and demonstrated for Wellington, 
the work-flow itself is fundamental in nature, and is therefore scalable for use in other communities 
and with other infrastructure systems (including bridges, dams and energy/power infrastructure). As 
the innovative engineering approach developed here is further refined, it will have significant impact 
in New Zealand in terms of planning resilient cities and infrastructure. Central to the work developed 
here is the use of machine learning driven computational methods to efficiently cluster buildings into 
typologically similar groups and select representative indicator structures that can be used to estimate 
the response of structures at a regional scale. Ongoing work is focused on detailed modelling and 
instrumentation of the selected indicator buildings to generate a seismic resiliency and evaluation 
quantification tool that offers granularity regarding structural response and damage at the individual 
structure level across a region. 
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