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ABSTRACT 

This paper presents a framework for regional seismic response estimations that uses machine learning driven building clustering 
and the relatively novel concept of indicator buildings. A robust database of buildings is required to provide detailed structural 
and site information to develop typologically similar building clusters and allow for an informed selection of the indicator 
buildings that are used to estimate the seismic response of all buildings in a cluster. Here, the framework is applied to a database 
of buildings consisting of over 400 buildings in the central business district of Wellington, New Zealand. First, key structural 
and site parameters are extracted from the building database and building clusters are generated using the k-prototype clustering 
methodology. Next, indicator buildings within each cluster are selected and modelled using ETABS. To provide more accurate 
estimations of drift across all buildings in the cluster, supplementary models were generated by modifying the stiffness of the 
base indicator building models to represent the structural period range across all buildings in each cluster. A case study was 
undertaken using the 2016 Kaikoura earthquake, and the response of the models are utilized to propose a linear regression 
model estimating seismic response of all buildings in the database.  
 

Introduction 
This paper outlines the development of a framework for selecting and modeling representative indicator 
buildings within typologically similar clusters in a building portfolio to provide a regional seismic response 
model. The framework requires a detailed database of buildings and uses an unsupervised machine learning 
methodology to cluster buildings into typologically similar groups based on relevant structural and site 
characteristics. Buildings closest to the center (or mean) of the clusters are selected as candidates to serve as 
indicator buildings, which are modeled and used to estimate the seismic response of all buildings within the 
cluster. Indicatory buildings have been previously used following earthquakes to limit structural inspections 
of damaged buildings following aftershocks [1]. Here the objective is to select indicator buildings before the 
occurrence of ground shaking to allow for the development of numerical models that can be used for scenario 
planning pre-event and can provide situational awareness post-event. 
 Wellington, the capital city of New Zealand, has been selected as the case study for this research due to 
the high risk of seismic damage in this city and the existence of a comprehensive building inventory, herein 
referred to as the Wellington Building Inventory (WBI) [2], [3]. This paper proceeds with introducing WBI 
and the key structural and site parameters which have been used for clustering. Next, building clustering and 
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indicator building selection using unsupervised machine learning methodology, k-prototype, is discussed. 
Finally, the undertaken case study for the 2016 Kaikoura earthquake and the developed seismic response model 
is presented.  
 

Wellington Building Inventory 
The WBI consists of eleven building databases that have been consolidated into a single easy-to-use database 
consisting of over 400 buildings in the central business district in Wellington, shown in Fig. 1 (a) [3]. This 
research focuses on buildings in the WBI that are five or more stories and primarily use reinforced concrete 
for the lateral load resisting system, which results in approximately 270 buildings. Amongst the various 
available data for each building in the database, the structural and site characteristics affecting the seismic 
response of buildings are of primary interest here. In particular, these parameters include: primary lateral load 
resisting system (LLRS), floor system (FS), year of construction, height, and site conditions including site 
subsoil class (adopted from [4]) and strong motion station (adopted from [5]), as well as detailed structural 
drawings which are available for most buildings in the database, and facilitate the creation of detailed building 
models for seismic response analysis. 
 

Building Clustering 
Unsupervised Machine Learning was used to cluster buildings in the WBI into typologically similar building 
clusters based on the previously mentioned structural and site characteristics. A total of seven parameters from 
the WBI were used to generate the clusters, including both numerical and categorical data types, namely year 
and height which are numerical, and LLRS, FS, soil type, and strong motion station which are categorical. To 
allow for clustering of the mixed data, a k-prototype clustering method was applied to cluster mixed numerical 
and categorical data types [6]. The Elbow Method was used to determine the optimum number of clusters, and 
suggested five clusters was the optimum number for the given dataset [7]. The results of k-prototype clustering 
is illustrated in the map of Fig. 1 (a), showing clustered buildings in different colors as well as not-clustered 
buildings in gray. Moreover, Factor Analysis of Mixed Data (FAMD) method was used to reduce the seven 
dimensions consisting mixed numerical and categorical values into two component and visualize the 2D 
reduced dimension of clustered building [8]. Fig. 1 (b) shows the distribution of buildings on the FAMD 
reduced 2D plane. The buildings are colored according to the results of k-prototype method.  
 

  
Figure 1. (a): Distribution of clustered buildings on Wellington map, where gray footprints represent the 
buildings not clustered due to insufficient structural data, and (b): Buildings distribution on FAMD reduced 
2D space.  
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Indicator Building Selection and Modeling 
To select an indicator building from each cluster, the spatial distance of all buildings to their respective cluster 
centroid was calculated based on k-prototype dissimilarity function and hence, all building were ranked 
according to their distance to the cluster centroid [6]. The five top-ranked buildings from each cluster were 
selected initially as candidate for cluster indicator buildings. From the top five ranked buildings in each cluster, 
the selection of an indicator building was primarily based on the floor plans, structural systems, and building 
period.  
 Ground Floor and Typical Floors layouts were drawn for the top five ranked buildings in each cluster. 
Common features were identified between the five floor plans considering floor area, plan/vertical irregularity, 
and column/beam/shear wall layout. Although it is unlikely that one building can effectively represent all key 
features in a cluster, the most representative building between the five candidate buildings was chosen based 
on these characteristics. The selected building in each cluster was modelled in CSI ETABS to provide a linear 
finite element response model of each indicator building. A demonstration of the procedure is shown in Fig. 2 
for Cluster 0, where Fig. 2 (a) shows the Ground Floor layouts, Fig. 2 (b) shows the selected indicator building 
from the top-five ranked buildings within the cluster, and  Fig. 2 (c) represents a rendered sketch of the building 
model in CSI ETABS.  

 

 
Figure 2. Cluster 0 (a): top five ranked buildings floor plans, (b): the selected indicator building floor plan, 
and (c): the rendered sketch of ETABS model for indicator building. 

 
Supplementary Models 
Supplementary models were generated by modifying the stiffness of the base indicator building models to 
represent the structural period range across all buildings in each cluster. This was done using statistical analyses 
on cluster period distributions and adjusting the stiffness modification coefficients in the base indicator 
building models. Estimated building periods were calculated for all buildings in the WBI using approximate 
methods from NZS 1170.5 Commentary [9]. The mean and standard deviation of building periods in each 
cluster were calculated, and the stiffness modification coefficients on the primary structural elements in the 
models were modified to create three supplementary models which are geometrically identical to the base 
model but with varying periods. The targeted periods included the mean period of all buildings within the 
cluster as well as the mean plus one standard deviation and the mean minus one standard deviation. These 
models were created to generate response estimates for a range of periods in each cluster for more accurate 
response estimation of all building in each cluster. 
 

Case Study 
The 2016 Kaikoura Earthquake was an Mw 7.8 earthquake that had an epicenter approximately 200 km from 
Wellington [2]. The nearest location of fault rupture occurred approximately 50 km South of Wellington and 
caused significant structural damage to many buildings [2]. Time series acceleration data for this earthquake 
was obtained from several strong motion stations (SMSs) in Wellington [5]. A linear time history analysis was 
conducted for each of four models in each cluster, where the time history data used for each building was 
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assigned based on site period rather than geographic distance to the SMS. Using the maximum drift and 
acceleration of four different models in each cluster, two methods were utilized to estimate the response 
parameters of all buildings within the cluster. In Method I, the maximum drift from the indicator building in 
each cluster was applied to all buildings in that cluster. In Method II, a linear regression model was developed 
based on the response parameters and periods of four models in each cluster. The developed model was used 
to estimate the maximum drift and maximum acceleration of all buildings in each cluster according to building 
periods. Fig. 3 shows the results for Method I (a), and Method II (b) for drift of all buildings in the WBI for 
the Kaikoura earthquake. This comparison corroborates the response underestimation of Method I. Preliminary 
analysis indicates that these drift estimates are consistent with response and damage observed during the 
earthquake. Ongoing work is being done to validating this mythology. 
 

  
Figure 3. Drift maps using two methods; (a) Method One: drifts driven from indicator buildings (b) 

Method Two: drifts driven from linear regression response model. 
 

Conclusions 
This paper presents a methodology to develop regional seismic response model for buildings in a portfolio that 
uses unsupervised machine learning methods to cluster buildings and select representative indicator buildings. 
The Wellington Building Inventory was selected as the case study of this paper due to the availability of a 
robust database of buildings within the central business district. The buildings were initially clustered into five 
similar vulnerability archetype clusters using the k-prototype method. Next, an indicator building from each 
cluster was selected and elastic models were developed in CSI ETABS to enable seismic response estimation. 
Moreover, three supplementary models were created in each cluster to match the mean, mean plus, and mean 
minus standard deviation of the periods in each cluster. The 2016 Kaikoura earthquake was selected as the 
case study event to develop a linear regression model for seismic response of all buildings in the database. 
Using the developed models, maximum drift of all buildings were estimated according to the building period. 
Ongoing work by the two last authors focuses on developing detailed non-linear macro models for the top five 
ranked buildings in each cluster to improve the accuracy of response models and further validate this 
methodology. Moreover, the top five indicator buildings are going to be instrumented to enable verification of 
the response models with the results of ambient vibration measurements. The response models can be utilized 
to estimate the regional seismic damage and loss of the building portfolio in the future. 
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